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Abstract
Tomato has a relatively short growth cycle (fruit ready to pick within 65–85 days from planting) and a relatively high yield 
(the average for globe tomatoes is 3–9 kg fruit per plant rising to as much as 40 kg fruit per plant). Tomatoes also produce 
large amounts of important primary and secondary metabolites which can serve as intermediates or substrates for produc-
ing valuable new compounds. As a model crop, tomato already has a broad range of tools and resources available for bio-
technological applications, either increased nutrients for health-promoting biofortified foods or as a production system for 
high-value compounds. These advantages make tomato an excellent chassis for the production of important metabolites. We 
summarize recent achievements in metabolic engineering of tomato and suggest new candidate metabolites which could be 
targets for metabolic engineering. We offer a scheme for how to establish tomato as a chassis for industrial-scale production 
of high-value metabolites.
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An important crop

Economically, tomato (Solanum lycopersicum) is the most 
important horticultural crop, and its production, by yield, is 
second only to potato, across the world (Peixoto et al. 2017). 
The short life cycle (90–120 days) and self-compatibility of 
tomato facilitate its cultivation as a cash crop for both small 
as well as large-scale growers. According to their differ-
ent commercial uses, tomato varieties can be divided into 
fresh market varieties which are usually produced in green-
houses and processing varieties which are often field-grown, 
for industrial uses (Zsögön et al. 2017). Besides water and 

fertilizers, successful tomato production requires optimised 
cultivation methods and management, pest control, and 
appropriate post-harvest storage (Liu et al. 2017a, b). Under 
optimized conditions, tomato productivity can easily reach 
20–50 tons per hectare (Wang and Seymour et al. 2017; Tie-
man et al. 2017). China and the United States are the two 
largest tomato-producing countries in the world (http://faost​
at3.fao.org/brows​e/Q/QC/E). In the US, in 2016, the total 
area under tomato cultivation was 364,800 acres and the 
total yield reached 16 million tons with a value of just over 
$2 billion (USDA 2017; Zsögön et al. 2017).

An excellent crop model with substantial 
infrastructure as well as tools and resources 
for metabolic engineering

Tomato is consumed fresh or as a processed product in 
canned tomatoes, paste, puree, ketchup, juice and pasta 
sauces. Tomato consumption globally averages 20 kg per 
capita per annum, with the USA, China and Italy consum-
ing double these levels, on average (http://www.agrib​enchm​
ark.org). Tomato is the only fruit/culinary vegetable to have 
increased in consumption in the USA over the past 50 years.
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Some metabolic engineering of tomatoes have been 
focused on its nutritional improvement as a food, and pro-
duction of tomatoes enriched in nutrients may be the most 
cost-effective route to consumers for effective nutritional 
improvement without requiring substantial shifts in diet 
(Butelli et al. 2008; Scarano et al. 2017).

Alternatively, tomato can be used as an effective produc-
tion platform for high-value compounds, such as drugs, and 
for such uses the primary objective is to extract and purify 
the high-value bioactives produced (Zhang et al. 2015).

Tomato has been an important model plant for biologi-
cal research. The genome sequence of tomato has been 
published (Consortium 2012) and its epigenome and 
extensive resequencing data are available from the Sol 
Genomics Network (SGN: https​://solge​nomic​s.net) (Lin 
et al. 2014). The Tomato Genomics Resources Database 
(TGRD: http://59.163.192.91/tomat​o2/) houses RNA-seq 
and microarray data for tomato as well as some metabolite 
data. TGRD allows interactive browsing of tomato genes, 
micro RNAs, simple sequence repeats (SSRs), quantitative 
trait loci (QTL) and the Tomato-EXPEN 2000 genetic map 
(Suresh et al. 2014). There are extensive genetic resources 
in the form of well characterised mutant collections (Tomato 
Genetic Resource Center, TGRC University of California, 
Davis: http://tgrc.ucdav​is.edu/), several excellent TILL-
ING populations for mutant discovery (UC Davis in Heinz-
1706; INRA Bordeaux in MicroTom, INRA Versailles in 
M82), Red Setter and Money Maker (phenotypes available 
through SGN and LycoTILL) and a phenotypic library of 
additional mutations catalogued in ‘The Genes that Make 
Tomato’ available through SGN. Recent progress in tomato 
metabolomics now provides substantial information about 
its primary and specialized metabolism and the pathways 
involved in synthesis and turnover (Luo 2015; Tieman et al. 
2017; Zhu et al. 2018). Together with efficient genome edit-
ing tools (Brooks et al. 2014; Sprink et al. 2015; Soyk et al. 
2017), these advantages make tomato an excellent choice for 
metabolic engineering. The community of scientists working 
on tomato is also exceptionally collaborative, with research-
ers exchanging mutants, accessions, genomics data and new 
protocols freely and constructively, prior to publication.

The conflict between demands for specific metabolite 
production and growth dependent on photosynthesis places 
limits on the levels of production of specialized metabolites 
possible in photosynthetic tissues, but fruit-specific produc-
tion in tomato allows high productivity without yield penal-
ties (Butelli et al. 2008; Luo et al. 2008; Zhang et al. 2015). 
The tomato fruit represents an open system into which addi-
tional sugars and amino acids can be imported in times of 
increased metabolic demand (increased sink strength). This 
means that switching on metabolic pathways in fruit, late 
in ripening (as conferred by the fruit-specific E8 promoter, 
for example) can result in high levels of accumulation of 

metabolites without yield penalties, because fruit set, devel-
opment and ripening are largely completed by this point 
(Butelli et al. 2008; Luo et al. 2008; Zhang et al. 2015; 
Scarano et al. 2017). Because tomato is such a good system 
for metabolic engineering, many isogenic lines enriched in 
different polyphenols are available for comparative nutri-
tion experiments. In addition, lines important for metabolic 
engineering, such as the E8:AtMYB12 line that induces pri-
mary metabolism (glycolysis, the TCA cycle, the pentose 
phosphate and the shikimate pathways) as well as flavonoid 
biosynthesis specifically in fruit, are already available and 
well characterised (Luo et al. 2008; Zhang et al. 2015).

Like other models, methods for stable and transient 
expression/silencing of target genes in tomato are well 
developed (Potrykus 1991; Fischer 1999; Hannon 2002; 
Orzaez et al. 2009). Recently, with the emergence of the new 
breeding technologies of genome editing, new alleles can 
be created, directly into the desired genetic background, to 
supply beneficial quantitative variation for tomato breeding 
(Rodríguez-Leal et al. 2017). CRISPR/Cas9 genome editing 
appears to be particularly efficient in tomato (Belhaj et al. 
2015; Brookes et al. 2014; Pan et al. 2016).

Compared to other model plants, there are several unique 
research tools that have been developed to facilitate tomato 
research: a specialized variety, MicroTom, has a shorter 
growth cycle and reduced plant size. This cherry tomato 
variety can be used for fundamental research before traits are 
transferred to large-sized, globe tomato varieties (Dan et al. 
2006). Use of the ethylene-inducible E8 promoter ensures 
the expression of transgenes is induced only in ripe fruit. 
The E8 promoter can be used in a general strategy to produce 
desirable compounds in fruit without yield penalties (Bovy 
et al. 2002; Luo et al. 2008; Zhang et al. 2015). In addition, 
the establishment of the S. lycopersicum × S. pennellii intro-
gression lines (ILs) [and now, other IL populations including 
S. lycopersicum × S. lycopersicoides, S. lycopersicum × S. 
pimpinellifolium, S. lycopersicum × S. sitiens, S. lycopersi-
cum × S. chilense, and S. lycopersicum × S. habrochaites (S. 
hirsutum)] has provided unique genetic resources to iden-
tify loci controlling important traits in tomato (Zamir 1995, 
2001; Eshed and Zamir 1995; Frary et al. 2000; Fridman 
et al. 2000; Kushibiki and Tabata 2005; Powell et al. 2012).

Metabolic engineering

Metabolic engineering is used to increase the accumulation 
of target metabolites in organisms. Metabolic engineering 
can be achieved by breeding of selective genotypes but more 
usually involves genetic engineering. Recent advances in 
genome editing are making this technique an additional 
option for many traits in tomato.

https://solgenomics.net
http://59.163.192.91/tomato2/
http://tgrc.ucdavis.edu/
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Most principles of metabolic engineering have been 
established in microbial systems, even for the production of 
plant natural products (Liu et al. 2017a, b) although there 
is increasing interest in using plants as chassis (O’Neill and 
Kelly 2016), especially for the development of nutritionally 
enhanced foods. The principles of metabolic engineering of 
plant natural products in microbes involve ensuring that each 
enzyme of the pathway is expressed, that each enzyme has 
optimized activity, that the flux along the pathway is selec-
tively elevated, and that competing and catabolic pathways 
are blocked (Liu et al. 2017a, b). While these principles also 
hold true in plant metabolic engineering, the tools available 
to ensure that these design principles are met, are different in 
plants to those in heterologous microbial hosts. Originating 
from attempts to engineer lipid metabolism for the accumu-
lation of oils, the terms ‘push’, ‘pull’ and ‘protect’ have been 
used to describe different engineering strategies (Van et al. 
2014; Vanhercke et al. 2014). ‘Pull’ involves up-regulating 
the activities of enzymes that make the target molecule, par-
ticularly ‘key, rate-limiting’ steps in the biosynthetic meta-
bolic pathways. Such approaches have been used very exten-
sively in plant metabolic engineering, and usually provide 
modest increases in target metabolite content (Martin 1996; 
Farré et al. 2014). A good example is the enhanced produc-
tion of flavonols in tomato resulting from ectopic expression 
of chalcone isomerase (Muir et al. 2001). ‘Protect’ strategies 
involve reductions in flux through pathways that compete for 
substrate or intermediates on route to the target molecule, or 
removing catabolic pathways that limit the accumulation of 
the target metabolite. Protect strategies have proved effec-
tive in folate biofortification of rice and in provitamin A 
engineering in sorghum (Blancquaert et al. 2015; Che et al. 
2016). ‘Push’ strategies encompass those that increase flux 
along the biosynthetic pathways including activating tran-
scription factors (TFs), as well as strategies that increase 
the supply of precursors from primary metabolism (Martin 
1996; Butelli et al. 2008; Century et al. 2008; Luo et al. 
2008; Fu et al. 2018). Generally, push strategies involve the 
use of transcriptional activators in plants that induce specific 
pathways, but recently a new type of transcriptional activator 
that can induce pathways of primary metabolism as well as 
those of secondary metabolism has been added to the tool-
box. These TFs increase flux by supplying increased levels 
of substrates from primary metabolism, as well as energy 
and reducing power. Examples are: MYB12 (Zhang et al. 
2015), WRI1 that activates fatty acid biosynthesis (Maeo 
et al. 2009; Baud et al. 2010; Marchive et al. 2015) and 
GAME9 from tomato that upregulates the MEP pathway 
to supply isopentyl phosphate precursors for terpenoid and 
sterol biosynthesis (Cárdenas et al. 2016). Although these 
activities may have been demonstrated originally in other 
species, all these tools are available for metabolic engineer-
ing in tomato (Fu et al. 2018).

Tomato: an excellent biosynthetic chassis

Tomato is the world’s favorite fruit due to its special fla-
vor and high nutritional value. Tomato fruit contains large 
amounts of metabolites such as sucrose, hexoses, citrate, 
malate and ascorbic acid. There are also many health-
beneficial compounds such as carotenoids, phenylpro-
panoids and terpenoids that accumulate in tomato fruit 
(Fig. 1; Siddiqui et al. 2015). The existence of these com-
pounds establishes that many basic biosynthetic pathways 
are intact in tomato. Therefore, when undertaking meta-
bolic engineering, a limited number of additional genes 
needs to be introduced, which can significantly simplify 
the engineering process. In addition, substrates (such as 
sugars and aromatic amino acids) and intermediates (such 
as 4-coumaroyl CoA and acetyl-CoA) that are needed for 
secondary metabolism are often enriched in tomato fruit 
(Fig. 1). All these features facilitate the use of tomato fruit 
as a chassis for metabolic engineering.

So far, the best examples of metabolic engineering in 
tomato involve the phenylpropanoid pathway. Phenylpro-
panoids arise from the essential amino acid phenylalanine 
and p-coumaroyl CoA produced from phenylalanine by 
the general phenylpropanoid pathway (Fig. 1; Vogt 2010). 
Tomato fruit contain various phenolic compounds (flavo-
noids, caffeoyl quinic acids and other hydroxycinnamates) 
which show that the phenylpropanoid biosynthetic network 
is intact and active in fruit and can be engineered to either 
enhance the production of existing phenylpropanoids or 
produce new types of compound. Over-expression of genes 
encoding purported ‘rate-limiting steps’ in the phenyl-
propanoid pathway was first used to induce biosynthesis, 
particularly of flavonoids (Muir et al. 2001; Vogt 2010; 
Tzin et al. 2013). Several MYB and bHLH transcription 
factors (TFs) have been shown to induce the expression 
of phenylpropanoid biosynthetic genes. Overexpression 
of these TFs in tomato fruit can significantly enhance the 
production of phenylpropanoids (Bovy et al. 2002; Broun 
et al. 2006; Luo et al. 2008; Butelli et al. 2008; Gonzali 
et al. 2009; Zhang et al. 2015). Introduction of new struc-
tural genes encoding enzymes into tomato can create new 
compounds such as resveratrol and genistin from current 
biosynthetic pathways (Schijlen et al. 2006; Carrillo et al. 
2011; Zhang et al. 2015). Recently, using the Arabidopsis 
transcription factor AtMYB12, we managed to switch on 
aromatic amino acid biosynthesis by manipulating primary 
metabolism. The AtMYB12 protein not only efficiently 
induces production of phenylpropanoid compounds, but 
also has the potential to induce the production of high-
value metabolites derived from tyrosine and tryptophan 
in tomato (Zhang et al. 2015).
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Examples of high‑value metabolites 
produced in tomatoes

Betalains, one of the three major types of pigments in plants, 
provide the colors seen in fruits and flowers of some mem-
bers of the family Caryophyllaceae. Betalains have been 
used extensively as natural colorants for many centuries 
(Georgiev et al. 2008). They are tyrosine-derived, red–vio-
let and yellow pigments used as food colorants and dietary 
supplements, which are generally classified into the red beta-
cyanins and the yellow betaxanthins (Schwinn et al. 2016). 
Metabolic engineering for heterologous betalain produc-
tion was achieved for the first time in tomato, following 
expression of three genes encoding the cytochrome P450 
CYP76AD1, the BvDODA1 dioxygenase, and the cDOP-
A5GT glycosyltransferase in a single binary vector. As much 
as 248 ± 41 mg L− 1 betalain were produced in tomato juice. 
In addition, these lines have been crossed with a Del/Ros1 
tomato line with elevated anthocyanin production, which can 
further increase the content of betalain in fruit (Butelli et al. 
2008; Polturak et al. 2017).

Recently, tomato fruit have been engineered to produce 
ketocarotenoids. Ketocarotenoids, such as canthaxan-
thin, adonirubin, or astaxanthin are high-value pigments 
used commercially across the food and feed industries, 
although they are rarely synthesized in plants. This engi-
neering strategy involved both the enrichment and the 
extension of the β-carotene pathway. The genes encoding 
β-carotene hydroxylase (CrtZ) and the oxyxgenase (CrtW) 

from Brevundimonas sp. as well as the allele encoding the 
lycopene β-cyclase (β-Cyc) from Solanum galapagense were 
introduced into tomato fruit. Two independent aquacultural 
trials identified that the plant-based feeds developed were 
increased in the retention of the main ketocarotenoids two-
fold, in the fillets of fish fed on ketocarotenoid-enriched feed 
compared to control feed (Nogueira et al. 2017).

New high value compounds can be 
produced by tomato

Based on our understanding of the metabolic networks active 
in tomato fruit and previous metabolic engineering studies, 
other bioactive compounds that could be produced success-
fully in tomato can be suggested.

For the biosynthesis of Rosmarinic Acid (RA), there 
are two precursors, l-phenylalanine (which is converted to 
p-coumaroyl-CoA, catalyzed by the enzymes of the General 
Phenylpropanoid Pathway, phenylalanine ammonia lyase, 
cinnamate 4-hydroxylase, and p-coumaroyl CoA ligase) 
and l-tyrosine which is converted to 4-hydroxyphenyl-
lactic acid, catalyzed by tyrosine aminotransferase (TAT) 
and 4-hydroxyphenylpyruvate reductase (HPPR), enzymes 
which are active in tomato fruit. The activity of RA syn-
thase produces 4-coumaroyl-4′-hydroxyphenyllactic acid, 
and then the 3- and 3′-hydroxyl groups are introduced by a 
cytochrome P450 monooxygenase to produce RA (Ru et al. 
2016). Previous studies have indicated that AtMYB12 can 
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Fig. 1   Important primary and secondary metabolites and their biosynthetic pathways in tomato fruit. Compounds that have been engineered 
already in tomato fruit are outlined in purple
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enhance significantly the synthesis of aromatic amino acids 
(phenylalanine, tyrosine and tryptophan) (Zhang et al. 2015). 
Thus, co-expression of AtMYB12 and additional structural 
genes could be used to produce substantial amounts of RA 
in tomato.

Pharmacological studies have shown that retinol (vitamin 
A) is essential for the development of the human central 
nervous system (CNS). Retinol can help resist Parkinson’s 
disease and Alzheimer’s disease (Kunzler et al. 2017; Liu 
et al. 2017a, b; Sato et al. 2017). In tomato, enhancing the 
levels of provitamin A can be achieved by manipulating 
β-carotene biosynthesis. β-carotene concentrations can be 
improved either by increasing synthesis or reducing catabo-
lism. Lycopene, with high lipophilic antioxidant capacity, 
is the red compound that accumulates in ripe tomatoes, and 
lycopene can be metabolized to α-carotene or β-carotene. 
Therefore, selection of weaker alleles of the gene encoding 
lycopene ε-cyclase (LcyE), an enzyme that transforms all-
trans lycopene into δ-carotene, has been shown to enhance 
the concentration of β-carotene. Alternatively, weakening 
the expression of the gene encoding β-carotene hydroxy-
lase (HydB), which converts β-carotene to zeaxanthin, can 
increase β-carotene levels in tomato by a ‘protect’ strategy. 
β-carotene can be converted to two molecules of retinol, 
meaning that β-carotene is a better source of provitamin 
A than other carotenoids which can give rise to only one 
molecule of retinol. Overexpression of the gene encoding 
carotene ε-ring hydroxylase (CYP97C), turns α-carotene into 
lutein which is richest in green leafy vegetables (such as 
spinach, broccoli, peas and lettuce), and protects against the 
development of age-related macular degeneration (AMD), 
due to its selective accumulation in the macula of the retina 
of the eye. β-carotene improves visual function in patients 
with age-related cataracts and non-proliferative diabetic 
retinopathy (Olmedilla et al. 2003; Zhu et al. 2010; Zhang 
et al. 2017).

There are two forms of vitamin E vitamers (tocopherols 
and tocotrienols) collectively defined as tocochromanols 
in most plants. The bioavailability of tocochromanols is 
dependent on their affinity for the α-tocopherol transporter 
in the liver of humans, and tocochromanols protect against 
low density lipoprotein (LDL) and polyunsaturated fatty 
acid (PUFA) oxidation, cardiovascular disease, some can-
cers and impaired immune function (Martin and Li 2017). 
Tocotrienols are not produced in tomato because of the 
absence of a gene encoding homogentisate geranylgeranyl 
transferase (HGGT​) in tomato (Lu et al. 2013). Screening 
for stronger alleles of the gene encoding homogentisate phy-
tyl transferase (HPT; vte2) could increase significantly the 
concentrations of tocopherols in tomato (Mène-Saffrané and 
Pellaud 2017).

Cholesterol and its derivatives are precursors for thou-
sands of important compounds including: the steroidal 

saponin, diosgenin, which serves as a hormonal drug as 
well as its derivative progesterone; the steroidal alkaloid 
(SA) solamargine, which serves as potential cancer drug as 
well as pro-vitamin D3, which is also known as 7-dehy-
drocholesterol (Sonawane et al. 2016). SAs and their gly-
cosylated forms (steroidal glycoalkaloids; SGAs) are nitro-
gen-containing toxic compounds occurring primarily in the 
Solanaceae and Liliaceae plant families. Although SGAs 
confer resistance of Solanaceous species to a comprehen-
sive list of pathogens and predators, some are regarded as 
anti-nutritional compounds for humans including α-tomatine 
and dehydrotomatine in green tissues of fruit (Itkin et al. 
2013; Sonawane et al. 2016). The elucidation and manipula-
tion of the cholesterol pathway in tomato could be a first step 
towards plant-based engineering of interesting cholesterol 
derivatives. One of the steroidal alkaloids, dioscin, is the 
main bioactive component of Dioscorea nipponica Makino 
tubers, and has been used as a marker compound for evaluat-
ing the quality of Dioscorea nipponica Makino in traditional 
Chinese medicines (Yin et al. 2010). Dioscin is an essential 
feed stock for the steroidal hormone industry, and because it 
has the same carbon skeleton as SGA, it could be produced 
in tomato.

Scale‑up of production in tomato

To assemble a successful production platform, a controlled 
space for cultivation of genetically engineered plants needs 
to be established, unless field cultivation has been granted 
regulatory approval. Containment can be accomplished 
using insect-proofed greenhouses for cultivating tomatoes. 
The end product of this process could be tomato juice con-
taining the target metabolites. Seeds could be removed dur-
ing juicing to avoid any potential environmental impact. 
Plant waste and pumice can be devitalized by autoclaving 
or incineration (Fig. 2).

A second strategy involves adaptation of any new produc-
tion system to current industrial processes. A tomato pro-
duction system could be divided into two major parts: the 
production of tomato juice and the purification of desired 
compounds (Fig. 2). The first part could be adapted to cur-
rent methods used in the juice production industry, where 
equipment and protocols have already been optimised to 
remove seeds and concentrate juice. The only difference 
would be the replacement of non-GM field-grown tomatoes 
with fruit from engineered plants cultivated in containment 
greenhouses. For the second stage, tomato juice could be 
processed further to produce high-purity compounds. This 
stage could be readily adapted from existing microbial 
production platform purification protocols. In such cases, 
tomato juice containing high-value metabolites would 
replace the microbial medium in purification protocols. All 
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techniques used for purification of metabolites from micro-
bial medium should be similarly applicable to tomato juice. 
To summarize, tomato production platforms could readily 
be developed based on existing infrastructure for glasshouse 
cultivation of fresh market tomatoes coupled to existing 
industrial purification platforms by combining practices 
from the tomato juice industry with microbial production 
systems (Fig. 2).

Conclusions

Tomato offers a useful chassis for metabolic engineer-
ing, with significant advantages over other chassis: (a) it 
is high yielding, easy to grow and manage with existing 
tomato cultivation infrastructure; (b) fruit contain most 
of the necessary substrates; (c) fruit contain the whole or 
most of the biosynthetic pathways for making high-value 
metabolites and activity can be further enhanced by engi-
neering the activity of transcription factors (Fu et al. 2018); 
(d) genome sequence is available with many additional tools 
and resources that facilitate metabolic engineering; (e) fruit-
specific production of secondary metabolites usually does 
not incur a yield penalty nor affect the growth of the plant. 
Tomato should be considered more frequently for sustain-
able production of high-value specialty metabolites.
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multiplication of engineered lines for cultivation in containment 
(insect-proofed) greenhouses; (4) harvesting of fruit; (5) preparation 
of extracts of high value chemicals from tomatoes. This may be as 
simple as homogenization and centrifugation to generate ‘tomato 
water’ for high value, water soluble compounds; (6) chemical sepa-
ration methods for purification of high value compounds; (7) sale of 
high value metabolite products from tomato
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