Skip to main content

Advertisement

Log in

Integrative non-pharmacological care for individuals at risk of rheumatoid arthritis

  • Review
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

There is increasing knowledge in the recognition of individuals at risk for progression to rheumatoid arthritis (RA) before the clinical manifestation of the disease. This prodromal phase preceding the manifestation of RA may represent a “window of opportunity” for preventive interventions that may transform the clinical approach to this disease. However, limited evidence exists in support of effective interventions to delay the onset or even halt the manifestation of RA. Given the multifactorial nature of RA development and disease progression, the latest guidelines for established RA stress the use of integrative interventions and multidisciplinary care strategies, combining pharmacologic treatment with non-pharmacological approaches. Accordingly, individuals at risk of RA could be offered an integrative, multifactorial intervention approach. Current data point toward pharmacological intervention reverting the subclinical inflammation and delay in the disease onset. In addition, targeting life style modifiable factors (smoking cessation, dental health, physical activity, and diet) may presumably improve RA prognosis in individuals at risk, mainly by changes in epigenetics, autoantibodies, cytokines profiles, and microbiome. Nonetheless, the benefits of multidisciplinary interventions to halt the manifestation of RA in at-risk individuals remain unknown. As there is a growing knowledge of possible pharmacological intervention in the preclinical phase, this narrative review aims to provide a comprehensive overview of non-pharmacological treatments in individuals at risk of RA. Considering the mechanisms preceding the clinical manifestation of RA we explored all aspects that would be worth modifying and that would represent an integrative non-pharmacological care for individuals at risk of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Scherer HU, Häupl T, Burmester GR (2020) The etiology of rheumatoid arthritis. J Autoimmun 110:102400. https://doi.org/10.1016/j.jaut.2019.102400

    Article  CAS  PubMed  Google Scholar 

  2. Petrovská N, Prajzlerová K, Vencovský J et al (2021) The pre-clinical phase of rheumatoid arthritis: From risk factors to prevention of arthritis. Autoimmun Rev. https://doi.org/10.1016/j.autrev.2021.102797

    Article  PubMed  Google Scholar 

  3. Aletaha D, Neogi T, Silman AJ et al (2010) 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European league against rheumatism collaborative initiative. Arthritis Rheum 62:2569–2581. https://doi.org/10.1002/art.27584

    Article  PubMed  Google Scholar 

  4. Van Steenbergen HW, Aletaha D, Beaart-Van De Voorde LJJ et al (2017) EULAR definition of arthralgia suspicious for progression to rheumatoid arthritis. Ann Rheum Dis 76:491–496. https://doi.org/10.1136/annrheumdis-2016-209846

    Article  PubMed  Google Scholar 

  5. Wouters F, Van Der Giesen FJ, Matthijssen XME et al (2019) Difficulties making a fist in clinically suspect arthralgia: an easy applicable phenomenon predictive for RA that is related to flexor tenosynovitis. Ann Rheum Dis 78:1438–1439. https://doi.org/10.1136/annrheumdis-2019-215402

    Article  PubMed  Google Scholar 

  6. Wigerblad G, Bas DB, Fernades-Cerqueira C et al (2016) Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism. Ann Rheum Dis 75:730–7398. https://doi.org/10.1136/annrheumdis-2015-208094

    Article  CAS  PubMed  Google Scholar 

  7. Mankia K, Di A, Emery P (2020) Prevention and cure: the major unmet needs in the management of rheumatoid arthritis. J Autoimmun 110:102399. https://doi.org/10.1016/j.jaut.2019.102399

    Article  CAS  PubMed  Google Scholar 

  8. Mahler M, Martinez-Prat L, Sparks JA, Deane KD (2020) Precision medicine in the care of rheumatoid arthritis: focus on prediction and prevention of future clinically-apparent disease. Autoimmun Rev 19:102506. https://doi.org/10.1016/j.autrev.2020.102506

    Article  PubMed  Google Scholar 

  9. van der Helm–van Mil AHM (2023) Preventive interventions in individuals at risk for Rheumatoid Arthritis: state of the art and perspectives. Jt Bone Spine.https://doi.org/10.1016/j.jbspin.2023.105543

  10. Deane KD, Holers VM (2021) Rheumatoid arthritis pathogenesis, prediction, and prevention: an emerging paradigm shift. Arthritis Rheumatol 73:181–193. https://doi.org/10.1002/art.41417

    Article  PubMed  Google Scholar 

  11. Santos EJF, Duarte C, Marques A, et al (2019) Effectiveness of non-pharmacological and non-surgical interventions for rheumatoid arthritis: an umbrella review. JBI Datab Syst Rev Implement Rep 17:1494–1531. https://doi.org/10.11124/JBISRIR-D-18-00020

  12. Taylor PC, Van De Laar M, Laster A et al (2021) Call for action: incorporating wellness practices into a holistic management plan for rheumatoid arthritis—going beyond treat to target. RMD Open. https://doi.org/10.1136/rmdopen-2021-001959

    Article  PubMed  PubMed Central  Google Scholar 

  13. American College of Rheumatology (2022) 2022 American College of Rheumatology (ACR) Guideline for Exercise , Rehabilitation, Diet, and Additional Integrative Interventions for Rheumatoid Arthritis Guideline Summary. https://www.rheumatology.org/Portals/0/Files/Integrative-RA-Treatment-Guideline-Summary.pdf. Accessed 30 Nov 2022

  14. Zaccardelli A, Friedlander HM, Ford JA, Sparks JA (2019) Potential of lifestyle changes for reducing the risk of developing rheumatoid arthritis: is an ounce of prevention worth a pound of cure? Clin Ther 41:1323–1345. https://doi.org/10.1016/j.clinthera.2019.04.021

    Article  PubMed  PubMed Central  Google Scholar 

  15. Frank-Bertoncelj M, Klein K, Gay S (2017) Interplay between genetic and epigenetic mechanisms in rheumatoid arthritis. Epigenomics 9:493–504. https://doi.org/10.2217/epi-2016-0142

    Article  CAS  PubMed  Google Scholar 

  16. Karami J, Aslani S, Jamshidi A et al (2019) Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene 702:8–16. https://doi.org/10.1016/J.GENE.2019.03.033

    Article  CAS  PubMed  Google Scholar 

  17. Padyukov L (2022) Genetics of rheumatoid arthritis. Semin Immunopathol 44:47–62. https://doi.org/10.1007/s00281-022-00912-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arnaiz-Villena A, Juarez I, Suarez-Trujillo F et al (2021) HLA-G: Function, polymorphisms and pathology. Int J Immunogenet 48:172–192. https://doi.org/10.1111/iji.12513

    Article  CAS  PubMed  Google Scholar 

  19. Barik RR, Bhatt LK (2021) Emerging epigenetic targets in rheumatoid arthritis. Rheumatol Int 41:2047–2067. https://doi.org/10.1007/S00296-021-04951-Y/TABLES/3

    Article  PubMed  Google Scholar 

  20. Molendijk M, Hazes JM, Lubberts E (2018) From patients with arthralgia, pre-RA and recently diagnosed RA: what is the current status of understanding RA pathogenesis? RMD Open 4:e000256. https://doi.org/10.1136/rmdopen-2016-000256

    Article  PubMed  PubMed Central  Google Scholar 

  21. Derksen VFAM, Huizinga TWJ, van der Woude D (2017) The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin Immunopathol 39:437–446. https://doi.org/10.1007/s00281-017-0627-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hecht C, Englbrecht M, Rech J et al (2015) Additive effect of anti-citrullinated protein antibodies and rheumatoid factor on bone erosions in patients with RA. Ann Rheum Dis 74:2151–2156. https://doi.org/10.1136/annrheumdis-2014-205428

    Article  CAS  PubMed  Google Scholar 

  23. Kleyer A, Finzel S, Rech J et al (2014) Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis 73:854–860. https://doi.org/10.1136/annrheumdis-2012-202958

    Article  PubMed  Google Scholar 

  24. Krishnamurthy A, Joshua V, Hensvold AH et al (2016) Identification of a novel chemokine-dependent molecular mechanism underlying Rheumatoid arthritisassociated autoantibody-mediated bone loss. Ann Rheum Dis 75:721–729. https://doi.org/10.1136/annrheumdis-2015-208093

    Article  CAS  PubMed  Google Scholar 

  25. Wu CY, Yang HY, Lai JH (2020) Anti-citrullinated protein antibodies in patients with rheumatoid arthritis: biological effects and mechanisms of immunopathogenesis. Int J Mol Sci 21:1–23. https://doi.org/10.3390/ijms21114015

    Article  CAS  Google Scholar 

  26. Okada Y, Suzuki A, Ikari K et al (2016) Contribution of a Non-classical HLA gene, HLA-DOA, to the risk of rheumatoid arthritis. Am J Hum Genet 99:366–374. https://doi.org/10.1016/j.ajhg.2016.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. ten Brinck RM, van Steenbergen HW, van Delft MAM et al (2017) The risk of individual autoantibodies, autoantibody combinations and levels for arthritis development in clinically suspect arthralgia. Rheumatol (Oxf) 56:2145–2153. https://doi.org/10.1093/RHEUMATOLOGY/KEX340

    Article  Google Scholar 

  28. Figus FA, Piga M, Azzolin I et al (2021) Rheumatoid arthritis: Extra-articular manifestations and comorbidities. Autoimmun Rev. https://doi.org/10.1016/j.autrev.2021.102776

    Article  PubMed  Google Scholar 

  29. Deane KD, Demoruelle MK, Kelmenson LB et al (2017) Genetic and environmental risk factors for rheumatoid arthritis. Best Pract Res Clin Rheumatol 31:3–18. https://doi.org/10.1016/j.berh.2017.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  30. Demoruelle MK, Wilson TM, Deane KD (2020) Lung inflammation in the pathogenesis of rheumatoid arthritis. Immunol Rev 294:124–132. https://doi.org/10.1111/imr.12842

    Article  CAS  PubMed  Google Scholar 

  31. Lamacchia C, Courvoisier DS, Jarlborg M et al (2021) Predictive value of anti-CarP and anti-PAD3 antibodies alone or in combination with RF and ACPA for the severity of rheumatoid arthritis. Rheumatol (UK) 60:4598–4608. https://doi.org/10.1093/rheumatology/keab050

    Article  CAS  Google Scholar 

  32. Karlson EW, Chang S-C, Cui J et al (2010) Gene–environment interaction between HLA-DRB1 shared epitope and heavy cigarette smoking in predicting incident rheumatoid arthritis. Ann Rheum Dis 69:54–60. https://doi.org/10.1136/ard.2008.102962

    Article  CAS  PubMed  Google Scholar 

  33. Bäcklund R, Drake I, Bergström U et al (2023) Diet and the risk of rheumatoid arthritis—a systematic literature review. Semin Arthritis Rheum. https://doi.org/10.1016/j.semarthrit.2022.152118

    Article  PubMed  Google Scholar 

  34. Lu B, Solomon DH, Costenbader KH, Karlson EW (2014) Alcohol consumption and risk of incident rheumatoid arthritis in women: a prospective study. Arthritis Rheumatol (Hoboken NJ) 66:1998–2005. https://doi.org/10.1002/ART.38634

    Article  Google Scholar 

  35. Gioia C, Lucchino B, Tarsitano MG et al (2020) Dietary habits and nutrition in rheumatoid arthritis: can diet influence disease development and clinical manifestations? Nutrients 12:1456. https://doi.org/10.3390/nu12051456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Galland L (2010) Diet and Inflammation. Nutr Clin Pract 25:634–640. https://doi.org/10.1177/0884533610385703

    Article  PubMed  Google Scholar 

  37. Scott IC, Tan R, Stahl D et al (2013) The protective effect of alcohol on developing rheumatoid arthritis: a systematic review and meta-analysis. Rheumatol (Oxf) 52:856–867. https://doi.org/10.1093/RHEUMATOLOGY/KES376

    Article  CAS  Google Scholar 

  38. Tedeschi SK, Costenbader KH (2016) Is there a role for diet in the therapy of rheumatoid arthritis? Curr Rheumatol Rep 18:1–9. https://doi.org/10.1007/s11926-016-0575-y

    Article  CAS  Google Scholar 

  39. Versini M, Jeandel PY, Rosenthal E, Shoenfeld Y (2019) Obesity in autoimmune diseases: not a passive bystander. Mosaic Autoimmun Nov Factors Autoimmune Dis. https://doi.org/10.1016/B978-0-12-814307-0.00035-9

    Article  Google Scholar 

  40. Feng X, Xu X, Shi Y et al (2019) Body mass index and the risk of rheumatoid arthritis: an updated dose-response meta-analysis. Biomed Res Int. https://doi.org/10.1155/2019/3579081

    Article  PubMed  PubMed Central  Google Scholar 

  41. Linauskas A, Overvad K, Symmons D et al (2019) Body fat percentage, waist circumference, and obesity as risk factors for rheumatoid arthritis: a danish cohort study. Arthritis Care Res 71:777–786. https://doi.org/10.1002/acr.23694

    Article  Google Scholar 

  42. Taylor EB (2021) The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci 135:731–752. https://doi.org/10.1042/CS20200895

    Article  CAS  Google Scholar 

  43. Ten Brinck RM, Van Steenbergen HW, Mangnus L et al (2017) Functional limitations in the phase of clinically suspect arthralgia are as serious as in early clinical arthritis. A longitudinal study. RMD Open. https://doi.org/10.1136/rmdopen-2016-000419

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ångström L, Hörnberg K, Sundström B et al (2020) Aerobic capacity is associated with disease activity and cardiovascular risk factors in early rheumatoid arthritis. Physiother Res Int. https://doi.org/10.1002/pri.1833

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kononoff A, Vuolteenaho K, Hämäläinen M et al (2021) Metabolic syndrome, disease activity, and adipokines in patients with newly diagnosed inflammatory joint diseases. J Clin Rheumatol 27:E349–E356. https://doi.org/10.1097/RHU.0000000000001412

    Article  PubMed  Google Scholar 

  46. Ångström L, Hörnberg K, Sundström B, Södergren A (2023) Rheumatoid cachexia in early rheumatoid arthritis: prevalence and associated variables. Scand J Rheumatol 52:10–16. https://doi.org/10.1080/03009742.2021.1973678

    Article  CAS  PubMed  Google Scholar 

  47. Sun L, Zhu J, Ling Y et al (2021) Physical activity and the risk of rheumatoid arthritis: evidence from meta-analysis and Mendelian randomization. Int J Epidemiol 50:1593–1603. https://doi.org/10.1093/ije/dyab052

    Article  PubMed  Google Scholar 

  48. Kroese JM, Brandt BW, Buijs MJ et al (2021) Differences in the oral microbiome in patients with early rheumatoid arthritis and individuals at risk of rheumatoid arthritis compared to healthy individuals. Arthritis Rheumatol 73:1986–1993. https://doi.org/10.1002/art.41780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin L, Zhang K, Xiong Q et al (2023) Gut microbiota in pre-clinical rheumatoid arthritis: from pathogenesis to preventing progression. J Autoimmun. https://doi.org/10.1016/j.jaut.2023.103001

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bingham CO, Moni M (2013) Periodontal disease and rheumatoid arthritis: the evidence accumulates for complex pathobiologic interactions. Curr Opin Rheumatol 25:345–353. https://doi.org/10.1097/BOR.0b013e32835fb8ec

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reyes-Castillo Z, Valdés-Miramontes E, Llamas-Covarrubias M, Muñoz-Valle JF (2021) Troublesome friends within us: the role of gut microbiota on rheumatoid arthritis etiopathogenesis and its clinical and therapeutic relevance. Clin Exp Med 21:1–13. https://doi.org/10.1007/s10238-020-00647-y

    Article  PubMed  Google Scholar 

  52. Tsetseri MN, Silman AJ, Keene DJ, Dakin SG (2023) The role of the microbiome in rheumatoid arthritis: a review. Rheumatol Adv Pract. https://doi.org/10.1093/rap/rkad034

    Article  Google Scholar 

  53. Rooney CM, Mankia K, Mitra S et al (2021) Perturbations of the gut microbiome in anti-CCP positive individuals at risk of developing rheumatoid arthritis. Rheumatol (UK) 60:3380–3387. https://doi.org/10.1093/rheumatology/keaa792

    Article  CAS  Google Scholar 

  54. Alpizar-Rodriguez D, Lesker TR, Gronow A et al (2019) Prevotella copri in individuals at risk for rheumatoid arthritis. Ann Rheum Dis 78:590–593. https://doi.org/10.1136/annrheumdis-2018-214514

    Article  CAS  PubMed  Google Scholar 

  55. Scher JU, Sczesnak A, Longman RS et al (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. https://doi.org/10.7554/ELIFE.01202.001

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kindgren E, Ahrens AP, Triplett EW, Ludvigsson J (2023) Infant gut microbiota and environment associate with juvenile idiopathic arthritis many years prior to disease onset, especially in genetically vulnerable children. eBioMedicine. https://doi.org/10.1016/j.ebiom.2023.104654

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wells PM, Adebayo AS, Bowyer RCE et al (2020) Associations between gut microbiota and genetic risk for rheumatoid arthritis in the absence of disease: a cross-sectional study. Lancet Rheumatol 2:e418–e427. https://doi.org/10.1016/S2665-9913(20)30064-3

    Article  PubMed  PubMed Central  Google Scholar 

  58. Matei DE, Menon M, Alber DG et al (2021) Intestinal barrier dysfunction plays an integral role in arthritis pathology and can be targeted to ameliorate disease. Med 2:864-883.e9. https://doi.org/10.1016/j.medj.2021.04.013

    Article  CAS  PubMed  Google Scholar 

  59. Audo R, Sanchez P, Rivière B et al (2023) Rheumatoid arthritis is associated with increased gut permeability and bacterial translocation that are reversed by inflammation control. Rheumatol (UK) 62:1264–1271. https://doi.org/10.1093/rheumatology/keac454

    Article  Google Scholar 

  60. Tajik N, Frech M, Schulz O et al (2020) Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat Commun 11:1–14. https://doi.org/10.1038/s41467-020-15831-7

    Article  CAS  Google Scholar 

  61. Chriswell ME, Lefferts AR, Clay MR et al (2022) Clonal IgA and IgG autoantibodies from individuals at risk for rheumatoid arthritis identify an arthritogenic strain of Subdoligranulum. Sci Transl Med 14:eabn5166. https://doi.org/10.1126/scitranslmed.abn5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu X, Tedeschi SK, Barbhaiya M et al (2019) Impact and timing of smoking cessation on reducing risk of rheumatoid arthritis among women in the nurses’ health studies. Arthritis Care Res 71:914–924. https://doi.org/10.1002/acr.23837

    Article  Google Scholar 

  63. Roelsgaard IK, Esbensen BA, Østergaard M et al (2019) Smoking cessation intervention for reducing disease activity in chronic autoimmune inflammatory joint diseases. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD012958.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  64. Aimer P, Treharne GJ, Stebbings S et al (2017) Efficacy of a rheumatoid arthritis-specific smoking cessation program: a randomized controlled pilot trial. Arthritis Care Res (Hoboken) 69:28–37. https://doi.org/10.1002/acr.22960

    Article  CAS  PubMed  Google Scholar 

  65. Karlsson ML, Hertzberg-Nyquist K, Saevarsdottir S et al (2023) Evaluation of an individually tailored smoking-cessation intervention for patients with rheumatoid arthritis in an outpatient clinic. Scand J Rheumatol. https://doi.org/10.1080/03009742.2023.2172903

    Article  PubMed  Google Scholar 

  66. Koziel J, Potempa J (2000) Pros and cons of causative association between periodontitis and rheumatoid arthritis. Periodontol 89:83–98. https://doi.org/10.1111/prd.12432

    Article  Google Scholar 

  67. Kaur S, Bright R, Proudman SM, Bartold PM (2014) Does periodontal treatment influence clinical and biochemical measures for rheumatoid arthritis? A systematic review and meta-analysis. Semin Arthritis Rheum 44:113–122. https://doi.org/10.1016/j.semarthrit.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  68. Rausch Osthoff AK, Niedermann K, Braun J et al (2018) 2018 EULAR recommendations for physical activity in people with inflammatory arthritis and osteoarthritis. Ann Rheum Dis 77:1251–1260. https://doi.org/10.1136/annrheumdis-2018-213585

    Article  PubMed  Google Scholar 

  69. Calabrese L, Neiman DC, Nieman DC (2021) Exercise, infection and rheumatic diseases: what do we know? RMD Open 7:e001644. https://doi.org/10.1136/rmdopen-2021-001644

    Article  PubMed  PubMed Central  Google Scholar 

  70. Metsios GS, Kitas GD (2020) Should patients with rheumatic diseases take pain medication in order to engage in exercise? Expert Rev Clin Immunol 16:235–237. https://doi.org/10.1080/1744666X.2020.1714438

    Article  CAS  PubMed  Google Scholar 

  71. Boniface G, Gandhi V, Norris M et al (2020) A systematic review exploring the evidence reported to underpin exercise dose in clinical trials of rheumatoid arthritis. Rheumatol (UK) 59:3147–3157. https://doi.org/10.1093/rheumatology/keaa150

    Article  Google Scholar 

  72. Davergne T, Pallot A, Dechartres A et al (2019) Use of wearable activity trackers to improve physical activity behavior in patients with rheumatic and musculoskeletal diseases: a systematic review and meta-analysis. Arthritis Care Res (Hoboken) 71:758–767. https://doi.org/10.1002/ACR.23752

    Article  PubMed  Google Scholar 

  73. Ritschl V, Stamm TA, Aletaha D et al (2021) 2020 EULAR points to consider for the prevention, screening, assessment and management of non-adherence to treatment in people with rheumatic and musculoskeletal diseases for use in clinical practice. Ann Rheum Dis 80:707–713. https://doi.org/10.1136/annrheumdis-2020-218986

    Article  PubMed  Google Scholar 

  74. Sekhon M, White C, Godfrey E et al (2021) Effectiveness of web-based and mobile health interventions designed to enhance adherence to physical activity for people with inflammatory arthritis: a systematic review. Rheumatol Adv Pract 5:1–14. https://doi.org/10.1093/rap/rkab016

    Article  Google Scholar 

  75. Murillo-Saich JD, Vazquez-Villegas ML, Ramirez-Villafaña M et al (2021) Association of myostatin, a cytokine released by muscle, with inflammation in rheumatoid arthritis: a cross-sectional study. Med (Baltim) 100:e24186. https://doi.org/10.1097/MD.0000000000024186

    Article  CAS  Google Scholar 

  76. Lin JZ, Da MJ, Yang LJ et al (2022) Myokine myostatin is a novel predictor of one-year radiographic progression in patients with rheumatoid arthritis: a prospective cohort study. Front Immunol 13:1–14. https://doi.org/10.3389/fimmu.2022.1005161

    Article  ADS  CAS  Google Scholar 

  77. Fernandes TM, Puggina EF, Mendes CT et al (2020) High plasma soluble levels of the immune checkpoint HLA-G molecule among bodybuilders. PLoS One 15:1–11. https://doi.org/10.1371/journal.pone.0238044

    Article  CAS  Google Scholar 

  78. Xu H-H, Lin A, Yan W-H (2022) HLA-G-mediated immunological tolerance and autoimmunity. In: Translational autoimmunity. Elsevier, pp 265–295

  79. Ziliotto M, Rodrigues RM, Chies JAB (2020) Controlled hypobaric hypoxia increases immunological tolerance by modifying HLA-G expression, a potential therapy to inflammatory diseases. Med Hypotheses 140:109664. https://doi.org/10.1016/j.mehy.2020.109664

    Article  CAS  PubMed  Google Scholar 

  80. Veit TD, Chies JAB, Switala M et al (2015) The paradox of high availability and low recognition of soluble HLA-G by LILRB1 receptor in rheumatoid arthritis patients. PLoS One 10:1–14. https://doi.org/10.1371/journal.pone.0123838

    Article  CAS  Google Scholar 

  81. Baker JF, Mostoufi-Moab S, Long J et al (2018) Intramuscular fat accumulation and associations with body composition, strength, and physical functioning in patients with rheumatoid arthritis. Arthritis Care Res 70:1727–1734. https://doi.org/10.1002/acr.23550

    Article  CAS  Google Scholar 

  82. Ranganath VK, La Cava A, Vangala S et al (2023) Improved outcomes in rheumatoid arthritis with obesity after a weight loss intervention: randomized trial. Rheumatol (Oxf) 62:565–574. https://doi.org/10.1093/rheumatology/keac307

    Article  Google Scholar 

  83. Philippou E, Petersson SD, Rodomar C, Nikiphorou E (2021) Rheumatoid arthritis and dietary interventions: systematic review of clinical trials. Nutr Rev 79:410–428. https://doi.org/10.1093/nutrit/nuaa033

    Article  PubMed  Google Scholar 

  84. Walrabenstein W, Wagenaar CA, van der Leeden M et al (2023) A multidisciplinary lifestyle program for rheumatoid arthritis: the ‘Plants for Joints’ randomized controlled trial. Rheumatology. https://doi.org/10.1093/rheumatology/keac693

    Article  PubMed  PubMed Central  Google Scholar 

  85. Raad T, George E, Griffin A et al (2022) A randomised controlled trial of a mediterranean dietary intervention for adults with rheumatoid arthritis (MEDRA): study protocol. Contemp Clin Trials Commun. https://doi.org/10.1016/j.conctc.2022.100919

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pagliai G, Russo E, Niccolai E et al (2019) Influence of a 3-month low-calorie Mediterranean diet compared to the vegetarian diet on human gut microbiota and SCFA: the CARDIVEG Study. Eur J Nutr 595(59):2011–2024. https://doi.org/10.1007/S00394-019-02050-0

    Article  Google Scholar 

  87. Sparks JA, O’Reilly ÉJ, Barbhaiya M et al (2019) Association of fish intake and smoking with risk of rheumatoid arthritis and age of onset: A prospective cohort study. BMC Musculoskelet Disord. https://doi.org/10.1186/s12891-018-2381-3

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hiraki LT, Munger KL, Costenbader KH, Karlson EW (2012) Dietary intake of vitamin D during adolescence and risk of adult-onset systemic lupus erythematosus and rheumatoid arthritis. Arthritis Care Res (Hoboken) 64:1829–1836. https://doi.org/10.1002/ACR.21776

    Article  CAS  PubMed  Google Scholar 

  89. He J, Wang Y, Feng M et al (2016) Dietary intake and risk of rheumatoid arthritis—a cross section multicenter study. Clin Rheumatol 35:2901–2908. https://doi.org/10.1007/s10067-016-3383-x

    Article  PubMed  PubMed Central  Google Scholar 

  90. Rondanelli M, Perdoni F, Peroni G et al (2021) Ideal food pyramid for patients with rheumatoid arthritis: a narrative review. Clin Nutr 40:661–689. https://doi.org/10.1016/j.clnu.2020.08.020

    Article  CAS  PubMed  Google Scholar 

  91. Zaiss MM, Joyce Wu HJ, Mauro D et al (2021) The gut–joint axis in rheumatoid arthritis. Nat Rev Rheumatol 17:224–237. https://doi.org/10.1038/s41584-021-00585-3

    Article  PubMed  Google Scholar 

  92. Horta-Baas G, Romero-Figueroa MDS, Montiel-Jarquín AJ et al (2017) Intestinal dysbiosis and rheumatoid arthritis: a link between gut microbiota and the pathogenesis of rheumatoid arthritis. J Immunol Res. https://doi.org/10.1155/2017/4835189

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zeng J, Peng L, Zheng W et al (2021) Fecal microbiota transplantation for rheumatoid arthritis: a case report. Clin Case Reports 9:906–909. https://doi.org/10.1002/ccr3.3677

    Article  ADS  Google Scholar 

Download references

Funding

TV is supported by the Cooperatio Program, research area Sport Sciences—Biomedical & Rehabilitation Medicine, NR, MT, and MF by the Ministry of Health Czech Republic (023728 and NU22-05–00226), and for NR by SVV260523. CM is funded by Nicolás Monardes Programe from Consejerı́a de Salud de la Junta de Andalucı́a (C2-0002–2019). KDM. has participated in the Exchange Programme for Scientists as part of bilateral cooperation financed by The Polish National Agency for Academic Exchange (NAWA: BPN/BIL/2021/1/00108/U/DRAFT/00001). JCI is supported by the University of Murcia (“Moving Minds” research mobility grant) and the Spanish Ministry of Science and Innovation Grant No. PID2019-108202RA-I00.

Author information

Authors and Affiliations

Authors

Contributions

JC, MT, and MF conceptualized, designed the study, and drafted the manuscript. TV, NR, CM, and KDM drafted specific sections of the manuscript and critically reviewed the final draft for important intellectual content. All authors approved the final version of the manuscript. All authors take full responsibility for the integrity and accuracy of all aspects of the work. No AI or other software was used for writing or editing this review.

Corresponding author

Correspondence to Javier Courel-Ibáñez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

No part of the final version of the review is copied or published elsewhere in whole or in part.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courel-Ibáñez, J., Vetrovsky, T., Růžičková, N. et al. Integrative non-pharmacological care for individuals at risk of rheumatoid arthritis. Rheumatol Int 44, 413–423 (2024). https://doi.org/10.1007/s00296-023-05507-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-023-05507-y

Keywords

Navigation