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Abstract
Healthy females and males differ in their immune cell composition and function and females generally mount stronger 
immune response than males and are much more susceptible to autoimmune rheumatic diseases. Females differ from males 
in sex hormones, and X-chromosome genes. Sex hormones affect immune cells and responses, and may induce epigenetic 
DNA changes. The importance of X-chromosome genes is exemplified in men with the Klinefelter syndrome (47,XXY) who 
have an additional X-chromosome and develop systemic lupus erythematosus(SLE) as frequently as women. X-chromosome 
contains genes critical for the immune response, such as FOXP3, toll-like receptor(TLR)7, TLR8, CD40 Ligand, IL2RG, 
IL9R, BTK, and others. Whereas one X-chromosome in females is randomly inactivated early in embryonic development, 
around 25% of X-linked genes escape inactivation and result in more X-linked gene dosage in females. We use two key 
female-biased autoimmune rheumatic diseases, SLE and systemic sclerosis, to review differences in immune response, and 
clinical manifestations between females and males. The inclusion of sex variable in research will facilitate precision medicine 
and optimal patient outcome.

Keywords Bias · Difference · Female · Male · Sex · Precision medicine systemic sclerosis · Systemic lupus erythematosus

Introduction

For years, it has been acknowledged that females and males 
differ in their immune responses. For instance, antibody 
responses to influenza vaccine are much stronger in women 
than men [1]. This comes at a price. Women are more sus-
ceptible to autoimmune diseases. Nine out of 10 individuals 
who develop systemic sclerosis (SSc), systemic lupus ery-
thematosus (SLE), or Sjogren’s syndrome (SjS) syndrome 

are women [2–4]. In a large and longitudinal study of 
patients with type I diabetes mellitus in USA the prevalence 
of additional autoimmune diseases was 1.9-times greater in 
women than men [5].

There are many sex differences between healthy females 
and males in immune cell composition and function at the 
innate, adaptive (cellular and humoral) levels and these can 
be found in excellent reviews [6]. Females have higher pro-
portions of CD4 + T cells, CD19 + B cells and plasma cells, 
but lower proportion of monocytes and natural killer (NK) 
cells than men [6, 7]. In addition, females exhibit greater 
innate, humoral and cellular responses than males [1, 6]. 
Many of the differences between females and males in 
immune response may partly attributed to differences in sex 
hormones, and X chromosomes.

We chose to concentrate on two key female-biased auto-
immune rheumatic diseases (AIRDs), SLE and SSc, with 
diverse clinical manifestations [8, 9]. We searched the Pub-
med using the terms sex difference and autoimmune dis-
ease, systemic sclerosis, systemic lupus erythematosus. We 
also used references from retrieved articles. Our purpose 
was to highlight differences between females and males in 
immune responses which will help researches incorporate 
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sex variable in future studies to achieve homogeneous 
groups of patients with ultimate goal personalized medicine.

Sex hormones

The increased incidence of autoimmune rheumatic dis-
eases (AIRDs) during the reproductive years suggests that 
sex hormones are implicated. For instance, female to male 
ratio in SLE prior to puberty is 2:1 and after puberty is 9:1 
re-enforces the concept that estrogen contributes to SLE 
susceptibility [10]. On the other hand, male sex hormones 
are protective in lupus-prone NZB/NZW mice. Male mice 
develop lupus-like disease later than female mice but cas-
trated males develop disease at the same time as females 
[11, 12].

Sex steroid hormones exert multiple and variable effects 
on many immune cells depending on cell type, and the 
experimental system. In general, estrogen has immunostim-
ulatory effects on adaptive immune system, including an 
in vivo increase of Ig-producing plasma cells, although it 
also increases human Tregs numbers and function, whereas 
androgens have immunosuppressive effects [12–14]. Estro-
gen also increases the production of prolactin which has 
immunostimulatory effects promoting the production of 
CD40 Ligand (CD40L), IL-6, type I interferon α (IFNα) and 
T cell proinflammatory cytokines [15]. Estrogen, through 
estrogen receptors (ERs), stimulates IL-6 expression in mice 
and humans [16] and, by inhibiting apoptosis of autoreac-
tive T cells, may contribute to autoimmunity in SLE [13]. 
Interferon regulatory factor 5(IRF5) that controls the expres-
sion of type I IFN, a significant pathogenic factor for SLE 
and SSc [17, 18], was upregulated by estrogen in vitro in 
mice [19]. In addition, TLR7-mediated IFNα production by 
plasmatoid dendritic cells (pDCs) is increased in females 
compared to males and this is positively regulated in vivo by 
estrogen through estrogen receptor signaling [20]. Unc-93 
homolog B1(UNC93B1), an endoplasmic reticulum trans-
membrane protein, essential for the function of TLR7 and 
TLR9 was increased by estrogen in mice [21].

Estrogen, depending on cell type and sex exhibit vari-
able effects on peroxisome proliferator-activated receptor 
gamma (PPARγ), a nuclear receptor, and a master regulator 
of adipocyte differentiation. PPARγ expression is higher in 
female than male T cells, and is enhanced by estrogen in 
male T cells, but is inhibited by estrogen in cancer cells [22, 
23]. PPARγ is also involved in immune cell modulation as 
it drives macrophage M2 differentiation, inhibits TH1 and 
TH17 cells [24], and is necessary for Tregs function [25]. 
In addition, macrophage PPARγ is required for phagocyto-
sis of apoptotic cell bodies, whereas macrophage PPARγ 
knock-out mice developed lupus-like glomerulonephritis 
[26]. PPARγ also regulated TGFβ-mediated fibrogenesis and 

protected from PAH in mice [27]. Pioglitazole, a PPARγ 
agonist, significantly decreased activation of CD4 + T cells 
from female mice during the estrus stage of menstrual cycle, 
but not CD4 + T cells during the diestrus stage of menstrual 
cycle or CD4 + T cells from male mice. In addition, pioglita-
zone treatment reduced T follicular helper (TFH) responses 
in female but not in male mice [28], whereas female, but not 
male, CD4-PPARγ knock-out mice had increased TFH cells 
and germinal center B cells and spontaneously developed 
autoimmune phenotypes [28].

Sex hormones can induce epigenetic changes. For 
instance, estrogen, by downregulating DNA methyl-trans-
ferase 1 expression that leads to DNA hypomethylation in 
T cells from SLE female patients may contribute to auto-
immunity in SLE [13]. In transgender individuals, an IL21 
promoter-associated region was demethylated at 12-month 
post-feminizing hormonal therapy (estrogen in combina-
tion with anti-androgen) but gained DNA methylation at 
12-month post-masculinizing hormonal therapy (testoster-
one)[29]. miRNAs are different between female and male 
lupus-prone mice, whereas estrogen promotes lupus-related 
miRNAs in castrated mice [30]. miRNAs were also found to 
have a pathogenic role in SSc and SLE [31–33].

Gut microbiota may alter sex hormone levels and auto-
immune disease susceptibility. Markle et al. [34] showed 
in the non-obese diabetic (NOD) mice, a model of type I 
diabetes mellitus, that female mice under germ-free condi-
tions no longer had the increased susceptibility to disease 
than males. In addition, microbiota transfer from adult NOD 
male mice to immature females increased testosterone levels 
and protected against diabetes through androgen receptor 
[34]. There are excellent reviews on sex hormones in AIRDs 
[35, 36].

X chromosomes

Apart for sex hormones, chromosome genes are critical for 
immune responses. Individuals with Klinefelter syndrome 
(47,XXY) develop more frequently SLE. The risk of SLE 
in men with Klinefelter syndrome (47,XXY) is increased 
by 14-fold compared to men (46,XY) and is similar to 
that in women (46,XX) [37] and this implies susceptibil-
ity due to X chromosome gene-dose effect. The impor-
tance of X-chromosome genes is supported by the ‘four 
core genotype’(FCG) mouse model. This model involves a 
deletion of a testis-determining Sry gene from the Y chro-
mosome which results in gonadal female XY-mice, and an 
insertion of Sry transgene onto an autosome which results in 
gonadal male mice. The four genotypes created when XY-
Sry gonadal male mice mate with XX female mice are: XX 
mice with ovaries, XXSry mice with testis, XY-mice with 
ovaries and XYSry mice with testis [38]. This model allows 
the evaluation of the effects of sex hormones and the effects 
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of X-chromosome complement. Gonadectomized FCG mice 
exhibited increased susceptibility to pristine-induced lupus 
in XX mice suggesting that an additional X-chromosome 
confers susceptibility irrespective of female gonads [38].

In recent years, much progress has been made towards 
deciphering the mechanisms of X chromosome-mediated 
susceptibility to autoimmune diseases. Females have two 
copies of X chromosomes, one paternal, one maternal, while 
males have only one copy, and this would have led to genes 
dosage imbalance between the sexes. One X chromosome 
is randomly inactivated early in embryonic development in 
females to maintain X-linked genes balance between sexes. 
However, 20–30% of X-linked genes escape inactivation in 
humans [6, 39].

X chromosome inactivation is maintained in mature T 
cells but is disrupted in T cells of SLE patients which exhib-
ited abnormal upregulation of X-linked genes [40]. X chro-
mosome inactivation was also disrupted in T cells of late-
stage disease of female NZB/W F1 SLE mouse model [40]. 
Skewed X-chromosome inactivation has also been reported 
in peripheral blood cells from women with SSc [41]. More 
importantly, skewed X-chromosome inactivation in females 
patients with SSc was associated with decreased expression 
of FOXP3 [42].

Various important immune-related genes reside on X 
chromosome, including FOXP3, toll-like receptor (TLR)7, 
TLR8, CD40L, cytokine receptors (IL13RA2, IL2RG, 
IL9R), BTK, and KDM6A (encoding UTX, an epigenetic 
regulator with demethylase activity)[43]. FOXP3 is a 
crucial transcription factor for the suppressive function 
of Tregs, as loss-of-function mutations of FOXP3 gene 
results in the X-linked immune dysregulation, polyendo-
crinopathy, enteropathy (IPEX) syndrome, characterized 
by type I diabetes mellitus (DM), autoimmune thyroiditis 
(Hashimoto), Addison’s disease, enteropathy, dermatitis, 
and other immune manifestations, including thrombocy-
topenia, and hemolytic anemia [44]. Polymorphisms of 
FOXP3 gene were detected in various autoimmune dis-
eases, including rheumatoid arthritis, SLE and type I 
DM. In a recent study UTX, which enhances NK effector 
function, was found to escape X chromosome inactiva-
tion and was expressed more in females than males. For 
instance, male NK cell IFNγ production was decreased 
independently of gonadal hormones, whereas IFNγ, as 
well as granulocyte monocyte–colony-stimulating fac-
tor (GM–CSF) production, was reduced in female NK 
cells with one UTX copy number [45]. In addition, TLR7 
gene escapes silencing by X chromosome inactivation 
in B cells, monocytes, and plasmacytoid dendritic cells 
(pDCs) from women and from Klinefelter syndrome males 
and this resulted in greater TLR7 expression and greater 
B cell response to T cells [46]. TLR7 senses endosomal 
ssRNA originating from extracellular self-nucleic acids 

which derive from defective clearance of apoptotic bodies 
and is involved in autoimmune germinal center formation 
and autoantibody production [47]. Expression of TLR7 
was higher in XX and XXY relative to XY immune cells, 
including pDCs, B cells and monocytes [46]. TLR7-medi-
ated IFNα production by pDCs is increased in SLE [48], 
whereas overexpression of TLR7 in mice resulted in SLE 
development [46, 49]. TLR7 also enhanced profibrotic 
tissue inhibitor of metalloproteinase 1(TIMP-1) in SSc 
monocytes [50]. One study reported that both X-chromo-
some gene dosage and estrogen receptors signaling con-
tribute to enhanced TLR7-mediated IFNα production in 
pDCs from women [51]. A TLR8 transgenic mouse model 
of SSc exhibited more severe skin fibrosis which was 
abrogated by pDC deletion [52]. TLR8 was upregulated 
in pDCs in SSc [52]. CD40L, a co-stimulatory molecule 
on CD4 + T cells, was found to be overexpressed in T cells 
from female patients with SLE [53] and SSc [54].

X chromosome genes may also have more generalized 
effects than susceptibility to autoimmune diseases. For 
instance, in a four-core genotype mouse model, it has been 
demonstrated that XX mice with either testes or ovaries 
live longer than XY mice with either testes or ovaries [55].

Autosomal genes

While autosomal genes are not different between females 
and males, their expression may differ, and differences 
in gene expression on autosomes are conserved among 
mamalians [56, 57]. Transcriptomics analysis of T cells 
and B cells from healthy human identified hundreds of 
sex-biased autosomal transcripts [58]. In addition, after 
stimulation of peripheral blood leukocytes with lipopol-
ysaccharide (LPS), an innate stimulation, sex-specific 
responses were found in hundreds of autosomal genes [59]. 
Sex dimorphic gene expression throughout the genome 
was also detected in mouse neutrophils [60]. Furthermore, 
there was a remarkable cell specificity in sex-biased gene 
expression. Transcriptome analysis of untreated immune 
cells from C56BL/6 mice, showed that sexual dimorphism 
was restricted to macrophages and mediated by innate 
immune pathways [61]. In addition, Mendelian randomi-
zation analysis showed an association of IL6 with rheu-
matoid arthritis(RA) in females but with psoriatic arthritis 
in males [62].

Environment exerts different effects on gene regulation 
in females and males. For instance, female mice exhibited 
differences in gene expression compared to male mice fed 
identical diet [63].

There are excellent reviews on the sex dimorphism in 
immune cell composition and function, and X-chromosome 
inactivation-related immune effects [6, 64, 65].
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Sex bias in clinical manifestations

Environmental factors confer different susceptibil-
ity to AIRDs. In a meta-analysis, silica exposure con-
fers increased susceptibility for SSc to males, but not 
to females [66]. As already mentioned, women develop 
AIRDs much more frequently than men. However, men 
develop more severe manifestations of AIRDs than 
women. In a systematic review, male sex was found to be 
is a risk factor for rheumatoid arthritis-associated inter-
stitial lung disease (RA–ILD) [67]. In a meta-analysis 
renal involvement, serositis and thrombocytopenia were 
more frequent in male SLE than femal SLE patients [68]. 
Men’s suffering from serious disease manifestations is best 
illustrated in SSc. In a review, men were more likely to 
develop scleroderma renal crisis, diffuse cutaneous SSc 
(dcSSc), anti-topoisomerase I antibodies (ATA), and more 
active disease [69]. In addition, in SSc-associated pulmo-
nary arterial hypertension (PAH) male sex was strongly 
associated with rapid disease progression [70]. In addi-
tion, males were predominantly ATA-positive compared to 
females, and PAH and dcSSc were more frequent in males 
after adjusting for autoAb status [71]. In a randomized 
controlled trial of SSc-ILD patients treated with mycophe-
nolate mofetil (MMF) or oral cyclophosphamide, men had 
worse radiographic progression at 2 years compared to 
women after adjusting for baseline disease severity and 
treatment received, and worse survival [72]. In addition, 
mortality, the hard outcome of a disease was high in men 
with SSc. In two large inception cohorts of SSc patients a 
multivariable analysis showed that male sex was associ-
ated with 5-year mortality [73]. In a 10-year study of very 
large cohorts, the Leiden combined care in SSc (CISS) and 
the European scleroderma trials and research(EUSTAR), 
multivariable analysis showed that male sex was the 
most important risk factor for all-cause mortality of SSc 
patients [71]. SSc-related mortality was higher in men than 
women in the Norwegian cohort [74] and in the EUSTAR 
cohort [71]. Sex bias in mortality in infectious diseases 
also reported. An analysis of COVID-19 data from many 
countries revealed a male bias in mortality [75].

Sex bias in response to immunotherapy

Given the sex difference in immune response one would 
expect differences to pharmacological treatments between 
females and males regarding both immunotherapy efficacy 
and adverse effects.

In TNFα-naïve spondyloarthritis (SpA) patients, men 
discontinued adalimumab more frequently than women 

due to inadequate response [76]. In contrast, other inves-
tigators found that RA remission, as defined by no swollen 
joint, no tender joint, and normal erythrocyte sedimen-
tation rate, was significantly lower in women than men 
at 2 year and 5 year post-treatment [77]. In addition, in 
a 20-week randomized double-blind, placebo-controlled 
trial in patients with diabetic cardiomyopathy, a phospho-
diesterase 5 inhibitor tadalafil resulted in improvement 
in cardiac torsion and fiber shortening in men but not in 
women [78]. The identification of gene expression differ-
ence between females and males in SSc is expected to lead 
to optimal immunotherapy, as gene expression changes 
reflected clinical response in abatacept- and mycopheno-
late mofetil-treated patients with SSc [79, 80].

Regarding adverse drug reaction it should be noted that 
women are more susceptible to drug effects, as they are 
exposed to higher concentrations and longer elimination 
times of drugs compared to men, and these pharmacoki-
netics parameters are associated with higher incidence of 
adverse drug reactions [81, 82].

Women develop higher ab responses to influenza vac-
cine but also more frequent adverse effects compared to 
men [1]. In addition, more women than men experienced 
adverse effects and anaphylactic reactions to Phizer/BioN-
Tech COVID-19 vaccine [83, 84] and more serious adverse 
effects to biological treatment in RA [85]. In a post-hoc 
analysis of pooled data from four randomized controlled 
trials of Nintedanib in autoimmune disease—ILD, women 
were more likely to have gastrointestinal tract (GIT) adverse 
effects, elevation of liver enzymes, drug dose reduction and 
drug interruption compared to men [86].

Concluding remarks

In conclusion, more and more accumulated data point to dif-
ferences in innate and adaptive immune responses between 
females and males. These differences are not restricted to 
X-linked genes expression but are located throughout the 
genome. Certain differences between females and males 
are present during the reproductive years, highlighting the 
importance of sex hormones [65]. Therefore, sex is a vari-
able that should always be considered in research studies and 
trials in AIRDs. This approach will help better define disease 
susceptibility, early diagnosis, homogeneous patient groups, 
and optimal immunotherapy. Identifying immune-related 
escape genes and their expression in immune cell subsets 
will be an important step towards precision medicine.
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