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Abstract
Since the late 1990s, tumor necrosis factor alpha (TNF-α) inhibitors (anti-TNFs) have revolutionized the therapy of immune-
mediated inflammatory diseases (IMIDs) affecting the gut, joints, skin and eyes. Although the therapeutic armamentarium 
in IMIDs is being constantly expanded, anti-TNFs remain the cornerstone of their treatment. During the second decade of 
their application in clinical practice, a large body of additional knowledge has accumulated regarding various aspects of 
anti-TNF-α therapy, whereas new indications have been added. Recent experimental studies have shown that anti-TNFs 
exert their beneficial effects not only by restoring aberrant TNF-mediated immune mechanisms, but also by de-activating 
pathogenic fibroblast-like mesenchymal cells. Real-world data on millions of patients further confirmed the remarkable effi-
cacy of anti-TNFs. It is now clear that anti-TNFs alter the physical course of inflammatory arthritis and inflammatory bowel 
disease, leading to inhibition of local and systemic bone loss and to a decline in the number of surgeries for disease-related 
complications, while anti-TNFs improve morbidity and mortality, acting beneficially also on cardiovascular comorbidities. 
On the other hand, no new safety signals emerged, whereas anti-TNF-α safety in pregnancy and amid the COVID-19 pan-
demic was confirmed. The use of biosimilars was associated with cost reductions making anti-TNFs more widely available. 
Moreover, the current implementation of the “treat-to-target” approach and treatment de-escalation strategies of IMIDs were 
based on anti-TNFs. An intensive search to discover biomarkers to optimize response to anti-TNF-α treatment is currently 
ongoing. Finally, selective targeting of TNF-α receptors, new forms of anti-TNFs and combinations with other agents, are 
being tested in clinical trials and will probably expand the spectrum of TNF-α inhibition as a therapeutic strategy for IMIDs.
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Introduction

The crucial role of tumor necrosis factor alpha (TNF-α) in 
the pathogenesis of several immune-mediated inflammatory 
diseases (IMIDs), primarily those affecting joints, skin, gut 
and eye, has been widely established. The first evidence of 
the role of TNF-α in inflammatory arthritis pathophysiol-
ogy derived from the human TNF transgenic mouse model 
[1]. The favorable effect of blocking TNF-α was also dem-
onstrated in these experiments for the first time. It is now 
clear that TNF-α constitutes a common effector module of 
the inflammatory cascade that occurs in several IMIDs [2]. 
Following impressive results of randomized clinical trials in 
the mid-1990s, and since their first approval in 1998, agents 
targeting TNF-α (anti-TNFs) have been proven effective 
for the treatment of various IMIDs. During the first dec-
ade of their use, concerns for anti-TNF-α safety, that may 
arise from the inhibition of prophylactic actions of TNF-α 
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in infection and cancer, were alleviated. Millions of IMIDs 
patients have been safely treated, while clinical experience 
regarding optimization of their use accumulated [3].

In the past 10 years, anti-TNFs indications have expanded 
to include non-radiographic axial spondyloarthritis 
(AxSpA), paediatric enthesitis-related arthritis, paediatric 
ulcerative colitis (UC), hidradenitis suppurativa (including 
adolescents) and non-infectious uveitis (including children) 
(Table 1). Moreover, the therapeutic potential of anti-TNFs 
has been also demonstrated in several disorders, such as 
Behcet’s disease (BD), sarcoidosis, Takayasu arteritis, idi-
opathic inflammatory myopathies, synovitis-acne-pustulo-
sis-hyperostosis-osteitis (SAPHO) syndrome, polyarteritis 
nodosa, adenosine deaminase 2 deficiency (DADA2) and 
pyoderma gangrenosum [4–11].

Herein, we aimed to summarize new lessons learned dur-
ing the second decade of anti-TNFs utilization in clinical 
practice. Besides a better understanding of the mechanisms 
of action of TNF-α inhibition that brought synovial fibro-
blast and gut myofibroblasts on stage, the long-term effects 
of anti-TNF-α treatment taught us that the natural history 
of chronic inflammatory diseases may be indeed altered 
[12–14]. Long-term effects of anti-TNFs on bone and gut 
pathophysiology, as well as their impact on systemic mani-
festations of chronic inflammation, such as atherosclerosis 
and cardiovascular (CV) events, have become evident and 
led to improved mortality rates [15].

Accumulating “real-world” data on additional millions 
of patients with various background conditions further 
established anti-TNFs’ excellent safety profile, which was 
extended to include pregnant women. Anti-TNFs safety 
regarding CV disease and cancer was further confirmed in 
patients with RA older than 50 years in comparison to newer 
drugs, such as Janus kinase (JAK) inhibitors [16]. The cur-
rent COVID-19 pandemic revealed also unexpected benefi-
cial effects of anti-TNF-α agents [17]; anti-TNF-α use pro-
tects against severe COVID-19 infection and hospitalization 
due to COVID-19 and is being examined for the treatment of 
COVID-19 [18–20]. Moreover, we have learned to better use 
TNF-α inhibition in order to apply treat-to-target strategy in 
IMIDs [21], including anti-TNF-α intensification, combi-
nation with immunomodulators, tapering, discontinuation, 
cycling, and/or switching to other biologics. While we have 
learned a lot on therapeutic drug monitoring (TDM), robust 
biomarkers of response remain to be established. The intro-
duction of biosimilars had major socioeconomic impact, giv-
ing the opportunity to increased use of anti-TNF-α therapies 
worldwide. Finally, we briefly describe the future of anti-
TNF-α therapy, including the next generation of anti-TNF-α 
drugs, as well as the possible combination of anti-TNFs with 
other biologic and targeted therapies.

For this narrative review, an exhaustive literature search 
was conducted by all authors independently, using PubMed 

via MEDLINE, Scopus and EMBASE databases. The 
included publication dates focused from 2010 to March 2022 
in order to capture the advances during the second decade of 
anti-TNF-α use and COVID-19 pandemic, but earlier publi-
cations were also taken into consideration. The main terms 
used for database search were “TNF-α”, “TNF alpha”, “TNF 
receptor”, “anti-TNF-α”, “TNF inhibitor”, “COVID-19”, 
“safety”, but literature search was not only confined to these. 
This review was designed taking into account previously 
published considerations on narrative review writing [22].

Mechanisms of action of anti‑TNFs in target organs: 
the central role of mesenchymal cells

Early studies have established that anti-TNFs, namely the 
anti-TNF-α monoclonal antibodies (mAbs) infliximab, 
adalimumab, certolizumab and golimumab, and the solu-
ble TNF-α receptor etanercept (Fig. 1), work by neutral-
izing the activity of soluble TNF-α and preventing its bind-
ing to TNFα receptor 1 (TNFR1) and TNFR2. TNFR1 is 
constitutively expressed on the membrane of almost all cell 
types and is associated with proinflammatory and cytotoxic 
responses [23]. On the other hand, TNFR2 is expressed on 
immune cells, mainly monocytes and T cells, as well as on 
activated mesenchymal cells, mediating cellular activation, 
proliferation, migration and other pathogenic functions on 
synovial fibroblasts [23, 24].

Different TNF-α-mediated (auto)immune processes are 
involved in the initiation and perpetuation of IMIDs. The 
differential efficacy of anti-TNFs seen in clinical practice 
suggests that the mechanisms of therapeutic action are not 
distinct and may overlap. Briefly, anti-TNF-α treatment 
acts in the immune system as follows: (a) downregulat-
ing pro-inflammatory cytokines, chemokines, acute phase 
proteins and adhesion molecules expression, (b) increasing 
circulating regulatory T cells and (c) reducing the migra-
tion of inflammatory cells from blood to the inflamed tis-
sue. Etanercept also neutralizes lymphotoxin, whereas 
anti-TNFs have cell-killing properties by directly binding to 
transmembrane TNF-α expressed in various cells. As Wu 
et al. recently showed, binding of anti-TNF-α to transmem-
brane TNF-α, affects intracellular signaling and, in addition 
to programmed cell death, may result either to suppression 
of cytokine production or cell growth arrest [25].

In addition to the effects on immune cells, anti-TNF-α 
mechanisms of action also include attenuation of vascu-
lar permeability and angiogenesis, as well as deactivation 
of epithelial, endothelial and mesenchymal cells. Recent 
advances in basic research have indeed shown that anti-
TNF-α treatment works by interfering with TNF-α signal-
ing in mesenchymal cells [26]. For example, mesenchymal-
specific TNFR1 triggering is indispensable for arthritis 
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development in acute and chronic TNF-dependent mouse 
models. While inhibitor kappa B kinase 2 (IKK2) in joint 
mesenchymal cells is necessary for cartilage destruction and 
bone erosion, in its absence synovitis still develops, as a 
result of local immunogenic synovial fibroblasts necropto-
sis. IKK2 deletion affects arthritic and anti-apoptotic gene 
expression leading to hypersensitization of synovial fibro-
blasts to TNF/receptor interacting serine/threonine kinase 
1 (Ripk1)-mediated necroptosis via district mechanisms, 
depending on acute or chronic TNF-α signals. Moreover, 
Ripk3 is dispensable for TNF-mediated arthritis, yet it is 
required for synovitis in mice with mesenchymal-specific 
IKK2 deletion, clearly showing that TNFR1-IKK2-Ripk-
mixed-lineage kinase domain-like (MLKL) signalling path-
way orchestrates arthritogenic and death responses in syno-
vial fibroblasts and that combinatorial inhibition of nuclear 
factor kappa beta (NF-κB) and MLKL/RIPKs may offer a 
therapeutic potential [26].

As has been demonstrated in TNF transgenic mice mod-
els, synovial fibroblasts and intestine myofibroblasts are 
activated early by TNF-TNFR1 signaling, produce sev-
eral matrix degrading enzymes and are sufficient targets 
to induce TNF-driven inflammatory polyarthritis, Crohn's-
like inflammatory bowel disease (IBD) and sacroiliitis 
[27]. Thus, mesenchymal cells are necessary targets of 
TNF-α in the development of spondyloarthritis-related 
disorders [27]. Importantly, mesenchymal cell activation 
by TNF-α has been shown to participate also in additional 
sites, such as in cardiac valvular cell activation and valve 
thickening [28]. This possibly explains several comorbidi-
ties (e.g. cardiac and lung pathologies) that may be associ-
ated with mesenchymal cell activation, interstitial inflam-
mation and damage in TNF-α-driven rheumatic diseases.

Along these lines, the mesenchymal hypothesis to 
explain the pathogenesis of RA is gaining momentum and 
several elegant studies analyzing human RA synovial tis-
sue at the single-cell level have produced exciting results 
[29]. Such studies indicated that synovial lining fibroblasts 
(Thy1-) were found to be predominantly responsible for 
driving articular damage, whereas sub-lining layer fibro-
blasts (Thy1 +) are mainly pro-inflammatory [30]. More 
recent evidence revealed an endothelial-cell-instigated 
Notch-mediated pathway in perivascular sub-lining syno-
vial fibroblasts, that establishes a positional gradient for 
sub-lining synovial fibroblasts differentiating to lining syn-
ovial fibroblasts [31]. So far, studies in humans have not 
provided robust evidence on how synovial fibroblasts tran-
sition from homeostasis to pathology. Preliminary single-
cell RNA and ATAC-seq chromatin profiling of synovial 
fibroblasts from the TNF transgenic mouse model indi-
cated that development of TNF-α-driven arthritis primes 
the emergence of distinct pathology-associated synovial 
fibroblasts subtypes and revealed key transcription fac-
tors such as Bach1 and Runx1 to drive arthritogenesis 
[32]. Taken together, these recent studies provided deeper 
mechanistic understanding of the dynamics of synovial 
fibroblast subpopulations during pathogenesis of arthri-
tis, paving the way to the discovery of mesenchymal cell-
targeted therapeutics beyond anti-TNFs.

Effects of long‑term TNF‑α inhibition in IMIDs

Long‑term effects on bone pathophysiology 
in inflammatory arthritides

Along with interleukin-6 (IL-6), TNF-α stimulates synovial 
fibroblasts to produce receptor activator of NF-κB ligand 

Fig. 1   Molecular structure of approved anti-TNFs. The five approved 
anti-TNFs, presented in chronological order of first approval. Etaner-
cept is a fusion protein of extracellular domain (p75) of human 
TNFR2 and Fc fragment of IgG1; infliximab is a mouse/human 
chimeric monoclonal IgG1 anti-TNF-α antibody; adalimumab is a 
humanized IgG1 monoclonal anti-TNF-α antibody; certolizumab is 

a Fc-free Fab region of a recombinant humanized IgG1 monoclonal 
anti-TNF-α antibody, conjugated to PEG; golimumab is a human 
IgG1 monoclonal anti-TNF-α antibody. Anti-TNF-a: tumor necro-
sis factor alpha inhibitor, PEG: polyethylene glycol, TNFR2: tumor 
necrosis factor receptor 2
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Fig. 2   Long-term beneficial effects of anti-TNFs. Beneficial effects of anti-TNFs in bones, joints, intestine and cardiovascular system. IBD: 
Inflammatory bowel disease

Table 1   anti-TNF-α indications by chronological order of first approval (either by Food and Drug Administration-FDA or European Medicines 
Agency-EMA)

Indication Drug, year of first approval

Rheumatoid Arthritis Etanercept, 1998
Infliximab, 1999
Adalimumab, 2002certolizumab pegol, 2009
Golimumab, 2009

Crohn’s Disease Infliximab, 1998Adalimumab, 2007Certolizumab pegol, 2008
Juvenile Idiopathic Arthritis Etanercept, 1999

Adalimumab, 2008
Golimumab, 2016

Psoriatic Arthritis Etanercept, 2002
Infliximab, 2004
Adalimumab, 2005
Golimumab, 2009
Certolizumab pegol, 2013

Axial Spondyloarthritis Infliximab, 2003Eanercept, 2003Adalimumab, 2006Golimumab, 2009Certoli-
zumab pegol, 2013

Plaque Psoriasis Etanercept, 2004 Infliximab, 2005
Adalimumab, 2007
Certolizumab pegol, 2018

Ulcerative Colitis Infliximab, 2005Adalimumab, 2012
Golimumab, 2013

Paediatric Crohn’s Disease Infliximab, 2006
Adalimumab, 2012

Paediatric Plaque Psoriasis Etanercept, 2008Adalimumab, 2015
Paediatric Ulcerative Colitis Infliximab, 2011Adalimumab, 2020
Non-radiographic Axial Spondyloarthritis Adalimumab, 2012Certolizumab pegol, 2013Etanercept, 2014Glimumab, 2015
Paediatric Enthesitis-Related Arthritis Adalimumab, 2014
Hidradenitis Suppurativa Adalimumab, 2015
Adolescent Hidradenitis Suppurativa Adalimumab, 2016
Non-infectious Uveitis Adalimumab, 2016
Paediatric non-infectious Uveitis Adalimumab, 2017
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(RANKL) promoting osteoclasts’ differentiation and acti-
vation [33]. Moreover, TNF-α leads to increased synovial 
levels of Dickkopf-related protein 1 (DKK-1), an inhibitor 
of osteoblastogenesis [34]. As a result, TNF-α orchestrates 
a process of local (expressed as bone erosions and juxta-
articular osteoporosis) and systemic bone loss in patients 
with inflammatory arthritis [12, 35, 36]. Indeed, patients 
with rheumatoid arthritis (RA), psoriatic arthritis (PsA) and 
AxSpA exhibit increased rates of systemic osteoporosis and 
osteoporotic fractures. On the other hand, bone loss in PsA 
and AxSpA is accompanied by pathological bone formation, 
in which TNF-α contributes in a lesser degree than other 
cytokines, such as IL-17 and IL-23 [37].

Blockade of TNF-α has been proven beneficial on bone 
metabolism in inflammatory arthritis (Fig. 2) [38]. Anti-
TNF-α therapy controls synovial inflammation and leads to 
significant reduction of joint erosions in RA and PsA [12, 
13]. Importantly, peripheral arthritis remains radiologi-
cally stable in AxSpA patients under infliximab, especially 
in the hip [39], resulting also in reduced hip replacement 
surgery rate [40, 41]. Through ameliorating inflammatory 
joint destruction, anti-TNF-α therapy led to 40% reduction 
of joint replacement surgery in older RA patients [42], while 
the benefit was stronger when treatment was introduced early 
in the disease course [43].

Although initially thought that syndesmophytes formation 
was not hindered, but even accelerated, by anti-TNFs [44], 
newer long-term data have questioned this hypothesis [45]. 
The radiographic progression in axial disease is decelerated 
in patients that anti-TNF-α treatment sufficiently suppresses 
inflammation markers [46]. Systemic bone loss is also ame-
liorated by anti-TNFs in RA and AxSpA patients [12, 38, 47, 
48]. Although an increase in bone mass and improvement 
in bone turnover markers is reported in anti-TNF-α -treated 
patients, less data are available for the possible impact on 
fracture occurrence [38, 48, 49].

Long‑term effects on intestinal inflammation

The natural history of IBD is characterized by cumulative 
damage to the intestinal wall, which may lead to permanent 
injury and structural complications, such as strictures and 
fistulae in the case of Crohn’s disease (CD) and “lead pipe-
like” dysfunctional colon in UC. Such abnormalities often 
necessitate surgical interventions and serve as objective indi-
cations of disease severity. There is now ample evidence 
that anti-TNF-α therapy has substantially decreased the 
incidence of complication-related hospitalizations by 50% 
and surgeries by 33–77% in patients with IBD, compared to 
placebo and the period before anti-TNF-α introduction [14, 
50, 51]. In paediatric IBD, it was shown that adherence to 
recent guidelines with increased use of anti-TNFs resulted in 
significantly higher cumulative probability of a relapse-free 

and surgery-free course [52]. Taken together, those studies 
support an important role for TNF-α as a mediator of intes-
tinal inflammation in IBD and emphasize the significance of 
its inhibition for the prevention of irreversible bowel dam-
age, as well as the feasibility of this approach.

It should also be noted that, despite the expansion of 
available therapeutic options, anti-TNF-α agents remain the 
only agents that are indicated for the full spectrum of local 
and systemic manifestations in patients with IBD. Such indi-
cations include perianal fistulizing disease, acute severe UC 
and post-operative prevention of CD recurrence [53, 54]. 
More importantly, joint, skin and/or eye inflammation co-
exists in at least one-third of patients with IBD and anti-
TNFs represent the only biological therapy that is suitable 
for the treatment of such extra-intestinal manifestations [55].

Impact on atherosclerosis and cardiovascular events

It is known that IMIDs patients carry an increased risk for 
atherosclerotic CV events. Chronic systemic inflammation 
leads in acceleration of subclinical atherosclerosis [56]. In 
RA and AxSpA patients, low disease activity or remission 
induced by biologic disease modifying anti-rheumatic drugs 
(bDMARDs), mainly anti-TNFs, resulted in stabilization of 
subclinical atherosclerosis [57, 58], while a meta-analysis 
shows amelioration of atherosclerosis and arterial stiffness 
in anti-TNF-α-treated patients with inflammatory arthritis 
(RA, PsA, AxSpA) [59]. Anti-TNF-α therapy improves 
microvascular function in AxSpA patients [60] and subclini-
cal myocardial inflammation in patients with inflammatory 
arthritis [61]. Additionally, myocardial infarction rates are 
reduced in RA patients under anti-TNF-α treatment, com-
pared to those receiving conventional synthetic DMARDs 
(csMARDs) [62]. Last, anti-TNF’s beneficial effect seems 
to further extend to improvement of insulin resistance, func-
tional ability and fatigue [63, 64].

Impact on mortality

The effect of anti-TNFs gets beyond the control of disease 
activity. In general, mortality of patients with IMIDs has 
decreased over the past two decades. Mortality rate of RA 
patients declined significantly only a few years after the 
introduction of anti-TNFs in clinical practice [65], while 
recent data suggest that patients with RA, PsA and AxSpA 
exhibit comparable mortality rate with the general popula-
tion the past 5 years before the COVID-19 pandemic [15]. 
Regarding RA, lower number of deaths was observed in 
adalimumab-treated patients compared to the expected age- 
and sex-matched individuals from the general population 
[66]. The reduction in mortality of patients with IMIDs can 
be mainly attributed to diminished CV mortality, due to 
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amelioration of subclinical atherosclerosis and atheroscle-
rotic CV events [65].

Safety signals with chronic TNF‑α inhibition

During the past decade, no new issues have arisen from 
long-term extension studies and real-life cohorts regarding 
anti-TNFs safety [66]. On the contrary, several points have 
been clarified. The hypothesis that anti-TNFs might make 
patients susceptible to lymphoma development has been 
rejected [67–71]. As shown from several meta-analyses, 
anti-TNF-α use is possibly not associated with an increased 
long-term malignancy risk in patients with inflammatory 
arthritis and IBD [71–74]. In addition, anti-TNFs exhibit 
a lower hazard ratio for cancer development compared to 
tofacitinib in RA patients aged over 50 years [16]. As for 
non-melanoma skin cancer (NMSC), some studies have 
shown that its incidence is increased in anti-TNF-α -treated 
patients [68, 75]. However, data from two large registries 
did not confirm these findings; in contrast, they showed 
that patients with RA, regardless of anti-TNF-α use, are 
in increased risk for NMSC development, compared to the 
general population [73, 76]. In RA patients, data for mela-
noma risk in anti-TNF-α -treated patients are conflicting, but 
the risk is possibly comparable to patients not exposed to 
anti-TNFs [68, 77]. Importantly, anti-TNF-α use in patients 
with malignancy history has not been associated with an 
increased risk for malignancy recurrence or new primary 
cancer development [78]. Moreover, the risk is not influ-
enced by the time interval between initial cancer diagnosis 
and anti-TNF-α initiation [78]. There is currently no spe-
cific recommendation about when to start an anti-TNF-α 
in a patient with malignancy history. However, treatment 
with anti-TNFs should be avoided in patients with active 
malignancy.

As for active tuberculosis incidence, the introduction of 
screening methods prior to anti-TNF-α initiation led to a 
significant decline in (de novo or reactivation) tuberculosis 
cases in these patients [79]. Regarding other chronic infec-
tions, anti-TNF-α use is not related with an increased exac-
erbation rate of human immunodeficiency virus (HIV) infec-
tion [80, 81], while chronic hepatitis B and C reactivation 
rates remain low during anti-TNF-α treatment [82, 83]. In 
addition, skin psoriasis, an anti-TNF-α-related paradoxical 
adverse reaction [84], was proven to be induced also by other 
biologic agents used in IMIDs [85]. Moreover, although ele-
vation of serum uric acid levels after 3 months of anti-TNF-α 
therapy have been observed, its clinical significance remains 
to be elucidated [86].

Based on the role of RANKL in the immune system, 
safety concerns had been raised for the combination of anti-
TNFs with denosumab. Accumulating data demonstrated 
that the co-administration of these agents does not increase 

the risk for infection, compared to monotherapy with anti-
TNF-α [87] and to those receiving zoledronic acid instead 
[88].

A growing body of evidence is now available about dif-
ferent anti-TNFs use during pregnancy and lactation. Anti-
TNF-α use during pregnancy in women with IMIDs has not 
been associated with significantly increased rates of congen-
ital malformations [89]. According to the IBD Parenthood 
Project, ideal scheduling of the final dose of an anti-TNF-α 
biologic prior to delivery is dictated by the half-life of the 
drug [90]. In “EULAR points to consider for use of anti-
rheumatic drugs before pregnancy and during pregnancy 
and lactation” a slightly different perspective for women 
with inflammatory arthritis is suggested [91]. To be noted, 
as certolizumab pegol does not cross the placenta, it may 
be continued throughout pregnancy [91, 92]. Anti-TNF-α 
agents may be resumed 24 h after vaginal delivery and 48 h 
after cesarean delivery if there are no pregnancy-related or 
infectious contra-indications. Importantly, all anti-TNFs can 
be continued during lactation [91] and paternal exposure to 
anti-TNFs during conception period has not been associated 
with adverse pregnancy outcomes in their partners [93].

Last, reassuring “real-life” data about demyelinating dis-
orders development after anti-TNF-α initiation have recently 
been seen the light [94]. It is still debatable if some sporadic 
cases are a coincidence or anti-TNF-α adverse events [95]; 
anti-TNFs’ use is either way contraindicated in patients with 
known concomitant demyelinating disorders.

Anti‑TNFs in the COVID‑19 era

The safety profile of anti-TNF-α emerged as an important 
issue for patients with IMIDs during the COVID-19 pan-
demic. Despite initial concerns due to fear of immunosup-
pression, only a small proportion of patients discontinued 
anti-TNF-α during the COVID-19 pandemic [96]. Experi-
mental data suggest that anti-TNF-α-treated patients might 
be susceptible to be infected by SARS-CoV-2 [97]. Indeed, 
a threefold increased risk for COVID-19 infection was noted 
in patients with rheumatic diseases under anti-TNFs in a 
recent nationwide survey [18]. However, it seems that these 
patients do not carry an increased risk for serious COVID-
19 disease [17, 18]. On the contrary, anti-TNF-α use was 
associated with reduced risk for hospitalization in SARS-
CoV-2-infected patients with rheumatic diseases [98, 99], 
psoriasis [100] and IBD [101].

COVID-19 is an infection with a clear prothrombotic 
component [102–104]. TNF-α is elevated in patients with 
severe COVID-19, contributes in COVID-19 cytokine storm 
and acts as a major mediator in inflammation‐driven capil-
lary leak syndrome that leads to lung injury [20, 104]. On 
this basis, the therapeutic potential of anti-TNF-α in COVID-
19 infection emerged [20]. Ongoing trials examine the use of 
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infliximab in serious COVID-19 infection, showing promis-
ing results, and etanercept has shown some effectiveness in 
case reports [105]. Interestingly, a trial with adalimumab 
was terminated early [106].

Importantly, anti-SARS-CoV-2 antibody development 
after vaccination are not hindered by anti-TNF-α use [107], 
as has been reported with rituximab, in patients with rheu-
matic diseases [108, 109]. Anti-SARS-CoV-2 antibody lev-
els are comparable between PsA and AxSpA patients under 
anti-TNFs, anti-IL-17 and methotrexate [110, 111]. How-
ever, the sustainability of humoral response to COVID-19 
vaccination in patients under anti-TNF-a agents is debatable, 
especially in IBD [112–114]. Thus, an earlier booster regi-
men might be crucial for these patients [112–114].

Optimization of anti‑TNF‑α use in IMIDs

Anti‑TNFs as the basis for treat‑to‑target strategy

Implementation of bDMARDs in the clinical practice 
inevitably altered the therapeutic strategy in patients with 
IMIDs. Being the first bDMARD class applied, anti-TNFs 
made remission or low disease activity a feasible target. As 
a result, the “treat-to-target” strategy has been adopted in 
the management recommendations of several IMIDs [21]. 
This concept consists of the following: (a) baseline strati-
fication of patients according to their individual risk for a 
complicated disease course; (b) pre-defined therapeutic tar-
gets that are predictive of a favorable long-term outcome of 
the disease; (c) modifications of the administered therapy 
until the target is met and, (d) periodical reassessment of the 
patient to ensure long-term maintenance of therapeutic target 
accomplishment. Physicians should maximize the possible 
control of disease activity to achieve remission or low dis-
ease activity as soon as possible. In patients with early CD, 
finetuning of anti-TNF-α therapy based on combinatorial 
clinical and biomarker endpoints resulted in better clinical 
and endoscopic outcomes than symptom-driven decisions 
alone [115]. A similar strategy has shown to improve disease 
outcomes compared to conventional follow-up in patients 
with RA [116–118] and PsA [119], while its value is still 
under debate in AxSpA [120]. For RA, physicians should 
also keep in mind that an anti-TNF-α without Fc portion of 
immunoglobulin (certolizumab pegol) might be more effica-
cious that other anti-TNF-α in patients with high rheumatoid 
factor levels, as was recently shown [121]. Moreover, in line 
with the “treat-to-target” strategy, patients with persistent 
monoarthritis, usually of the knee, might benefit from intra-
articular anti-TNF-α infusion and etanercept is the agent 
with the better outcomes reported [122].

Anti‑TNF‑α cycling or switching to other biologics?

As said before, anti-TNFs are still considered the first-line 
bDMARDs used in several IMIDs, due to the established 
efficacy and safety profile. Nevertheless, a varying propor-
tion of patients treated with a first anti-TNF-α agent will 
discontinue this therapy, mainly due to loss of response, 
rather than adverse effects [123, 124]. After failure of a first 
anti-TNF-α in a patient with RA, either a second anti-TNF-α 
or a drug with another mechanism of action can be chosen 
[21, 125]. However, in cases of primary failure, a switch 
to a non-anti-TNF-α bDMARD might be more efficacious 
than swapping to another anti-TNF-α [126], especially for 
seropositive RA patients (in favor of rituximab) and in those 
under bDMARD monotherapy (in favor of tocilizumab) 
[127]. Moreover, switching from monoclonal anti-TNFs 
(adalimumab or infliximab) to soluble anti-TNF-α receptor 
(etanercept) is associated with better clinical outcomes than 
the opposite [128]. Regarding AxSpA, recent studies imply 
that both a second anti-TNF-α and anti-IL-17 inhibitors are 
considerable options after failure of a first anti-TNF-α agent 
[129, 130]. For PsA, according to the last ACR guidelines, 
anti-TNF-α cycling is preferred over anti-IL-17 and anti-
IL-12/23 inhibitor use after anti-TNF-α failure, except of the 
case of severe psoriasis or primary anti-TNF-α non-response 
[131]. More data are needed in psoriasis and IBD to guide 
the therapeutic strategy after anti-TNF-α failure [132, 133]. 
Eventually, the decision of second-line bDMARD treatment 
relies on the cause of anti-TNF-α non-response and should 
be individualized [134].

Therapeutic drug monitoring (TDM): Anti‑drug antibodies 
& drug levels

In the era of “treat-to-target” approach and precision medi-
cine, TDM, which consists of measuring drug levels and 
anti-drug antibodies (ADAs), is increasingly gaining atten-
tion [135]. TDM has been, almost exclusively, investigated 
for anti-TNF-α therapy, and applied in IBD to a much greater 
extent than in other IMIDs. A constantly expanding body 
of evidence indicates that TDM may be a valuable clinical 
tool for improving disease outcomes and can be applied in 
either reactive or pre-active fashion [136]. Reactive TDM 
calls for measuring trough levels and ADAs when a clinical 
endpoint is not met (“treat-to-target” approach). Pro-active 
TDM constitutes of dosage modifications until pre-deter-
mined serum drug levels are achieved. In case of treatment 
failure, either primary non-response or secondary failure to 
anti-TNFs, TDM may dictate the best therapeutic strategy, 
either by modifying the dosing scheme or switching out of 
anti-TNF-α therapy [135, 137].

Failure to respond to a biologic agent or loss of response 
after initial benefit are multifactorial phenomena. During 
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induction, serum drug levels are affected by body mass 
index, gender, serum albumin, inflammatory burden, prior 
failure to bDMARDs, as well as tissue specific processes, 
such as loss in the stools, digestion by local proteases and 
recycling by neonatal Fc receptor. On the other hand, sec-
ondary loss of response may be mediated by either pharma-
codynamic (mechanistic) or pharmacokinetic (immune or 
non-immune) factors.

Among the most recognized causes of secondary failure 
to anti-TNF-α therapy is the formation of ADAs [137]. This 
is influenced by several factors. Firstly, not all anti-TNFs 
have the same risk for ADA development; etanercept, com-
pared to monoclonal anti-TNFs, exhibits low immunogenic 
potential [137]. Moreover, ADAs against mAbs (such as inf-
liximab and adalimumab) have been associated with dimin-
ished drug effectiveness, whereas ADAs to etanercept are 
usually non-neutralizing [138]. Second concomitant therapy 
might alter this risk; methotrexate or thiopurine co-adminis-
tration has been associated with decreased anti-TNF-α ADAs 
formation [139]. Additionally, the use of distinct antibiotics 
classes may also affect the risk of ADA formation in patients 
with IBD [140]. Importantly, ADAs against originator anti-
TNF-α will cross-react with the relative biosimilar leading to 
treatment failure [137]. Although the precise clinical utility 
of TDM is still developing, patients who have higher serum 
drug levels always perform better in relation to a variety 
of disease outcomes, such as remission, drug survival and 
endoscopic scores [135].

Is anti‑TNF tapering or discontinuation feasible?

In the bDMARDs era, adequate control of the disease activ-
ity has turned long-term remission in a realistic goal. As 
more patients manage to achieve sustained remission, a 
growing body of evidence suggests that anti-TNF-α treat-
ment could be tapered or even discontinued in this group of 
patients (Table 2).

In the latest EULAR and ACR guidelines for RA manage-
ment, bDMARD tapering is considered a feasible practice in 
patients with sustained remission [21, 141]. This principle 
derives mainly from studies with anti-TNFs. Several studies 
after 2010 examined this issue. Tapering of anti-TNF-α or 
csDMARDs leads in similar flare rates after 9 months, but 
data from 12 months shows numerical less disease relapses 
in patients who continued anti-TNF-α treatment [142]. 
Indeed, in RA patients receiving etanercept and methotrex-
ate combination, withdrawal of methotrexate led to less 
RA flares than etanercept withdrawal [143]. Thus, taper-
ing of csDMARD might be a preferable option compared 
to anti-TNF-α discontinuation. Half patients with RA under 
anti-TNF-α can successfully discontinue treatment after 
achieving remission [144, 145], while this is less feasible 
for patients with established RA [145]. Long-term drug-free 

remission can be currently achieved in only a minority of 
RA patients and in about 30% a reduced anti-TNF-α dose 
can be maintained [146]. However, anti-TNF-α re-initiation 
restores remission in most cases [147]. It seems that early 
initiation of anti-TNF-α along with methotrexate and tight 
disease control provides the greatest potential of treatment 
holiday [148]. Moreover, sustaining deep remission was an 
independent predictor of better outcomes after adalimumab 
discontinuation [147].

Data in AxSpA patients support that anti-TNF-α with-
drawal carries a high risk for disease flare (76–100%) in a 
median time of 4 months after drug discontinuation [149]. 
In contrast, flare-free tapering can be successful in about 
53–100% of AxSpA patients receiving etanercept, adali-
mumab or infliximab [149]. In addition, a recent study dem-
onstrated that AxSpA patients treated only for 12 months 
with certolizumab pegol showed comparable rates of flare-
free remission when continuing on full-dose (200 mg per 
2 weeks) or on reduced-dose (200 mg per 4 weeks) main-
tenance treatment thereafter [150]. Despite fewer data are 
available in PsA patients, short-term studies show a trend 
toward dose tapering and against treatment discontinuation 
in patients with well-controlled disease [151], although 55% 
of PsA patients might remain on remission after anti-TNF-α 
discontinuation [152]. Lower disease activity is a predictor 
of remission after tapering in PsA patients, while concomi-
tant csDMARDs treatment does not have an impact on flare 
risk [151]. Importantly, drug re-institution effectively con-
trols disease activity [151]. Anti-TNF-α discontinuation in 
children with juvenile idiopathic arthritis (JIA) led to high 
disease relapse rates (80–88%) [153], while gradual dose-
lowering of etanercept in these patients is safe in maintain-
ing remission [154].

Regarding IBD, 1 year after anti-TNF-α discontinuation 
42% of CD patients and 28% of UC patients experience a 
disease flare [155]. In line with the aforementioned data, 
only 54% from UC patients who discontinued infliximab 
were in remission one year after drug withdrawal [156]. 
In another study, 0%–54% of IBD patients who tapered 
anti-TNF-α dose experienced a disease flare [157]. As in 
other diseases, remission was induced again in 80% of IBD 
patients that restarted the anti-TNF-α agent [155]. It should 
be noted, however, that in most IBD studies, patients who 
discontinued anti-TNFs maintained treatment with thiopu-
rines [158]. On the other hand, only scarce data are available 
for psoriasis [159], but 50% of patients will still be in remis-
sion 6 months after anti-TNF-α withdrawal, especially those 
that had a complete response after drug initiation [160]. 
Adalimumab tapering is associated with 60% complete skin 
clearance within a follow-up of at least 4 years [161].

Discontinuation of anti-TNFs has been also reported in 
patients with BD. In a study from our group, about 40% 
of patients with severe BD in remission for at least 3 years 
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might achieve long-term relapse-free remission of the dis-
ease after anti-TNF-α discontinuation [162]. Importantly, 
anti-TNF-α re-treatment was effective and safe in 82% of the 
patients that relapsed after treatment discontinuation [162].

Taken together, in patients with sustained remission avail-
able data strongly encourage dose reduction or increase of 
dosing intervals over drug discontinuation, as the latter car-
ries a substantial risk of loss of remission. However, in those 
whom anti-TNF-α was suspended, drug re-administration is 
usually effective in restoring low disease activity.

Biomarkers of response

Given anti-TNF-α cost and their possible immunosup-
pressive effect, biomarkers capable of predicting patient’s 
response would guide physician’s therapeutic decisions for 
patients with IMIDs. In this line, many studies have exam-
ined several candidate molecules in a variety of clinical 
scenarios. Baseline higher serum calprotectin levels have 
been found in patients with RA that respond to etanercept or 
adalimumab [163]. Tao et al. showed that transcription sig-
natures from peripheral blood mononuclear cells (PBMCs), 

Table 2   Data on disease outcomes after anti-TNF-α tapering or discontinuation. LDA: low disease activity

Study Outcome

Rheumatoid Arthritis
 Mangoni et al. [144] 53% do not relapse after anti-TNF-α discontinuation
 Tanaka et al. [147] LDA at 1-year follow-up:

91% in patients who continued adalimumab
62% in patients that discontinued adalimumab
79% in patients discontinued while in deep remission
Adalimumab re-administration achieved LDA in 100% after 9 months

 van Mulligen et al. [142] Withdrawal of anti-TNF-α leads in numerically increased flare rate at 1 year, compared to cDMARD with-
drawal

 Curtis et al. [143] Withdrawal of etanercept leads in statistically lower remission rate at 1 year, compared to methotrexate with-
drawal

anti-TNF-α tapering or withdrawal feasible in 41% at 3-year follow-up
 Sigaux et al. [146]

Psoriatic Arthritis
 Ye et al. [151] Remission is maintained in 60–88.7% after tapering

48.3–83.3% of patients experience a flare within 22–29 months after anti-TNF-α discontinuation
 Huynh et al. [152] 55% do not relapse after anti-TNF-α discontinuation

Axial Spondylarthritis
 Navarro-Compan et al. [149] 76–100% flare risk in a median 4 months after anti-TNF-α withdrawal

53–100% successful flare-free anti-TNF-α tapering
 Landewe et al. [150] During 48 weeks, remission was maintained in:

83.7% in full dose certolizumab arm
79.0% in reduced dose certolizumab arm
20.2% in placebo (discontinuation) arm

Juvenile Idiopathic Arthritis
 Iglesias et al. [153] 82% relapsed a mean 3 months after anti-TNF-α withdrawal
 Cai et al. [154] 87.1% of etanercept-treated patients maintained remission for 2 years after 50% dose reduction

Inflammatory Bowel Disease
 Gisbert et al. [155] 58% of CD and 72% of UC patients remained in remission after 1 year

In 80% of those who relapsed, remission was achieved after anti-TNF-α reinstitution
 Kobayashi et al. [156] 54% of UC patients was still in remission 1 year after infliximab discontinuation
 Little et al. [157] 50–93% remained in remission 1 year after anti-TNF-α tapering

Psoriasis
 Kim et al. [159] In 69–83% of “relapsers” after drug discontinuation, remission was achieved after re-treatment with anti-

TNF-α
 Stinco et al. [160] 50% did not relapse during the first 6 months after anti-TNF-α discontinuation

Re-administration of anti-TNF-α resulted again in remission
 Hansel et al. [161] 60% maintained complete remission for at least 4 years after adalimumab discontinuation

Behcet’s Disease
 Sfikakis et al. [162] Long-term remission in 40% after discontinuation
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monocytes and CD4 + T cells, of RA patients were differ-
ent between adalimumab and etanercept responders and 
non-responders [164]. Another group applied multi-omics 
analyses in PBMCs from RA patients at the start of anti-
TNF-α treatment and showed high expression of epiplakin 
1 (EPPK1) and T-cell inhibitor chitinase-3-like 1 (CHI3L1) 
genes in those who responded [165]. Interestingly, a meta-
analysis regarding patients with CD showed a discrepancy 
between proposed genomic and transcription biomarkers 
[166]. Treatment with anti-TNFs affects the levels of circu-
lating microRNAs in RA patients [167]. Some studies have 
shown that serum levels of miR-22, miR-23, miR-27a, miR-
223 and miR-886 before anti-TNF-α initiation could serve 
as predictors of patient’s response [167].

In IBD, search for predictive biomarkers is facilitated by 
the ability to obtain mucosal biopsies during endoscopy. 
This allows for the study of pre-treatment expression of 
local immunological and inflammatory mediators at the 
mRNA and protein levels and correlate them with subse-
quent response to treatment [168]. In one such study, non-
response to anti-TNFs was associated with increased num-
bers of mucosal plasma cells and macrophages and elevated 
local expression of triggering receptor expressed on myeloid 
cells-1 (TREM-1), chemokine receptor type 2 (CCR2) and 
chemokine ligand 7 (CCL7) [169]. Another study with UC 
patients reported that the pretreatment mucosal expression of 
a combination of five genes predicted response to infliximab 
therapy [170]. In patients with colonic CD, another five-
gene signature was found to discriminate between infliximab 
responders and non-responders [171]. Recently, the concept 
of molecular resistance via immunological pressure was pro-
posed as an explanation for secondary loss of response to 
anti-TNFs. A significant upregulation of mucosal IL23p19, 
IL23R and IL17A expression was detected in patients who 
did not respond to anti-TNF-α therapy, in association with 
elevated number of mucosal T cells which expressed both 
TNFR2 and IL-23R and demonstrated high expression of 
inflammatory genes and resistance to apoptosis [172].

Recent studies have also shown that response to anti-
TNFs may be genetically determined. The most important 
associations have been reported for patients with IBD who 
bear a specific polymorphism in the gene encoding the Fc 
fragment of the low affinity IgG3a receptor, who showed 
increased ADA formation, enhanced infliximab elimination 
and elevated risk of relapse after infliximab discontinua-
tion [173]. In addition, in patients with CD, ADA formation 
may be determined by the HLA class II gene variant HLA-
DQA501 [174].

The clinical applications of such findings are obvious 
as much they may identify patients who will benefit from 
combination of anti-TNFs with immunomodulators or who 
should better receive non-anti-TNF-α therapies. It should 
be noted, however, that the majority of these reports 

remains to be validated in additional patient cohorts and in 
prospective manner, which explains why none has reached 
clinical practice yet.

Socioeconomic perspectives on anti‑TNF‑α therapy: 
the case for biosimilars

Biosimilar drugs are agents with highly similar chemi-
cal characteristics and biological activity to original 
bDMARDs. Due to the financial success of originator anti-
TNFs, especially adalimumab, infliximab and etanercept, 
several industries have developed biosimilars of anti-TNFs 
during the past decade, according to strict requirements 
[175–177]. Several biosimilars have shown clinically simi-
lar effectiveness, safety and immunogenicity compared to 
originator drugs and have been approved for the treatment 
of IMIDs [177]. As expected, healthcare systems exhibit 
substantial cost savings from the use of biosimilars not 
only due to their reduced price, but also by the consequent 
fall in the originator anti-TNFs cost [175]. Moreover, the 
use of anti-TNF-α biosimilars is expected to broaden 
anti-TNF-α availability, as their lower cost will mitigate 
the inequity in drug accessibility that has been reported 
[177]. Advances in bDMARDs manufacturing, especially 
in molecular engineering, allow changes in protein for-
mulation that might improve originator drug’s properties, 
introducing the term “biobetter” [175, 176]. An example 
of such innovative strategy is CT-P13, an infliximab bio-
similar, which was the first infliximab to be effectively 
administered subcutaneously [175].

On the other hand, biosimilars introduction in clinical 
practice was accompanied by several issues. First, biosimi-
lars’ availability differs between countries, especially due 
to different regulation policies [176]. Importantly, switch-
ing from a reference bDMARD to a biosimilar can lead 
in subjective increase of disease activity or pain in some 
patients [177], in contrast to the results from double-blind 
switch randomized clinical trials [178]. This can be mainly 
attributed to the nocebo effect, which is based on a pre-
existing negative perception of the patient for the admin-
istered drug [178]. Patients with IMIDs are more prone to 
nocebo behavior and data from biosimilar studies indicate 
that discontinuation rate due to subjective complains is not 
negligible [179]. As nocebo behavior can lead in several 
consequences, such as polypharmacy and worse disease 
outcomes, physicians need to recognize patients with risk 
factors for nocebo behavior and cautiously communicate 
biosimilars efficacy and safety, in order to prevent nocebo 
phenomena [179]. This has become more important in the 
COVID-19 era, during which nocebo behavior may be 
intensified [180].
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The future of anti‑TNF‑α therapy

The next generation of anti‑TNF‑α drugs

Although the efficacy of anti-TNFs has been established 
for several IMIDs, a proportion of patients do not respond 
adequately and this might be partially attributed to phar-
macokinetics. Typically, anti-TNF-α are administered sub-
cutaneously or intravenously. However, the doses needed 
to achieve sufficient drug concentrations locally can lead 
to increased immunosuppression and other adverse events. 
To overcome this issue, new forms of anti-TNFs are under 
development.

Korkmaz et al. delivered anti-TNF-α-enriched micronee-
dles on psoriasiform skin lesions in mice resulting in reduced 
epidermal thickness and inflammation mediators’ levels 
[181]. Moreover, a bispecific antibody combining a single-
chain variable fragment (scFv) specific for synovium and 
a scFv of adalimumab successfully delivered adalimumab 
to the inflamed synovium in a mouse model, ameliorating 
local inflammation and indicating a new targeted therapy 
potential for RA [182]. On the other hand, oral anti-TNF-α 
agents could be suitable for diseases confined to gastroin-
testinal tract, such as IBD [183, 184]. However, oral admin-
istration of antibodies is hindered mainly by the proteolytic 
enzymes and the acidic environment of the stomach; thus, 
alternative delivery methods have been investigated for anti-
TNFs [183]. Rectal administration (infliximab), tablet coat-
ing (V565-adalimumab), anti-TNF-α loaded nanoparticles 
[185–187], avian polyclonal anti-TNF-α, antisense oligonu-
cleotides in several formulations, intracolonic microRNA 
and per os- or rectal-administered small interfering RNA 
that silence TNF-α expression, have been studied with vary-
ing efficacy [183]. Lactic acid bacteria have been utilized 
as mucosal delivering system and anti-TNF-α scFv-produc-
ing Lactococcus lactis administration have been shown to 
improve histopathologic findings in colitis models [188].

Progranulin, an endogenous protein that binds both types 
of TNFR, and preligand-binding assembly domain (PLAD), 
a part of the TNFR extra-cellular domain, play a crucial role 
in the TNF-α signaling pathway. Therapeutic administration 
of either progranulin or soluble versions of TNFR1 or PLAD 
in mouse models led to beneficial results [189–191], open-
ing the door to another type of non-antibody anti-TNF-α 
drugs [23, 192]. As said above, TNFR1 and TNFR2 medi-
ate different signaling pathways [23]. Blockade of TNFR1 
leads in activation and proliferation of Tregs and ameliorates 
progression of collagen-induced arthritis [193, 194]. In this 
line, a TNFR2 agonist was associated with Tregs expan-
sion and suppression of cytotoxic CD8 + T cells, exhibiting 
an anti-inflammatory potential [195]. Thus, based also on 
preclinical data, specific targeting of TNFR1 or TNFR2 by 
antibodies, small molecules or aptamers may represent a 

safer and more effective treatment in IMIDs in the future 
[196–198]. For example, zafirlukast, a leukotriene inhibitor, 
downregulates TNFR1 pathway by PLAD-mediated TNFR1 
dimerization [199].

Another approach of TNF-α pathway blockade that has 
been recently examined is the development of orally active 
small molecules (such as UCB-9260) that destabilize TNF-α 
trimer, impeding TNF-α-TNFR1 binding and signaling 
[200]. In addition, several natural products that exhibit a 
TNFα inhibitory effect are being identified using in silico 
methods [201]. Whether selective TNFR targeting or non-
biologic anti-TNFs block TNF-α pathway in a more refined 
way than the current marketed biologic anti-TNFs, remains 
to be seen [23].

Combination of anti‑TNFs with other targeted therapies

The current therapeutic unmet needs require the constant 
revisiting of established trends in IMIDs’ pharmacotherapy. 
Although combination therapies have the theoretical poten-
tial of a synergistic anti-inflammatory effect, two impor-
tant issues should be noted. First, as immunosuppression 
is expected to be higher in such cases, safety issues should 
be addressed and avoided. Second, a combination therapy 
should not be relied on the mere co-administration of two 
DMARDs, but, instead, must be carefully designed to com-
bine independent and additive, and not similar and overlap-
ping, modes of action.

Combination therapies carry the advantage of synergic 
action of both drugs, usually allowing lower doses to be 
administered. In a recent experimental study, the tyros-
ine kinase inhibitor dasatinib was co-administered with 
sub-therapeutic doses (only 10% of the standard dose) of 
infliximab, adalimumab, golimumab or etanercept in the 
human TNF-dependent Tg197 arthritis mouse model [202]. 
The combination therapy led to amelioration of clinical 
and histopathological findings of arthritis, which was more 
profound with the combination of low-dose infliximab and 
dasatinib, to a degree similar to the therapeutic infliximab 
dose.

In patients with refractory IBD, co-administration of anti-
TNFs with vedolizumab, ustekinumab or natalizumab has 
shown promising results in case reports and case series and 
was not accompanied by a substantial increase in the inci-
dence of serious adverse events, such as serious infections 
[203]. Interestingly, dual inhibition of TNF-α and IL-17 in 
experimental spondyloarthritis model has been shown to 
ameliorate local inflammation, joint erosions and new bone 
formation in spine [204], while the effect of double blockade 
in bone erosion was more potent than neutralizing TNF-α or 
IL-17 alone [205]. In this line, a bi-specific fusion protein 
against TNF-α /IL-17A [206–208] is being under investiga-
tion in clinical trials in psoriasis.



1504	 Rheumatology International (2022) 42:1493–1511

1 3

Moreover, also recently, a novel antibody (ABBV-337) 
was developed; adalimumab was conjugated with a gluco-
corticoid receptor modulator, targeting both transmembrane 
TNFR and cytoplasmic glucocorticoid receptor through 
endocytosis. This strategy allows the anti-inflammatory 
effects of glucocorticoids, minimizing the adverse events of 
systemic glucocorticoids use. In a phase 2a proof-of-concept 
study in RA patients, ABBV-337 exhibited statistically sig-
nificant better response than adalimumab alone at week 12 
[209].

Conclusion

The introduction of anti-TNFs altered the disease course of 
several IMIDs by achieving remission or low disease activity 
in a substantial proportion of patients. These agents exhibit 
beneficial effect on the basic pathophysiological process, 
while their use led in a significant reduction in all-cause 
mortality, at least in rheumatic diseases. Anti-TNFs' known 
safety profile has been confirmed, proving safe during the 
COVID-19 pandemic and expanded their use within preg-
nancy and lactation. Moreover, their use changed the man-
agement of these diseases, adopting the “treat-to-target” 
strategy, treatment de-escalation strategies have been suc-
cessfully applied and TDM has optimized anti-TNF-α use. 
The implementation of anti-TNF-α biosimilars made anti-
TNF-α treatment more accessible and improved anti-TNFs’ 
cost-effectiveness. Several biomarkers are currently under 
investigation and are expected to utilize as useful prognostic 
tools in anti-TNF-α-treated patients. Last, development of 
new anti-TNF-α forms and sophisticated TNFR targeting 
might optimize drug bioavailability, enhance their local effi-
cacy and minimize adverse effects, while combination with 
other agents might refine disease outcomes using lower drug 
doses. Although a proportion of patients with IMIDs do not 
respond to anti-TNFs and newer therapeutic targets are see-
ing the light toward this direction, anti-TNFs remain in the 
front stage of our therapeutic armamentarium. 
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