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Introduction

Secondary DNA structures, such as G-quadruplex (G4) 
structures, are hypothesized to hamper DNA and RNA-
related processes due to their high thermodynamic stabil-
ity and by this challenging genome integrity (reviewed in 
Tarsounas and Tijsterman 2013). G4 structures are guanine-
rich, four-stranded structures that can form within nucleic 
acids, if a defined nucleotide sequence, called G4 motif is 
present (Gellert et al. 1962).

Multiple analyses demonstrate that, once formed, G4 
structures positively and negatively influence biological pro-
cesses (reviewed in Bochman et al. 2012; Maizels and Gray 
2013), such as DNA replication (Foulk et al. 2015; Valton 
et al. 2014), transcription (Law et al. 2010; Siddiqui-Jain 
et al. 2002), and translation (Morris et al. 2010). Currently, 
they are discussed as a molecular fine-tuning mechanism 
of the cell that influences specific processes (David et al. 
2016; Nguyen et al. 2014; Tang et al. 2016). However, due 
to their stability, the formation and unfolding is predicted to 
be slow (Hazel et al. 2004; Lane et al. 2008). If G4 structures 
are a regulatory tool in the cell, fast and efficient regulation 
mechanisms are required. To this date, multiple helicases 
have been identified that can unwind G4 structure in vitro 
(Sauer and Paeschke 2017). Interestingly, in vivo experi-
ments support the idea that most G4 structure-regulating 
helicases are specific for a given cellular process. For exam-
ple, FANCJ, the helicase linked to the human disorder Fan-
coni anemia, as well as Pif1 helicases are shown to regulate 
G4 formation during DNA replication (Castillo Bosch et al. 
2014; Paeschke et al. 2011, 2013; Piazza et al. 2017; Ribeyre 
et al. 2009; Wu and Spies 2016). In the absence of Pif1 in 
yeast, or FANCJ in humans, deletion or mutations occur at 
G4 motifs and genome instability accumulates. Therefore, 
it is not surprising that mutations in many G4-regulating 

Abstract The preservation of genome stability is funda-
mental for every cell. Genomic integrity is constantly chal-
lenged. Among those challenges are also non-canonical 
nucleic acid structures. In recent years, scientists became 
aware of the impact of G-quadruplex (G4) structures on 
genome stability. It has been shown that folded G4-DNA 
structures cause changes in the cell, such as transcrip-
tional up/down-regulation, replication stalling, or enhanced 
genome instability. Multiple helicases have been identified to 
regulate G4 structures and by this preserve genome stability. 
Interestingly, although these helicases are mostly ubiquitous 
expressed, they show specificity for G4 regulation in certain 
cellular processes (e.g., DNA replication). To this date, it is 
not clear how this process and target specificity of helicases 
are achieved. Recently, Mms1, an ubiquitin ligase complex 
protein, was identified as a novel G4-DNA-binding protein 
that supports genome stability by aiding Pif1 helicase bind-
ing to these regions. In this perspective review, we discuss 
the question if G4-DNA interacting proteins are fundamental 
for helicase function and specificity at G4-DNA structures.

Keywords DNA secondary structures · Pif1 helicase · 
Genome stability · S. cerevisiae

Communicated by M. Kupiec.

 * Katrin Paeschke 
 k.paeschke@umcg.nl

1 European Research Institute for the Biology of Ageing 
(ERIBA), University Medical Center Groningen, University 
of Groningen, 9713 AV Groningen, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s00294-017-0773-9&domain=pdf


536 Curr Genet (2018) 64:535–540

1 3

helicases are linked to human genetic disorders (reviewed 
in Maizels 2006; Mendoza et al. 2016).

In addition to helicases, other machineries/proteins have 
been shown to support the disruption of formed G4 struc-
tures such as translesion synthesis proteins, homologous 
recombination (HR), or telomerase holoenzyme (Edwards 
et al. 2014; Paeschke et al. 2008; van Kregten and Tijster-
man 2014). How these proteins act specifically at G4 struc-
tures or how they communicate with helicases is not clear, 
yet. Although the regulation of G4 structures is very efficient 
and G4 structures have an impact on all stages of the cell 
cycle, it seems that the proteins/helicases that regulate G4 
disruption are highly process specific. For example, Pif1 
helicase has been shown to act specifically at formed G4 
structures during DNA replication, whereas the RecQ heli-
cases are proposed to act at G4 structures during telomere 
maintenance (reviewed in Sauer and Paeschke in press). To 
this date, it is not completely understood how this specificity 
is achieved; one hypothesis is that G4 structure-interacting 
proteins support helicase binding and thereby increase heli-
case specificity. In recent years, many scientists performed 
global approaches to identify novel G4 interacting proteins 
(reviewed in Mishra et al. 2016).

Mms1 is a novel factor supporting Pif1 helicase binding 
to G4s

Using a pull-down-based approach, we identified in yeast, 
among known G4 interacting proteins, Mms1 as a novel 
G4-interacting protein (Wanzek et al. 2017). We demon-
strated that Mms1 acts together with Rtt101 and Mms22 and 
forms an ubiquitin ligase complex,  Rtt101Mms1/Mms22 (Zaidi 
et al. 2008). All three components are required for replica-
tion fork progression after treating cells with the alkylating 
agent methyl methanesulfonate (MMS), which causes rep-
licative stress (Luke et al. 2006; Vaisica et al. 2011). In line 
with our observations, the previous studies have shown that 
Mms1 and Mms22 are required for HR at stalled forks but 
not at HO-induced double-strand-break (DSB) sites (Duro 
et al. 2008; Zaidi et al. 2008).

The replication machinery slows at G4 structures (Anand 
et al. 2012; Valton and Prioleau 2016), especially if G4 
structures are not unwound by a DNA helicase, e.g., Pif1 
(Paeschke et al. 2011). We speculated that in S cerevisiae, 
the ubiquitin ligase  Rtt101Mms1/Mms22 is also involved in rep-
lication fork progression at G4 motifs. Chromatin immu-
noprecipitation (ChIP) experiments coupled with deep-
sequencing analyses supported the hypothesis. Analyses 
revealed that the guanine-rich Mms1-binding motif can form 
“relaxed” G4 structures in vitro. These “relaxed” G4 motifs 
form less stable G4 structures, because they only harbor 
two guanines per G-tract  (GGN1–8GGN1–8GGN1–8GG) as 
compared to three or more in canonical G4 structures (e.g.: 

 GGGN1–7GGGN1–7GGGN1–7GGG) (Gellert et al. 1962). 
Interestingly, “relaxed” G4 motifs that are bound by Mms1 
are located on the lagging strand template for DNA replica-
tion (Wanzek et al. 2017). In addition, detailed analyses of 
Mms1 target regions showed that they are also targeted by 
Pif1 (Wanzek et al. 2017).

Previously, it was shown that Pif1, a 5′–3′ DNA helicase, 
is a robust unwinder of G4 structures in vitro (Ribeyre et al. 
2009). Using two different methods in yeast, it was demon-
strated that in Pif1 mutant cells (pif1-m2), replication slows 
at G4 motifs (Paeschke et al. 2011). Furthermore, different 
genetic analyses revealed that Pif1 preserves genome stabil-
ity at G4 motifs, and accordingly, deletions and/or mutations 
occur at these motifs in the absence of Pif1 (Lopes et al. 
2011; Paeschke et al. 2013). This led to the model that Pif1 
unwinds G4 structures in vivo and by this supports replica-
tion fork progression and genome stability. Although these 
studies nicely support each other, they also harbor contro-
versial aspects. Under one experimental setting, Pif1 acts 
equally well on G4 motifs on both strands of the replication 
fork machinery. In contrast, studies that used a repetitive G4 
motif from a human minisatellite (CEB1) in yeast showed 
that Pif1 acts only at G4 motifs located on the leading strand 
template for DNA replication (Lopes et al. 2011; Paeschke 
et al. 2013).

The newest published results shed some light into this 
discussion. They revealed that Mms1 supports Pif1 bind-
ing to specific G4 structures located on the lagging strand 
(Wanzek et  al. 2017). Without Mms1, Pif1 binding is 
reduced, replication slows at G4 motifs, and G4-depend-
ent genome instability is observed. The effects are similar 
to effects reported in Pif1 mutant cells (Paeschke et al. 
2011, 2013; Piazza et al. 2012). Mms1 does not bind to 
G4 motifs on the leading strand (Fig. 1a). Expectedly, in 
the absence of Mms1, Pif1 binding to G4s on the leading 
strand was unaffected (Fig. 1b). In addition, no replication 
pausing and consequently no increased genome instabil-
ity by GCR were observed, if the G4 motifs was located 
on the leading strand (Fig. 1c, d). Interaction network 
analyses showed a significant overlap between Pif1 and 
Mms1 (50 proteins interacted genetically and 2 proteins 
physically with both proteins, Fig. 1e). These results pro-
vide information in the discussion, whether G4 motifs on 
the leading, on the lagging strand, or both cause genome 
instability. It is probably depending on the substrate, the 
genetic surrounding, and consequently the associated pro-
teins which determine the fate of the G4 motif and Pif1. In 
practice, this means that repeats (e.g., CEB1) are targeted 
by a different set of proteins than other G4 motifs. Further-
more, the current data indicate that specific G4 motifs on 
the lagging strand are targeted by Mms1 and consequently 
Pif1, but provide no information about other G4 motifs 
on both leading and lagging strand. In addition, because 
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Fig. 1  Mms1 does not support Pif1 function at all targets. a Mms1 
does not bind to G4 motifs on the leading strand. ChIP experi-
ments, using endogenous Myc-tagged Mms1 at specific loci, as well 
as genome wide analyses (Wanzek et  al. 2017) revealed that Mms1 
does not bind to G4 motifs on the leading strand (G4lg). Here and 
in all subsequent ChIP experiments, plotted IP/input values are 
mean values ± standard deviation (SD) of three biological replicates. 
b Pif1 binding is not affected at G4 motifs on the leading strand. 
ChIP experiments using endogenously Myc-tagged Pif1 were per-
formed in WT (light grey) and mms1Δ (dark grey) cells. Pif1 binding 
was reduced at a specific G4 motif on the lagging strand (G4lg) in 
mms1Δ cells (Wanzek et  al. 2017), whereas binding was unaffected 
at G4 motifs on the leading strand (G4le). c Replication fork progres-
sion is not dependent on Mms1 at all G4 motifs. DNA Pol2 binding 

to G4 motifs was analyzed by ChIP using endogenous Myc-tagged 
Pol2 and qPCR in WT (light grey) and mms1Δ (dark grey) cells. As 
previously (Wanzek et al. 2017), DNA Pol2 binding was enhanced in 
the absence of Mms1 at G4 motifs on the lagging strand (G4lg), but 
no difference in DNA Pol2 binding was observed at other G4 motifs, 
located on the leading strand template (G4le). d G4 motifs on the 
leading strand did not increase the GCR rate in mms1Δ cells. The 
GCR rate was determined in wild-type and mms1Δ cells. Plotted data 
are normalized to WT. All inserts were integrated using the LEU2 
marker. Inserts are: G4 motif on the lagging strand template (G4lg) 
(Wanzek et al. 2017), G4 motif on the leading strand template (G4le), 
as well as the LEU2 marker alone. e Analysis of the 52 joined genetic 
and physical interaction of Pif1 and Mms1 by processes
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Mms1 acts here without the Ubiquitin complex, which is 
an unusual setting for Mms1, it is likely that other proteins 
are involved in this G4 regulation process. These data and 
consequent speculation exhibit that disruption of G4 struc-
tures is not as trivial as originally anticipated. Presumably 
a whole complex of proteins acts together to control G4 
unwinding at different genomic settings.

G4 structures are discussed to play a positive role in dif-
ferent biological processes such as transcriptional regula-
tion, where they supposed to serve as a loading scaffold for 
proteins (Bochman et al. 2012). Multiple analyses have now 
shown that G4 motifs fold into G4 structures in vivo (Biffi 
et al. 2013, 2014; Paeschke et al. 2005; Schaffitzel et al. 
2001) and that G4 motifs are conserved throughout evolu-
tion (Capra et al. 2010; Nakken et al. 2009). This and other 
data suggest that G4 structures have a biological function 
and fold on purpose and not by chance. Even though it is 
not fully understood yet, how G4 structures form efficiently 
and specifically, recent data imply that Mms1 plays a role 
during G4 structure formation, because it binds to G4 motifs 
throughout the whole cell cycle (Wanzek et al. 2017) where 
it has the potential to recruit other G4 modulators.

According to the Saccharomyces Database (SGD) and 
further publications, there are with Est1, Est2, Rap1, Mre11, 
Rad50, Xrs2, Pif1, Rrm3, Sgs1, Yku70, Rif1, Hop1, Kem1, 
Stm1, and Sub1; at least 15 proteins known to bind to DNA 
G4 structures in S. cerevisiae (Cherry et al. 2012; Fisher 
et al. 2004; Kanoh et al. 2015; Liu and Gilbert 1994; Lopez 
et al. 2017; Muniyappa et al. 2000; Sun et al. 1999; Van 
Dyke et al. 2004). Comparing genetic and physical inter-
action maps of those proteins shows that 5 proteins are 
genetically or physically linked to Mms1 in S. cerevisiae. 
A genetic/physical interaction does not proof a link, but a 
potential idea on how to address G4 regulation and unfold-
ing in the near future. The identification of proteins that aid 
helicase binding and function will be interesting by itself but 
will also be beneficial for medical aspects. G4 structures are 
discussed as novel therapeutically targets to regulate bio-
logical processes (Balasubramanian and Neidle 2009; Bates 
et al. 2017; Cogoi and Xodo 2016). The current research 
focuses on chemical components (ligands) that induce or 
stabilize G4 structures in vivo (Salgado et al. 2015). The 
aim is to influence/block specific processes by inducing/
stabilizing G4 structures. Due to the high number of G4 
motifs in the cell over 500/300,000 in S. cerevisiae/human 
(Capra et al. 2010; Chambers et al. 2015; Huppert and Bal-
asubramanian 2005), the current challenge is the specific-
ity of these ligands to certain and not all G4s. Targeting 
the functional helicases at the right spatiotemporal moment 
will be an additional difficulty due to their multifunctional 
nature. However, a promising future strategy to gain speci-
ficity could be to target the aiding proteins instead of a mul-
tifunctional helicase.
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