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this AB could eventually be severed by cytokinesis and led 
to two different types of genetically compromised daugh-
ter cells. All these previous studies were done in haploid 
cells. We have now recently expanded this analysis to dip-
loid cells and used the advantage of making hybrid diploids 
to study chromosome rearrangements and changes in the 
ploidy of the surviving progeny. We have found that the 
consequences for the genome integrity were far more dra-
matic than originally envisioned.
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Role of Cdc14 in the resolution and segregation 
of sister chromatids

Cdc14 is a cell cycle phosphatase essential for the mitosis-
to-G1 transition in Saccharomyces cerevisiae, the end of the 
cell cycle (reviewed in Stegmeier and Amon 2004; De Wulf 
et  al. 2009; Mocciaro and Schiebel 2010; Uhlmann et  al. 
2011; Wurzenberger and Gerlich 2011; Meitinger et  al. 
2012; Weiss 2012). This protein belongs to a superfamily 
of dual-specificity phosphatases highly conserved in all 
eukaryotes, although their roles seem to have diverged dur-
ing evolution. Yeast Cdc14 preferentially dephosphorylates 
CDK targets, which makes it the main antagonist of CDK 
in the cell. Although there are a number of mechanisms that 
counteract CDK actions during the cell cycle, Cdc14 trig-
gers the final wave of synergistic events that completely 
eliminates the activity of CDK and other mitotic kinases. 
This is achieved by activating an alternative to the Cdc20-
regulated Anaphase Promoting Complex (APCCdc20), the 
APCCdh1, as well as expressing and activating the CDK 

Abstract  Cycling events in nature start and end to restart 
again and again. In the cell cycle, whose purpose is to 
become two where there was only one, cyclin-dependent 
kinases (CDKs) are the beginning and, therefore, phos-
phatases must play a role in the ending. Since CDKs are 
drivers of the cell cycle and cancer cells uncontrollably 
divide, much attention has been put into knocking down 
CDK activity. However, much less is known on the conse-
quences of interfering with the phosphatases that put an end 
to the cell cycle. We have addressed in recent years the con-
sequences of transiently inactivating the only master cell 
cycle phosphatase in the model yeast Saccharomyces cer-
evisiae, Cdc14. Transient inactivation is expected to better 
mimic the pharmacological action of drugs. Interestingly, 
we have found that yeast cells tolerate badly a relatively 
brief inactivation of Cdc14 when cells are already commit-
ted into anaphase, the first cell cycle stage where this phos-
phatase plays important roles. First, we noticed that the 
segregation of distal regions in the chromosome arm that 
carries the ribosomal DNA array was irreversibly impaired, 
leading to an anaphase bridge (AB). Next, we found that 
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inhibitor Sic1. Thus, Cdc14 actions at the end of mito-
sis, coupled to the overall CDK inactivation, changes the 
phosphorylation/dephosphorylation ratio of most CDK tar-
gets in favor of the latter. Cdc14 is first activated shortly 
after anaphase starts by the action of APCCdc20. Before 
that, Cdc14 is kept fully inactive through its binding to 
the nucleolar protein Net1 (Cfi1). This first wave of Cdc14 
activation occurs through the FEAR (Cdc Fourteen Early 
Anaphase Release) network and takes place while the 
CDK activity is still high, contributing to the beginning of 
its decline. Shortly afterwards, a second and more potent 
Cdc14 activation by the Mitotic Exit Network (MEN) 
greatly accelerates the loss of CDK and ensures cytokinesis 
and the exit from mitosis into a new G1 for the mother and 
daughter cells.

Cdc14 activation by FEAR is dispensable for sustain-
ing the growth of a yeast population, although affects 
cell viability (D’Amours et  al. 2004). We now know that 
this loss of viability relates to the occurrence of aberrant 
chromosome segregation in anaphase. Thus, conditional 
mutants for MEN (the prototypical example being the ther-
mosensitive allele cdc15-2) block cells with high CDK 
activity right before cytokinesis. However, sister chroma-
tid resolution and segregation appears complete, even for 
challenging regions (see below) (D’Amours et  al. 2004; 
Torres-Rosell et  al. 2004; Machín et  al. 2005; Quevedo 
et  al. 2012). Accordingly, positioning of the centrosome-
like microtubule organizing centers known as Spindle Pole 
Bodies (SPB) appears correct, and nuclear spindle micro-
tubules look healthy and elongated (D’Amours et al. 2004; 
Machín et al. 2005; Jin et al. 2008; Quevedo et al. 2012). 
Importantly, in MEN mutants, the first wave of Cdc14 acti-
vation by FEAR still takes place, although Cdc14 becomes 
inactive and relocates to the nucleolus quickly (Stegmeier 
et  al. 2002). In contrast, double mutants for both FEAR 
and MEN, or prevention of any Cdc14 activity by using 
the cdc14-1 (or cdc14-3) thermosensitive allele (ts), leads 
to an anaphase block with incomplete positioning of the 
SPBs in the mother-to-daughter axis, unhealthy bended 
and broken spindles, lagging DAPI-stained DNA masses 
at the bud neck, a gross failure to segregate the nucleolus, 
and unresolved sister chromatids near the telomeres of sev-
eral chromosome arms (D’Amours et  al. 2004; Sullivan 
et al. 2004; Torres-Rosell et al. 2004; Ross and Cohen-Fix 
2004; Machín et al. 2005; Jin et al. 2008; Clemente-Blanco 
et al. 2009). The molecular basis for all these failures is not 
completely understood, however, it is now clear that Cdc14 
dephosphorylates, and thus activates, important players in 
the dynamics and stability of the anaphase spindle such 
as Fin1, Ase1, Sli15, Cin8, etc., [(Roccuzzo et  al. 2015) 
and references therein]. Cdc14 also down-regulates tran-
scription and, directly or indirectly, targets the condensin 
complex to the DNA (D’Amours et al. 2004; Machín et al. 

2006; Clemente-Blanco et  al. 2009). Condensin is in turn 
a master player in two important steps needed for sister 
chromatid resolution and segregation in eukaryotes. On the 
one hand, condensin drives the axial compaction of chro-
mosome arms to make them short enough to avoid lagging 
DNA at the cytokinetic plane. On the other hand, conden-
sin promotes the decatenation activity of topoisomerase II 
(Top2), essential for sister chromatid resolution (reviewed 
in Hirano 2012).

Without Cdc14 the right arm of chromosome XII 
forms an anaphase bridge: the causes

An interesting finding in relation to the failure to resolve 
and segregate the sister chromatids in a cdc14-ts block is 
that not all chromosomes are impaired to the same extent. 
Thus, distal regions of the long chromosome arms, cer-
tain telomeres (but not all), and the ribosomal DNA array 
(rDNA) are particularly impeded. The rDNA has been stud-
ied in depth (Granot and Snyder 1991; D’Amours et  al. 
2004; Sullivan et al. 2004; Wang et al. 2004; Torres-Rosell 
et al. 2004; Machín et al. 2005; Torres-Rosell et al. 2005; 
Machín et al. 2006; Tomson et al. 2006; Geil et al. 2008; 
Clemente-Blanco et al. 2009). The rDNA is a highly repeti-
tive region, comprising 100–200 head-to-tail copies of 
a ~9 kb unit, located on the right arm of the chromosome 
XII (Petes 1979). This arm (cXIIr hereafter) is relatively 
large even without taking into account the rDNA. Includ-
ing the rDNA, cXIIr becomes by far the largest arm in the 
yeast genome. In theory, with the average degree of com-
paction for the yeast genome, the distance reached between 
the two SPBs in late anaphase is insufficient to unzip the 
sister chromatids of this arm by pulling of the centromeres 
(Guacci et al. 1994; Lavoie et al. 2004; Machín et al. 2005; 
Harrison et al. 2009). Taking into account this fact, together 
with the deficiencies in the spindle elongation and SPB 
positioning in cdc14-ts mutants, it seems conceivable that 
the failure to segregate the rDNA is just a matter of insuffi-
cient pulling forces by the spindle at this locus. This simple 
explanation could also be valid for other distal regions and 
telomeres in long chromosome arms. In agreement with 
this hypothesis, the cXIIr sisters appear partly resolved 
(i.e., two separated signals under the resolution of fluores-
cence microscopy), from the centromere to around one-
third within the centromere-proximal rDNA, with the other 
two-thirds of the rDNA and the rest of the chromosome arm 
up to the telomere unresolved (Machín et  al. 2005). The 
centromeric regions of both sisters appear fully segregated 
and close to the corresponding SPB, therefore, the outcome 
of this partial resolution is the formation of an interesting 
type of Anaphase Bridge (AB) (Fig. 1). This AB (cXIIr-AB 
hereafter) comprises two partly resolved sister chromatids 
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as opposed to the classical AB of the McClintock’s break-
age-fusion-bridge cycle envisioned for dicentric chromo-
somes (McClintock 1939). According to this hypothesis, 
Cdc14 would drive cXIIr segregation by loading conden-
sin onto the rDNA to hypercondense this locus (more than 
the calculated average compaction) and, of course, by the 
final polar positioning of the SPBs and enlargement of the 
spindle. Experimental support for this hypothesis comes 
from different angles. First, we demonstrated that restora-
tion of Cdc14 activity was enough to resolve and segregate 
the rDNA in many cells, even after previously depolymer-
izing the spindle (Machín et al. 2005). Second, rDNA is in 
a transient hypercondensed state in the window between 
FEAR and MEN (Guacci et  al. 1994; Varela et  al. 2009). 
Third, telomeres of other chromosomes with short arms 
are fully segregated in the cdc14-1 (Quevedo et al. 2012). 
Fourth, recent findings with chimeric constructions of giant 

chromosome arms have shown a correlation between arm 
length and the time of sister chromatid resolution, although 
the role of Cdc14 was not tested directly (Titos et al. 2014).

Nevertheless, the simple solution introduced above for 
the occurrence of this cXIIr-AB seems to be actually more 
complicated. First, sixfold shortening of the rDNA array, 
which reduces the cXIIr size below the length limitation 
mentioned above, only partly improved cXIIr segregation 
(Machín et al. 2006; Tomson et al. 2006). Second, there are 
examples of telomeres other than cXIIr that are unresolved 
in the cdc14-ts blocks, including telomeres in relatively 
medium-sized arms (D’Amours et  al. 2004; Clemente-
Blanco et  al. 2011). Third, incomplete replication within 
the rDNA has also been reported after Cdc14 depletion 
(Dulev et al. 2009). Fourth, condensin mutants also fail in 
resolving the rDNA (Freeman et al. 2000), and expression 
of an exogenous Topoisomerase II can overcome this defect 

Fig. 1   The structure and consequences of the chromosome XII right-
arm anaphase bridge (cXIIr-AB) seen in cdc14-1 haploid cells. Sis-
ter chromatids for chromosome XII are depicted in light and dark 
blue. Centromeres are black circles and the rDNA array is in green 
for both sisters. The cXIIr-AB comprises centromere-to-telomere 
partly unzipped sister chromatids with the rDNA being the source of 
non-resolution. The cXIIr-AB is present at the cdc14-1 late anaphase 
block (upper left dumbbell cell). Release from the block leads to the 
breakage of the cXIIr-AB in a subpopulation of cells, leading to two 
daughter cells with distinct cXII content (upper center dumbbell cell). 

Daughter cell number one (DC1) will carry the acentric fragment of 
the broken sister chromatid together with the intact sister (yellow star 
the DSB is suitable to be repaired by BIR). Daughter cell number two 
(DC2) will carry the remaining centromere-containing broken sister 
(red star the DSB is not suitable to be repaired by BIR). DC2 will die 
shortly after the cXIIr-AB breakage since it lacks important genetic 
information present in the rDNA-to-telomere cXIIr region. Our data 
suggest that DC1 will survive genetically unchanged, ridding itself of 
the acentric fragment (lower cells)
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(D’Ambrosio et al. 2008). Both, catenations and unfinished 
replication can physically prevent resolution of sister chro-
matids, and they have been shown to lead to ABs (Holm 
et al. 1985; Torres-Rosell et al. 2007; Germann et al. 2014). 
In addition, other DNA-mediated post-replication linkages 
such as DNA repair Joint Molecules (JMs) might preclude 
sister chromatid resolution. Of note, the rDNA is a hotspot 
for JMs due to the presence of naturally occurring replica-
tion fork blocks (RFB) and the rDNA high transcription 
rates. In putative agreement with a role of JMs in prevent-
ing Cdc14-mediated rDNA resolution, we showed some 
years ago that deletion of FOB1, the gene that encodes 
for the RFB determinant, worsened rDNA segregation 
in cdc14-1 (Machín et  al. 2006). The absence of Fob1 
makes replication and transcription collide, which would 
in theory increase the frequency of both catenations and 
JMs (reviewed in Bermejo et al. 2012; Aguilera and Gail-
lard 2014), although the latter counter-intuitively seems to 
depend on the presence of Fob1 as well (Kobayashi and 
Horiuchi 1996). Besides this, we and others have recently 
shown that Cdc14 targets one important JM resolution 
endonuclease, Yen1, to the nucleus in a FEAR-dependent 
manner (Eissler et  al. 2014; Blanco et  al. 2014; García-
Luis et  al. 2014). Likewise, we have also demonstrated 
recently that unresolved JMs at the rDNA form an AB 
similar to that seen in cdc14-1 (García-Luis and Machín 
2014). Despite all these indications, it seems unlikely that 
JMs are behind the lack of rDNA resolution in the cdc14-1 
block; we only observed JM-related cXIIr ABs in yen1Δ 
when another JM-resolving endonuclease, Mus81-Mms4, 
is absent. Moreover, the cXIIr-AB levels in yen1Δ mms4Δ 
are comparable to cdc14-1 only when cells concomitantly 
suffer from exogenous replication stress (García-Luis and 
Machín 2014).

A major breakthrough in the understanding on the role 
of Cdc14 in the resolution and segregation of cXIIr was the 
discovery of the in  vitro and in  vivo capability of Cdc14 
to inhibit RNA polymerase I (Machín et al. 2006; Tomson 
et al. 2006; Clemente-Blanco et al. 2009), and that this step 
was needed to load condensin onto the rDNA (Clemente-
Blanco et al. 2009). Once loaded onto the rDNA, condensin 
will compact the array and, together with Topoisomerase II, 
remove catenations and/or finish replication (Guacci et al. 
1994; Freeman et al. 2000; D’Amours et al. 2004; Sullivan 
et  al. 2004; Wang et  al. 2004; Machín et  al. 2006; Dulev 
et al. 2009).

Finally, one of the most obvious causes that might 
explain sister chromatid resolution failure, i.e., incomplete 
removal of the cohesin complex, was the first to be ruled 
out (D’Amours et  al. 2004; Sullivan et  al. 2004). Never-
theless, a few years ago it was shown that some cohesins 
escape separase action on yeast chromosomes arms and 
that condensin helps removing them (Renshaw et al. 2010). 

Thus, it is still possible that cohesin keeps the cXIIr-AB in 
the cdc14-1 block after all.

Without Cdc14 the right arm of chromosome XII 
forms an anaphase bridge: the consequences

An interesting result we reported in 2006 was that lowering 
the temperature back to permissive conditions (25 °C) once 
the cells are blocked at the cdc14-1 arrest (37 °C) provided 
enough Cdc14 activity to repositioning the SPBs, elongat-
ing the spindle, and allowing exit from mitosis (Machín 
et al. 2006). However, the re-entry into the cell cycle occurs 
with around 50  % of cells failing to properly resolve the 
cXIIr-AB. This failure is not because the stretched cXIIr-
AB breaks apart. We have not found evidence for such 
breaks at the time of the cdc14-1 block by pulse-field gel 
electrophoresis (PFGE) (Quevedo et  al. 2012). Further-
more, breakage of the bridge in anaphase, while CDK is 
still high, was expected to elicit a DNA damage response 
that we did not see (Quevedo et al. 2012). We hypothesize 
instead that the sister chromatid linkages that maintain the 
cXIIr-AB become irresolvable in late anaphase because (1) 
they change their physical structure, (2) concentrate on spe-
cific regions until they sterically suppress the action Cdc14, 
condensin and/or Top2, or (3) migrate towards new loca-
tions where these resolving factors do not normally oper-
ate. In support of this latter scenario, we observed that the 
absence of Fob1, which binds exclusively to the rDNA, led 
to failed resolution of the cXIIr telomere after the cdc14-1 
release, but the rDNA still got fully resolved in 50  % of 
the cells (Machín et  al. 2006). In other words, the extra 
linkages that arose at the rDNA by the absence of Fob1 
migrated towards the telomere upon Cdc14 activation.

Irrespective of the causes behind the maintenance of 
the cXIIr-AB after the cdc14-1 release, we noticed that 
this situation could be exploited to address the conse-
quences of this novel cXIIr-AB for the immediate progeny. 
Thus, we reported in 2012 that the cXIIr-AB is severed 
as cytokinesis seemed to proceed to completion, giving 
rise to two daughter cells with different genome contents 
(Quevedo et al. 2012). Of note, the severing of the bridge 
in haploids produces two one-ended Double-Strand Breaks 
(DSBs), one in each daughter cell (Fig.  1). Interestingly, 
both daughters trigger the Rad9-dependent DNA damage 
checkpoint in the next S-phase, not earlier on in G1, and 
try to repair the one-ended DSBs through the homologous 
recombination (HR) pathway. This happens in both daugh-
ters despite one of them is to become unviable as it has lost 
essential genetic information (Fig.  1). The other daughter 
cell, which carries an intact copy of cXII, often survives. 
It is still unclear if genetic rearrangements arise during its 
recovery, but preliminary data on a few instances suggest 
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that the haploid surviving cells get rid of the acentric bro-
ken piece of the second chromatid rather than either trans-
locating it to another chromosome or becoming disomic 
for cXII by copying the rest of the missing sister through 
break-induced replication (BIR) (Fig. 1).

The limitations of haploids to assess the putative 
genomic rearrangements that followed the severing of 
the cXIIr-AB prompted us to recently study this phe-
nomenon in diploids. Importantly, diploid cells also form 
the cXIIr-AB, although the failure to timely resolve the 
bridge after the cdc14-1 release is even worse than in hap-
loids (Quevedo et  al. 2015). Also striking is the fact that 

the viability is even lower despite the existence of addi-
tional templates for repair (the chromatids from the other 
homolog) (Fig. 2). Single Nucleotide Polymorphism (SNP) 
microarray studies in a highly heterozygous hybrid cdc14-
1/cdc14-1 strain showed that cXII is frequently reorganized 
and Loss Of Heterozygosity (LOH) events, trisomies and 
monosomies were often found in surviving colonies. Most 
of these genetic rearrangements fit well within the predic-
tions of models to deal with the broken cXIIr-AB (Fig. 2). 
It was surprising, though, that chromosomes other than 
cXII were often rearranged since anaphase bridges involv-
ing other chromosomes were less expected. There are many 

A B C

Fig. 2   Putative outcomes in diploid cells of the breakage and repair 
of the chromosome XII right-arm anaphase bridge (cXIIr-AB). 
Homologs for chromosome XII are colored in red and blue. The 
rDNA is in green, black circles are centromeres and yellow and red 
stars are one-ended DSBs once the cXIIr-AB is severed by cytoki-
nesis. DC1 and DC2 stand for daughter cell one and two (we prefer 
to use this terminology since the broken pieces of cXIIr-AB seem 
to segregate randomly between the mother and the daughter cells). 
Numbered gray arrows, different mechanisms whereby daughter cells 
deal with the broken cXII. a Just one cXII homolog is affected by the 
cXIIr-AB. DC1 receives the intact sister chromatid for that homolog 
and the acentric piece of the second sister. DC2 gets the remaining 
centromere-containing fragment. DC1 might deal with the DSB by 
getting rid of the acentric bit (1). This would be the ideal solution as 
DC1 will stay unchanged; i.e., disomic and heterozygous. DC1 might 
also repair the one-ended DSB through BIR and become trisomic (2 
or 3). If BIR takes place with the intact sister (sc-BIR), DC1 would 
be trisomic without LOH (2). If BIR uses the homolog as template 
(hc-BIR) a terminal LOH would be present in the extra cXII (3). DC2 
has two choices: An hc-BIR that would result in a terminal LOH 
event with retention of the euploid chromosome number (4) or, else, 
the loss of the broken sister leading to a cXII monosomy (5). b Both 
homologs form a cXIIr-AB. Upon the bridge breakage, DC1 gets 

both intact sister chromatids and both acentric fragments. DC2 just 
gets the two centric fragments and thus loses essential genetic infor-
mation to proliferate. DC1 can progress further if it manages to get 
rid of both acentric broken fragments (6). Again, this situation would 
be ideal since it assures an intact euploid genome. Alternatively, DC1 
can get rid of just one acentric fragment and use the other one for 
BIR, leading to a trisomy (7). The trisomy can come with an associ-
ated LOH (7) or not (like arrow 2 in panel a) depending on whether 
hc-BIR or sc-BIR takes place. If there is BIR involving both acen-
tric fragments, tetrasomy will be observed. Multiple rearrangements 
are possible in terms of associated terminal LOHs depending on the 
hc-BIR/sc-BIR combinations (8, 9 and others not depicted). c Both 
homologs form a cXIIr-AB. Upon the bridge breakage, each DC gets 
one intact sister chromatid, the entangled acentric fragment of the 
other sister, and the centromere-containing fragment of the broken 
sister from the other homolog. Since DSBs are expected at the repeti-
tive rDNA, Single Strand Annealing (SSA) between the acentric and 
the centromere-containing fragments seems the straightforward solu-
tion. This would lead to a terminal LOH event with retention of the 
euploid chromosome number (11, 13). A similar outcome will take 
place if both DSBs are repaired through the canonical HR pathway. 
BIR-based solutions for DC1 and DC2 would lead to trisomies with 
or without LOH as described above (12, 14)
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putative causes for these extra rearrangements and we dis-
cussed them in detail in the recent manuscript (Quevedo 
et  al. 2015). In addition to the LOH events on chromo-
somes other than XII, we observed ploidy alterations. Inter-
estingly, trisomies for small chromosomes were among the 
most frequent genetic changes.

Concluding remarks and future perspectives

The study of Cdc14 has provided important insights into 
the control of the cell cycle and the counterbalance of CDK 
activities. Of the many phenotypes observed in cells tran-
siently deficient for Cdc14, the formation of an anaphase 
bridge that comprises partly resolved sister chromatids has 
unexpectedly provided a model to study the consequences 
for the progeny of this aberrant situation (Machín et  al. 
2005, 2006; Quevedo et al. 2012, 2015). Anaphase bridges 
of this nature have long been suspected, and there seems 
to be a connection with cancer and other human diseases. 
It remains to be determined if Cdc14 homologs in humans 
(up to three) play roles in preventing their occurrence. In 
this respect, hCdc14A deregulation has been shown to 
cause chromosome segregation problems, although prob-
ably through its role in centrosome dynamics (Kaiser et al. 
2002; Mailand et al. 2002). Also, it should be tested if the 
main CDK-counteracting phosphatases in humans, PP1 and 
PP2A, are the ones that play some role instead as it sug-
gests the PP2A regulation on centromeric cohesion (Tang 
et al. 2006). In yeast, this anaphase bridge model should be 
expanded to other situations that do not depend on Cdc14. 
The new tools to make chimeric giant chromosomes could 
be a good approach, although strategies to make such chro-
mosomes conditionally need to be developed. As for yeast 
Cdc14, the new results in diploid cells raised new questions 
about the events triggered by Cdc14 in anaphase that pre-
vent the accumulation of trisomies (and other genetic insta-
bilities) in the progeny. We foresee exciting years ahead 
in the understanding of how anaphase bridges reshape the 
genome.
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