Skip to main content
Log in

Carnitine and carnitine acetyltransferases in the yeast Saccharomyces cerevisiae: a role for carnitine in stress protection

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

To date, the only reported metabolic and physiological roles for carnitine in Saccharomyces cerevisiae are related to the activity of the carnitine shuttle. In yeast, the shuttle transfers peroxisomal activated acetyl-residues to the mitochondria. However, acetyl-CoA can also be metabolised by the glyoxylate cycle to form succinate. The two pathways, therefore, provide a metabolic bypass for each other, and carnitine-dependent phenotypes have only been described in strains with non-functional peroxisomal citrate synthase, Cit2p. Here, we present evidence for a role of carnitine in stress protection that is independent of CIT2 and of the carnitine shuttle. Data show that carnitine improves growth during oxidative stress and in the presence of weak organic acids in wt and in CAT deletion strains. Our data also show that strains with single, double and triple deletions of the three CAT genes generally present identical phenotypes, but that the deletion of CAT2 decreases survival during oxidative stress in a carnitine-independent manner. Overexpression of single CAT genes does not lead to cross-complementation, suggesting a highly specific metabolic role for each enzyme. The data suggest that carnitine protects cells from oxidative and organic acid stress, while CAT2 contributes to the response to oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG (1994) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Barros MH, Bandy B, Tahara EB, Kowaltowski AJ (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases lifespan in Saccharomyces cerevisiae. J Biol Chem 279:49883–49888

    Article  PubMed  CAS  Google Scholar 

  • Berben G, Dumont J, Gilliquet V, Bolle PA, Hilger F (1991) The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae. Yeast 7:475–477

    Article  PubMed  CAS  Google Scholar 

  • Bieber LL (1988) Carnitine. Annual review of biochemistry 57:261–283

    Article  PubMed  CAS  Google Scholar 

  • Calabrese V, Giuffrida Stella AM, Calvani M, Butterfield DA (2006) Acetylcarnitine and cellular stress response: roles in nutritional redox homeostasis and regulation of longevity genes. J Nutr Biochem 17:73–88

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    Article  PubMed  CAS  Google Scholar 

  • Grey M, Brendel M (1994) Overexpression of the SNQ3/YAP1 gene confers hyperresistance to nitrosoguanidine in Saccharomyces cerevisiae via aglutathione-independent mechanism. Curr Genet 25:469–471

    Article  PubMed  CAS  Google Scholar 

  • Hussain M, Lenard J (1991) Characterisation of PDR4, a Saccharomyces cerevisiae gene that confers pleiotropic drug resistance in high copy number. Gene 101:149–152

    Article  PubMed  CAS  Google Scholar 

  • Jamieson DJ (1992) Saccharomyces cerevisiae has distinct responses to both hydrogen peroxide and menadione. J Bacteriol 174:6678–6681

    PubMed  CAS  Google Scholar 

  • Kawahata M, Masaki K, Fujii T, lefuji H (2006) Yeast genes involved in response to lactic and acetic: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6:924–936

    Article  PubMed  CAS  Google Scholar 

  • Kispal G, Sumegi B, Dietmeier K, Bock I, Gajdos G, Tomcsanyi T, Sandor A (1993) Cloning and sequencing of a cDNA encoding Saccharomyces cerevisiae carnitine acetyltransferase. Use of the cDNA in gene disruption studies. J Biol Chem 268:1824–1829

    PubMed  CAS  Google Scholar 

  • Kunau WH, Dommes V, Schulz H (1995) Beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog Lipid Res 34:267–342

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Lee B, Shin D, Kwak S, Bahk JD, Lim CO, Yun D (2002) Carnitine uptake by AGP2 in yeast Saccharomyces cerevisiae is dependent on Hog1 MAP kinase pathway. Mol Cells 13:407–412

    PubMed  CAS  Google Scholar 

  • Leenders F, Tesdorpf JG, Markus M, Engel T, Seedorf U, Adamski J (1996) Porcine 80-kDa protein reveals intrinsic 17 beta-hydroxysteroid dehydrogenase, fatty acyl-CoA-hydratase/dehydrogenase, and sterol transfer activities. J Biol Chem 271:5438–5442

    Article  PubMed  CAS  Google Scholar 

  • Maiorella B, Blanch HW, Wilke CR (1983) By-product inhibition effects on ethanolic fermentation Saccharomyces cerevisiae. Biotech Bioeng 25:103–121

    Article  CAS  Google Scholar 

  • Narendranath NV, Thomas KC, Ingledew WM (2001) Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in minimal medium. J Ind Microbiol Biotechnol 26:171–177

    Article  PubMed  CAS  Google Scholar 

  • Palmieri L, Lasorsa FM, De-Palma A, Palmieri F, Runswick MJ, Walker JE (1997) Identification of the yeast ACR1 gene product as a succinate–fumarate transporter essential for growth on ethanol or acetate. FEBS Lett 417:114–118

    Article  PubMed  CAS  Google Scholar 

  • Piper P, Calderon CO, Hatzixanthis K, Mollapour M (2001) Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147:2635–2642

    PubMed  CAS  Google Scholar 

  • Ramsey RR, Zammit VA (2004) Carnitine acetyltransferases and their influence on CoA pools and disease. Mol Aspects Med 25:475–493

    Article  CAS  Google Scholar 

  • Reddy JK, Mannaerts GP (1994) Peroxisomal lipid metabolism. Annu Rev Nutr 14:343–370

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schmalix W, Bandlow W (1993) The ethanol-inducible YAT1 gene from yeast encodes a presumptive mitochondrial outer carnitine acetyltransferase. J Biol Chem 268:27428–27439

    PubMed  CAS  Google Scholar 

  • Schnell N, Krems B, Entian KD (1992) The PAR1(YAP1/SNQ3) gene of Saccharomyces cerevisiae, a c-Jun homologue, is involved in oxygen metabolism. Curr Genet 21:269–273

    Article  PubMed  CAS  Google Scholar 

  • Schulz H (1991) Beta oxidation of fatty acids. Biochim Biophys Acta 1081:109–120

    PubMed  CAS  Google Scholar 

  • Steiber A, Kerner J, Hoppel CL (2004) Carnitine: a nutritional, biosynthetic and functional perspective. Mol Aspects Med 25:455–473

    Article  PubMed  CAS  Google Scholar 

  • Stemple CJ, Davis MA, Hynes MJ (1998) The facC gene of Aspergillus nidulans encodes an acetate-inducible carnitine acetyltransferase. J Bacteriol 180:6242–6251

    PubMed  CAS  Google Scholar 

  • Swiegers JH, Dippenaar N, Pretorius IS, Bauer FF (2001) Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltransferases are essential in a carnitine-dependent strain. Yeast 18:585–595

    Article  PubMed  CAS  Google Scholar 

  • Van Roermund CW, Elgersma Y, Singh N, Wanders RJ, Tabak HF (1995) The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14:3480–3486

    PubMed  Google Scholar 

  • Volschenk H, Viljoen M, Grobler J, Petzold B, Bauer F, Subden RE, Young RA, Lonvaud A, Denayrolles M, van-Vuuren HJ (1997) Engineering pathways for malate degradation in Saccharomyces cerevisiae. Nat Biotechnol 15:253–257

    Article  PubMed  CAS  Google Scholar 

  • Wanders RJ, Schutgens RB, Barth PG (1995) Peroxisomal disorders: a review. J Neuropathol Exp Neurol 54:726–739

    Article  PubMed  CAS  Google Scholar 

  • Westermann B, Neupert W (2000) Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16:1421–1427

    Article  PubMed  CAS  Google Scholar 

  • Winston F, Dollard C, Ricupero-Hovasse SL (1995) Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the South African Medical Research Council, the National Research Foundation of South Africa, and Winetech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian F. Bauer.

Additional information

Communicated by S. Hohmann.

Jaco Franken and Sven Kroppenstedt (in memoriam) contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franken, J., Kroppenstedt, S., Swiegers, J.H. et al. Carnitine and carnitine acetyltransferases in the yeast Saccharomyces cerevisiae: a role for carnitine in stress protection. Curr Genet 53, 347–360 (2008). https://doi.org/10.1007/s00294-008-0191-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-008-0191-0

Keywords

Navigation