Skip to main content
Log in

Mutationsprofile von Tumoren jenseits von Organ- und Gewebespezifität

Implikationen für Diagnostik und klinisches Studiendesign

Mutational tumor profiles beyond organ and tissue specificity

Implications for diagnostics and clinical study design

  • Hauptreferate
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Diagnostik und Therapie von Krebserkrankungen basieren auf dem Paradigma, dass maligne Tumoren organ- und gewebespezifisch sind. Aus Next-Generation-Sequenzierungsprojekten seit Kurzem verfügbare umfassende Daten über die Mutationsprofile von Tumoren ermöglichen es zu untersuchen, ob sich die anatomische Tumorklassifikation auf Ebene der genetischen Veränderungen von Tumoren widerspiegelt. In der vorliegenden Arbeit präsentieren wir Ergebnisse einer Analyse von 4796 Tumoren aus 14 Tumorentitäten der TCGA-Datenbank (The Cancer Genome Atlas), die zeigen, dass durchschnittlich 43 % der Tumoren einer Entität genetisch ähnlicher sind zu Tumoren eines anderen anatomischen Ursprungs und entsprechend in nur 57 % der Fälle der genetische mit dem anatomischen Tumortyp übereinstimmt. Wir diskutieren die Bedeutung der komplexen Mutationsprofile und Ähnlichkeitsmuster für Diagnostik und klinisches Studiendesign und erklären, warum die umfassenden genomischen Daten durch funktionell-proteomische Analysen ergänzt werden sollten.

Abstract

The diagnostics and therapy of malignant tumors are based on the paradigm that cancer is an organ and tissue-specific disease. Comprehensive tumor mutation profiling data that has recently become available from next generation sequencing projects has made it possible to analyze whether the established anatomical tumor classification is reflected on the genetic level. Here, we review the results of a study on 4796 tumors of 14 major cancer types from the cancer genome atlas (TCGA) database, that on average 43 % of tumors of a particular type are genetically more similar to tumors of a different anatomical origin and that the genetic tumor type corresponds to the anatomical type in only 57 % of the cases. Furthermore, we discuss the implications of the complex mutation profiles and similarity patterns across cancers for diagnostics and clinical study design and explain why the comprehensive genomic data should be complemented by functional proteomic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Sobin LH (2001) TNM: principles, history, and relation to other prognostic factors. Cancer 91:1589–1592

    Article  CAS  PubMed  Google Scholar 

  2. Klein CA (2013) Selection and adaptation during metastatic cancer progression. Nature 501:365–372. doi:10.1038/nature12628

    Article  CAS  PubMed  Google Scholar 

  3. Garraway LA, Verweij J, Ballman KV (2013) Precision oncology: an overview. J Clin Oncol 31:1803–1805. doi:10.1200/JCO.2013.49.4799

    Article  PubMed  Google Scholar 

  4. McDermott U, Downing JR, Stratton MR (2011) Genomics and the continuum of cancer care. N Engl J Med 364:340–350. doi:10.1056/NEJMra0907178

    Article  CAS  PubMed  Google Scholar 

  5. MacConaill LE (2013) Existing and emerging technologies for tumor genomic profiling. J Clin Oncol 31:1815–1824. doi:10.1200/JCO.2012.46.5948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dienstmann R, Rodon J, Barretina J, Tabernero J (2013) Genomic medicine frontier in human solid tumors: prospects and challenges. J Clin Oncol 31:1874–1884. doi:10.1200/JCO.2012.45.2268

    Article  PubMed  Google Scholar 

  7. Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153:17–37. doi:10.1016/j.cell.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  8. Watson IR, Takahashi K, Futreal PA, Chin L (2013) Emerging patterns of somatic mutations in cancer. Nat Rev Genet 14(10):703–718. doi:10.1038/nrg3539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Heim D et al (2014) Cancer beyond organ and tissue specificity: next-generation-sequencing gene mutation data reveal complex genetic similarities across major cancers. Int J Cancer. doi:10.1002/ijc.28882

  10. Klauschen F, Andreef M, Keilholz U et al (2014) The combinatorial complexity of cancer precision medicine. Oncoscience 1:504–509

    Google Scholar 

  11. Ciriello G et al (2013) Emerging landscape of oncogenic signatures across human cancers. Nat Genet 45:1127–1133. doi:10.1038/ng.2762

    Article  CAS  PubMed  Google Scholar 

  12. Prahallad A et al (2012) Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483:100–103. doi:10.1038/nature10868

    Article  CAS  PubMed  Google Scholar 

  13. Baselga J (2013) Bringing precision medicine to the clinic: from genomic profiling to the power of clinical observation. Ann Oncol 24:1956–1957. doi:10.1093/annonc/mdt273

    Article  PubMed  Google Scholar 

  14. Kim ES et al (2011) The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov 1:44–53. doi:10.1158/2159-8274.CD-10-0010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Mills GB (2012) An emerging toolkit for targeted cancer therapies. Genome Res 22:177–182. doi:10.1101/gr.136044.111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Willyard C (2013) ‚Basket studies‘ will hold intricate data for cancer drug approvals. Nat Med 19:655

    Article  CAS  PubMed  Google Scholar 

  17. Shaw AT et al (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368:2385–2394. doi:10.1056/NEJMoa1214886

    Article  CAS  PubMed  Google Scholar 

  18. Soda M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566. doi:10.1038/nature05945

    Article  CAS  PubMed  Google Scholar 

  19. Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525. doi:10.1038/nature11404

  20. Zhang B et al (2014) Proteogenomic characterization of human colon and rectal cancer. Nature. doi:10.1038/nature13438

  21. Wilhelm M et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509:582–587. doi:10.1038/nature13319

    Article  CAS  PubMed  Google Scholar 

  22. Cancer Genome Atlas Research Network (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550. doi:10.1038/nature13385

    Article  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. F. Klauschen gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Klauschen.

Additional information

The supplement this article is part of is not sponsored by the industry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klauschen, F. Mutationsprofile von Tumoren jenseits von Organ- und Gewebespezifität. Pathologe 35 (Suppl 2), 277–280 (2014). https://doi.org/10.1007/s00292-014-2027-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-014-2027-7

Schlüsselwörter

Keywords

Navigation