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Abstract

This paper studies the problem of heterogeneous electric vehicles, fast chargers, and
synchronized jobs that have time windows in home healthcare routing and schedul-
ing. We consider a problem that aims to establish daily routes and schedules for
healthcare nurses to provide a variety of services to patients located in a scattered
area. Each nurse should be assigned to an electric vehicle (EV) from a heterogene-
ous fleet of EVs to perform the assigned jobs within working hours. We consider
three different types of EVs in terms of battery capacity and energy consumption.
We aim to minimize the total cost of energy consumption, fixed nurse cost, and costs
arising from the patients that cannot be served within the working day. We model
the problem as a mixed integer programming formulation. We develop a hybrid
metaheuristic based on a greedy random adaptive search procedure heuristic, to gen-
erate good quality initial solutions quickly, and an adaptive variable neighborhood
search algorithm to generate high quality solutions in reasonable time. The hybrid
metaheuristic employs a set of new advanced efficient procedures designed to han-
dle the complex structure of the problem. Through extensive computational experi-
ments, the performance of the mathematical model and the hybrid metaheuristic are
evaluated. We conduct analyses on the robustness of the metaheuristic and the per-
formance contribution of employing adaptive probabilities. We analyze the impact
of problem parameters such as competency requirements, job duration, and synchro-
nized jobs.
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1 Introduction

Home healthcare services (HHC), also known as in-home care, are an important
element of primary care that offers professional service to patients at home in
their familiar environment. A wide spectrum of services can be offered as home
healthcare such as medical, therapeutical, and non-medical services. However,
the specifications and the range of services differ from one country to another
due to demographic tendencies. Other important factors are how efficiently the
government or private healthcare management system works and how the HHC is
prioritized (WHO 2012).

Universal health coverage (UHC) means that all people have access to health
services when and where they need them without financial hardship. It encom-
passes the entire spectrum of essential health services, from health promotion to
prevention, treatment, rehabilitation, and palliative care (WHO 2022). Therefore,
HHC is a valuable asset for the UHC. Although HHC is not created for a specific
target group, it is observed that the elderly uses HHC more. The convenience,
effectiveness, and financial aspects of the service are the primary reasons why
HHC is more beneficial for the elderly. Post-hospital care may also necessitate
the assistance of a professional. In such cases, visiting a hospital for an elderly
person is more difficult, requires travel time, and results in a higher cost. On the
other hand, HHC assists the patient in receiving treatment in the comfort of her/
his own home at a lower cost. The world’s elderly population is expected to dou-
ble from 2019 to 2050, reaching nearly 1.5 billion (UN 2019). The growing rate
of chronic diseases as well as inadequate room capacity of hospitals, and elderly
housing make HHC more demanded, necessary, and functional.

In addition, with COVID-19, countries’ healthcare systems were tested. Unfor-
tunately, due to the limited capacity in hospitalization and the limited number
of healthcare professionals, many patients were unable to receive the necessary
treatment on time. Since hospitals prioritized COVID-19 patients due to their
urgency, the limited capacity of hospitals and healthcare professionals had a dra-
matic effect on patients with other diseases. For this reason, the necessary pre-
cautions should be taken for the unforeseeable challenges in the healthcare sector
in order to increase the well being of the community, especially the elderly. In
support of these, the development of HHC services is considered a sustainable
solution (World Economic Forum 2020).

The idea behind HHC is to provide social benefits and better healthcare for
patients. In practice, it requires establishing daily routes and schedules of health-
care professionals, resulting in a routing and scheduling problem, which has been
discussed in many studies in the literature. The home healthcare routing and
scheduling problem (HHCRSP) is an extension of the vehicle routing problem
(VRP) in the HHC sector.

In this study, we deal with the routing and scheduling problem of home health
professionals with the use of electric vehicles (EVs). Although the scheduling
and routing of the healthcare nurses with fossil fuel cars is a widely studied prob-
lem in the literature since 1990s (Begur et al. 1997), we examined different types
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of EVs in this particular case. The world is shifting from fossil fuels to elec-
tricity in transportation due to environmental issues, energy efficiency, cost, and
performance benefits of EVs (IEA 2019). The process of integration of EVs has
already begun in many countries with strict policies and subsidies, especially in
European Union countries. We will possibly witness more implications and solu-
tions regarding EVs in transportation in the future. In the last five years, numer-
ous companies have designed and produced innovative EVs. This presents a dis-
tinct opportunity, especially for HHC providers, to diversify their vehicle fleet
and establish a heterogeneous fleet strategy for daily operations. In light of these
new developments, this study not only has an empirical function but also provides
an opportunity for future solutions to EV-related issues.

Our paper can lead to better outcomes in three main areas. First, home healthcare
has a social impact, and therefore, development of HHC services will result in equal
access to support and treatment in communities regardless of their status, gender, or
age. Second, this approach will overcome some of the limitations in HHC, such as
capacity constraints and increasing demand, to result in a sustainable HHC. Lastly,
with the usage of different types of EVs, the concept becomes more eco-friendly for
each party, i.e., service providers, governments, and patients.

1.1 Areview of the literature

In the classical VRP, the goal is to create a schedule for a set number of vehicles to
serve customers while minimizing the associated costs. As the focus of the VRP is
the delivery of an asset or a service by workers who need routing, the problem is
found to be applicable for many different sectors, such as the routing of mobile med-
ical facilities (Yiicel et al. 2020) and the delivery of mobile health services using
mobile clinics (Salman et al. 2021). Although HHC services have been adopted
many years ago and have been an important part of the modern primary healthcare
system (Murkofsky and Alston 2009), the first VRP for HHC nurses in the literature
was studied by Begur et al. (1997).

In parallel with the growth in the utilization of HHC services, HHCRSP has been
progressively studied with different objective functions and constraints that aim to
reflect real-world conditions. While minimization of solely travel time (Begur et al.
1997), distance (Akjiratikarl et al. 2007) and cost (Eveborn et al. 2006) make a
basis for the problem, additional objectives such as waiting time, overtime, prefer-
ence, workload balance have also been studied (Hiermann et al. 2015; Mankowska
et al. 2014). Many types of heuristics have been used in the literature. Heuristics
include memetic algorithm (Hiermann et al. 2015), swarm optimization algorithm
(Akjiratikarl et al. 2007), variable neighborhood search (VNS) (Mankowska et al.
2014), MIP-based decomposition (Yadav and Tanksale 2022), simulated annealing
(Mankowska et al. 2014; Hiermann et al. 2015), and adaptive large neighborhood
search (Kog et al. 2019).

The HHCRSP receives significant attention from the OR community as it is
directly related to practice. Many different variants of this problem have recently
been studied. Tanoumand and Unliiyurt (2021) developed an exact algorithm for the
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resource constrained HHCRSP. Li et al. (2021) introduced the HHCRSP consider-
ing outpatient services and developed a hybrid genetic algorithm. Savager and Kara
(2022) studied the mobile healthcare services in rural areas and modeled the prob-
lem as a periodic location-routing problem. Akbari et al. (2023) addressed the mini-
mizing total weighted latency in the HHCRSP with patient prioritization. The reader
is referred to Fikar and Hirsch (2017), Grieco et al. (2021), and Euchi et al. (2022)
for a detailed review of HHCRSP and its variants.

The electric (E-VRP) considers the limited range, battery capacities, and charg-
ing times of EVs along with the decision of available charging options (Schneider
et al. 2014; Kucukoglu et al. 2021). While the goal of the problem remains the same,
vehicles consume electricity as an alternative to fossil fuels. Due to climate change
and the environmental effects of the logistics sector, interest in this line of studies
has progressively increased (Bektas et al. 2019). The problem has received signifi-
cant interest in the literature. Kog et al. (2019) studied the E-VRP with a nonlinear
charging function that considers joint investments in charging stations (CSs). Lee
(2021) proposed a branch-and-price and column generation algorithm to solve the
nonlinear charging function version of the problem. Keskin et al. (2019) studied the
extension with additional constraints, including limited capacity and waiting time at
CSs. Donmez et al. (2022) studied the mixed fleet VRP with partial recharging by
multiple chargers.

In terms of the HHCRSP, EVs have been considered in several articles. Erdem
and Kog (2019) studied the HHC and E-VRP with time windows that only consider
linear charging and a single type of CS, and developed a metaheuristic algorithm.
Erdem et al. (2022) studied the electric HHCRSP with time windows and fast charg-
ers, which considers a homogeneous EV fleet and three types of charging technolo-
gies, normal, fast and super-fast. The authors developed an adaptive large neigh-
borhood search (ALNS) heuristic to solve the problem. Most recently, Yazir et al.
(2023) introduced the multi-period HHCRSP with EVs and used ALNS to solve the
problem. The problem aims to construct weekly routes for healthcare nurses consid-
ering homogeneous vehicles and three types of charging technologies.

Recognizing the inherent diversity of the fleet of vehicles used by healthcare
providers and their imperative to synchronize service requests for operational effi-
ciency, our problem differs from the aforementioned studies by incorporating a het-
erogeneous EV fleet and considering synchronized service requests. In scenarios
that require synchronized service, specific job requirements can require simultane-
ous execution by two different nurses, leading to interdependent routes for nurses.
Altering one route affects the others and could potentially render them infeasible
(Afifi et al. 2016; Bazirha et al. 2023). Furthermore, it is important to note that the
problem in its current form cannot be effectively addressed using the solution meth-
odologies proposed in previous studies.

1.2 Scientific contributions and structure of the paper

In the context of the HHCRSP, this paper studies the problem of heterogene-
ous electric vehicles, fast chargers, synchronized jobs, and time windows. In most
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practical distribution scenarios, diverse fleets of vehicles are employed to meet the
demands of customers (Hoff et al. 2010; Kog et al. 2016). Similarly, in the HHC
services heterogeneous fleets provides an opportunity to construct minimum costly
routing plans. All of these problem components contribute to an increase in prob-
lem complexity, particularly the fleet mix decision. Although there is a large amount
of research on each part of the problem separately, there is no research that inves-
tigates the impact of all these aforementioned and practically widely used factors
integrated together. Our first contribution is to formally introduce and model this
new problem. Our second contribution is to develop a hybrid metaheuristic based on
greedy random adaptive search procedure (GRASP) algorithm to generate good ini-
tial solutions quickly and adaptive variable neighborhood search (AVNS) algorithm
that integrates several problem specific effective heuristic mechanisms to generate
high quality solutions in reasonable time. Our third contribution is to provide mana-
gerial insights by conducting extensive computational experiments to gain a deep
understanding of the interactions between the components of the problem such as
the impact of competency requirements, job duration, and synchronized jobs.

The remainder of this paper is organized as follows. Section 2 presents the prob-
lem definition, notation, and the mathematical formulation. Section 3 details the
hybrid metaheuristic algorithm. Section 4 presents the results of computational
experiments and analyses. The paper is concluded in Sect. 5.

2 Problem statement

The problem aims to determine the daily schedules and routes of the HHC nurses to
provide the necessary service to patients living in a scattered region. Each nurse is
assigned to an EV from an EV fleet to drive to patient homes. Therefore, the term
nurse and EV will be used interchangeably. The EV fleet is considered heterogene-
ous in terms of price, range, and energy consumption.

As the problem is defined on a geographical area and EVs have a limited range,
CSs must be visited if the EV battery is not enough to complete the correspond-
ing EV’s route. The CSs have only one type of charging technology, i.e., the fast-
charging option, which is the most common and preferred one for intraday charging
according to Erdem et al. (2022). The EVs can be partially charged at a CS. The
state of charge (SoC) should be tracked for each EV to maintain energy feasibility.
The EVs are assumed to start their schedule with fully charged batteries presuming
that they were charged the previous night. Within working hours, each nurse starts
and ends the shift at a hospital, which is referred to as the depot of the related nurse.
Overtime is not allowed.

Each patient service request has a predetermined service duration and a time
window for the service. The service duration depends on the estimated service time
prescribed/recommended by the doctor for the required service. The service request
of a patient corresponds to a job. Let J be the set of jobs, where a jobi € J has a
predetermined duration represented by d; and a time window denoted by [a;, b;]. If
an assigned nurse arrives at the job location early, then the nurse must wait until the
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start time of the predetermined time window, a;. If a job i € J cannot be completed
within its time window, a penalty cost aiP is incurred.

Each job requires a number of specific level competency types and can only be
served by the same or more qualified nurse for each competency type. Let N be the
set of nurses and U denote the types of competence. The competency level require-
ment of job i € J for competency type u € U is indicated by g;, and the competency
level of nurse n € N for competency type u € U is defined by ¢/ . Jobi € J can be
assigned to nurse n € N if only the nurse has the same or higher proficiency for each
competency type, i.e., g/ > g,, for eachu € U. Each nurse n € N has a daily fixed
cost denoted by af:' depending on her/his proficiency. Some patient service requests
may require more than one nurse resulting in multiple simultaneous jobs. For such
cases, a copy of the related job is created for each nurse required. Such copy jobs
i,j € J are paired and nurses assigned to these paired jobs should be present at the
home of the patient simultaneously to provide the required service. The binary
parameter p;; indicates whether jobs i,j € J are paired and should be synchronized
or not. The working time window of nurse n € N is denoted by [a/, b’ ].

Let K be the set of EVs. The starting depot and the ending depot locations of EV
k € K are represented by 0, and n,, respectively. Each nurse begins and ends shift
from the depot of the vehicle to which nurse is assigned. The battery capacity and
the energy consumption rate of EV k € K are denoted by Y, and c,, respectively.
Each CS has only fast chargers, and the recharging rate and unit energy cost of using
a fast charger are assumed to be the same for each CS, which are denoted by » and
aC, respectively. We create multiple copies of a CS to enable multiple visits of each
CS by the same vehicle. Let S be the set of CSs including the copy CSs.

The set of nodes including the jobs and the CSs is denoted by V, i.e.,V=JUS.
For an EV k € K; the set Vok includes the jobs, CSs, and the starting depot 0,
ie., Vo =V U {0}, and the set V, includes the jobs, CSs, and the ending depot

I

n, ie., V, =VU{n}. All nodes that can be visited by EV k € K, including
the starting depot 0, jobs, CSs, and ending depot n, are denoted as VOkynk’ i.e.,
Vok’nk = V U {Ok’ I’lk }.

The problem is defined in a complete directed graph G = (|J,x Vo, »A) where

Usex Vo, is the set of nodes and A = {(i,)) : i,j € Uex Vo, )} is the set of arcs.
Parameters sl‘,j and s; represent the distance and travel time of an arc (i,)) € A,
respectively.

The objective is to minimize the total cost of energy consumption, fixed nurse
cost, and costs arising from the patients that cannot be served within the work-
ing day. Binary variables are as follows. Let x;; be 1, if EV k € K travels on arc
(i,j) € A and 0, otherwise. Let z,, be 1, if nurse n € N is assigned to EV k € K and
0, otherwise. Let h; be 1, if a job j € J is served. The continuous variables are as fol-
lows. The State of Charge (SoC) of an EV k € K at the arrival time of node i € V;, ,,
is defined as y; and, the SoC of an EV at the departure time of node i € §'is g;. Let
t;, be the service starting time of a nurse using EV k € K for job i € J. Let w;, be
the charging duration of EV k € K at CSi € S. Let 0;, be the amount of recharged
energy at CS i € § for EV k € K. All the notation of the problem is presented in
Table 15 in the Appendix.
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An illustration of a solution for a problem instance having two nurses, four
jobs of four patients, two competency types, and one CS is shown in Fig. 1. The
job of Patient2 requires two nurses simultaneously. In the solution, Nurse-1 hav-
ing a level of 3 for both competency types is assigned to EV-1 and starts her/his
route from the hospital, visits Patientl first, the CS second, Patient2 third, and
returns back to the hospital. Nurse-2 having a level of 2 for both competency
types is assigned to EV-2 and starts her/his route from the hospital, visits Patient2
first, Patient3 s, Patient4 third, and returns back to the hospital. Note that Nurse-1
and Nurse-2 serve Patient2 at the same time. The arrival time of each EV to each
node and the SoC at the time of arrival are provided in Fig. 1.

2.1 Mathematical formulation

The mathematical model of the problem is formulated as follows:

Minimize Z Z Z a x”ksljck + Z Z O, 2 + Z aP(l —h) )

kek ZEVOA JEV, neN kek JjeJ
Subject to
=" D — ‘@ Sy > @
e 80 B2 N
Capacity : 26,8 kWh Nurse-1 Capacity : 26,8 kWh Nurse-2
WT: [0, 480] WT: [0, 480]
cL1:3 aL-1:2
cL-2:3 cL2:2
EV-1 Ev-2
Arrival Time: 432 Arrival Time: 300
SoC: 0 kWh Patient 2 SoC: 22 kWh
E TW: [300,350] E EV-2
Hospital CLR-1:1 Hospital 5 0o o 475
: CLR-2:2 . y
: Job Duration: 30m SoC:5 KWh
Synchronized Job
EV-1 EV-1
Arrival Time: 105 } Arrival Time: 300
SoC:22kWh i SoC: 20 kWh
S EV-1
P rvn Arcival Time: 180 EV-2 ArrivaIE ;/i;e-4zo E
atient . . - . Patient 3 220 patient 4
SoC: 13 kWh Arrival Time: 365 SoC: 10 kWh
A\ L I ([ RN | =) A\
TWé L[;Of,;sol cs TW: [350, 450] TW: [400, 480]
-1: CLR-1:2 CLR-1:2
ClR2:3 [ =) CLR-2:2 CLR-2:2
Job Duration: 45 m EV-1 Job Duration: 25 m Job Duration: 35 m

Charging Time: 38 m
Amount of Recharge: 7 kWh

CS: Charger Station

TW: Time Window of a Patient

CLR: Competency Level Requirement of a Patient
CL: Competency Level of a Nurse

SoC: State of Charge

Fig. 1 Illustration of a solution for a problem instance having two nurses, four patients, two competency
types and one CS
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> xp <l i€l )
keKjeV,lk JFL

Y xu <l ie€S kek

JEV,, JFi )
Zxokxjvkszznk kEK (4)
JjeJ neN
in,nk,k < z L k€K 5)
i€l neN

injk: ijik kGK,jGV (6)
i€V, =
a;znk <tyx k€EK.neN @)
tax < zub, k€K,neN 8)
aijiijIjk keK,jeJ ©)
i€V,
e <b Y xy keKjelT (10)

i€Vy,

g+ (s +dx <ty +b,(1—x3) neENKkeK,i€JU{OL}jEV, i#]
1D

ik T Wi Sty + (b, + V)1 = x) neN,keK,ieS,jeVnk,i;éj
(12)

Ty + 85X

Vik S ik =S e X+ Vil =x5) k€K, i€JU(O}JEV, i#] (13)

Vi S 8k = S e X + Vi1 =x53) kEKIE€S,JEV, i#] (14)
Y 28k XY, keK,ieS (15)

Yox =Y k€K (16)

8k —Yu =0y ke€K,i€eS (17)
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rwyp=o0y, keK,ieS (18)
Dta= Dty ij€Tip;=1 (19)
kek kek
Y Xy £ ) 2ud,, kEKjESucU 20)
i€Vy, neN
Zznksl nenN 1)
kek
Y zx<l kek 22)
neN
Y Y xp=h jETi#] 23)
keK i€V,
xi €{0,1} keK,ieVy,jeV, i#] (24)
zx €{0,1} k€eK,neN (25)
he (0,1} jeJ (26)
Ok Wi» 8 20 k€K, i€S 27)
Y20, 20 keK,ieV,,. (28)

The objective function (1) aims to minimize the total cost that comprises three
terms. The first term corresponds to the total travelling cost of EVs. The second
term refers to the total fixed cost of healthcare nurses utilized. The last term corre-
sponds to the penalty costs of jobs that are not served.

Constraints (2) ensure that each job is visited at most once. Constraints (3) guar-
antee that each CS copy is visited at most once by the same vehicle within the plan-
ning horizon. Constraints (4) and (5) keep track of departures and arrivals from and
to the depot for the utilized EVs, respectively. Constraints (6) guarantee the conser-
vation of flow for an EV and a node, i.e., if an EV arrives at a job or CS node, then it
should depart from that node. Constraints (7) and (8) ensure that an EV tour must be
completed within the daily working hours of the corresponding nurse. Constraints
(9) and (10) ensure that jobs are served within their time windows. Constraints (11)
and (12) calculate the node visit times considering travelling times between nodes,
service times of jobs, and charging times at CSs. Constraints (13) and (14) calculate
the SoC of an EV at the time of arrival of a node considering energy consumption

@ Springer



E. Cebeci et al.

during travelling. Constraints (15) define the limits of the SoC of an EV at the time
of departure from a CS node. Constraints (16) guarantee that each EV starts its tour
with full charge. Constraints (17) and (18) calculate the amount of energy charged
and the charging duration, respectively, for an EV that visits a CS. Constraints (19)
guarantee that paired jobs are served simultaneously. Constraints (20) ensure that a
job is assigned to an eligible nurse having sufficient level for each competency type.
Constraints (21) ensure that each nurse is assigned to at most one EV. Constraints
(22) ensure that each EV is assigned to at most one nurse. Constraints (23) identify
whether a job is served or not. Constraints (24)-(28) define the domains of decision
variables.

3 Hybrid metaheuristic

To effectively solve this complex optimization problem, we develop a hybrid
metaheuristic algorithm based on GRASP and AVNS. First, GRASP-based con-
structive matheuristic obtains a good initial solution quickly and then AVNS algo-
rithm improves the initial solution through adaptive probabilities associated with the
neighborhood structures. We describe the GRASP in Sect. 3.1 and the AVNS algo-
rithms in Sect. 3.2.

3.1 GRASP-based constructive matheuristic

Basic greedy constructive heuristics, based on the greedy choice applied at each
iteration, provide a single solution for a problem and the resulting solution is gener-
ally far from the optimal. Different from the basic greedy approaches, GRASP is
based on randomly selecting a choice from a pool of best alternatives instead of the
best choice at each iteration (Feo and Resende 1995; Resende and Ribeiro 2016).

Our GRASP-based constructive matheuristic generates a feasible solution for the
problem in two steps. The first step assigns nurses to EVs and jobs to nurses through
an assignment algorithm based on GRASP described in Sect. 3.1.1. The second
step determines the routes of EVs through a mathematical model as described in
Sect. 3.1.2. Hereafter, this algorithm is denoted as GRASP, in short.

3.1.1 Assignment of nurses to EVs and jobs to nurses

The assignment algorithm presented in Algorithm 1 starts with calculating a nurse-
score A, for each nurse n € N (line 1). The score 4, of nurse n € N is calculated
through equations (29-32) and has three terms @' ,<I>’:,, and @ (corresponding to
the length of the her/his time window, the fixed cost of the nurse and her/his com-
petency level, respectively) each associated with a weight, Q, Q, and Q, respec-
tively. The formulation of the nurse score aims to enhance the likelihood of selecting
nurses with longer working durations, lower fixed costs, and higher competency lev-
els, thereby maximizing overall benefit potential.
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th _ bn —a,
n ZnEN(bn - an) (29)
N
O = (30)

! ZnGN aillv

o = Ziel ZMEU iu
8 ZnEN Ziel ZueU Giu

€1V

by = QO + O + QD! (32)

For a nurse n € N and job i €J pair; a piece-wise compatibility parameter
compatibility, ; is set to 4, if nurse n works within the time windows of job j and
has relevant competency level for each competency type, and O otherwise (lines

2

10). Next, each job i € J is assigned to a nurse n' € N, using a roulette wheel

selection procedure that uses a selection probability proportional to compatibility, ;
for each nurse n € N (lines 12-15). Nurses are then randomly assigned to EVs (lines
16-19). The output of the assignment algorithm is the set of assigned jobs J, and the
nurse n;, assigned for each EV k € K.

Algorithm 1 Assignment algorithm

Inputs: J: set of jobs, N: set of nurses, K: set of EVs, S: set of CSs

1
2;

14:
15:
16:
17:
18:
19:

: Calculate \,, the nurse-score for n € N
: for each nurse n € N do
for eachjob i € V do
if nurse n € N works within [a;, b;] and g, < ¢ny Yu € U then
compatibility(, ;) < An
else
compatibility, ; < 0
end if
end for
: end for
: Jn « 0,n € N // Assigned job set for each nurse is initially empty
: foreachi € J do
n' « Find the nurse n € N for job i € J using Roulette Wheel Selection based on
compatibility ;)’s Vn € N
J = Ui}
end for
for each nurse n € N do
Assignan EV k € K tonurse n € N randomly
Jp = Jy
end for

Output: J; and ny, Vk € K: set of assigned jobs and the assigned nurse for each EV k € K

@ Springer



E. Cebeci et al.

3.1.2 Tour construction algorithm

The following mathematical model is used to determine the route of each EV k € K
considering the jobs assigned to the corresponding nurse, i.e., J;.

Minimize Z Z ak x,js ¢+ Z ap(l - hy) (33)
i€Vy, JEV,, JEy
subject to
JEV, J#i
Z Xji < 1
I€S JEV,, J#i ’ (%3)
xp ;=1
jZV‘, y (36)
Z x;, =1
& (37
D 5= 2% J€Ve (38)
lGVnk lGVnk
a;<t;<b;, jE€J (39)
ti+ (s +dxy <15+ b(1 - L1EV.JEV, . iF] 41)
ti+sijx,-j+wi Stj+(bk+rYk)(1 _xij) iES,jE Vnk’i?éj (42)
ylsy S Ck.x +Yk(1 xy) S V()k9JE Vn,(’l;é.] (43)
Y < 8 =85 ¢ X+ V(1= €S, jEV, i#] (44)
Vi<g <Y, i€S (45)
Yo, = Vi (46)
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gi—y =0, i€S (47)
rw,=o0; IE€S (48)
Zx,.j=hj jEJ, 49)

i€V,

x; €401} i€V, jEV, i#] (50)
h € (0,1} jEJ, (51)
w,g8,0,>0 i€S (52)

%2020 i€V, (53)

The objective function (33) aims to minimize the total travelling cost of the EV k
and the total penalty costs of jobs in J, that are not served. Constraints (34) ensure
that each job in J; can be visited at most once. Constraints (35) guarantee that an EV
can visit at most one CS within the planning horizon. Constraints (36) and (37) keep
track of departures and arrivals from the depot, respectively. Constraints (38) guar-
antee the conservation of flow for each node that can be visited. Constraints (39)
ensure that jobs are served within their predetermined time intervals. Constraints
(40) ensure that the EV tour must be completed within the daily working time of the
corresponding nurse. Constraints (41) and (42) calculate the node visit times con-
sidering travelling times between nodes, service times of jobs, and charging times
at CSs. Constraints (43) and (44) calculate the SoC of the EV at the time of arrival
of a node considering energy consumption during travelling. Constraints (45) define
the limits of the SoC of the EV at the time of departure from a CS node. Constraints
(46) ensure that the EV must start tour with full charge. Constraints (47) and (48)
calculate the amount of energy charged and the charging duration, respectively.
Constraints (49) determine whether job in J, is served or not. Constraints (50)-(53)
define the domains of decision variables.

After determining the route of the EV k € K through the above model, the set of
jobs that cannot be served, i.e., the ones having h; = 0, are assigned to an eligible
EV whose route has not been determined yet, using the roulette wheel selection pro-
cedure applied in line 13 of Algorithm 1. After the routes of all EVs are determined,
the cost of the solution is calculated as the sum of travelling costs of all EVs, the
fixed costs of utilized nurses, and the penalties associated with the unserved jobs.
GRASP is run 1 time and generates the initial solution.
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3.2 Adaptive variable neighborhood search algorithm

The variable neighborhood search (VNS) is an effective metaheuristic that can
be applied to a large variety of combinatorial optimization problems (Mladeno-
vic and Hansen 1997). The VNS represents a flexible framework for utilizing
heuristics to address optimization problems. On the contrary of using single
neighborhood structure, VNS systematically changes its neighborhood struc-
tures in search of an optimal solution (Hansen et al. 2016). Basic VNS algo-
rithm consists of three steps: (1) shaking step, (2) improvement step, and (3)
neighborhood change. The main goal of the shaking step is to escape from the
local optimum via selecting a random solution from one of the predetermined
neighborhood structures. The improvement step aims to find a better solution
from the current neighborhood of the current solution. In the neighborhood
change step, at each iteration, the neighborhood structure to be used is deter-
mined. Different versions of the VNS employ different neighborhood selection
approaches (e.g., random, enlarging). There are several successful applications
of adaptive neighborhood selection approaches (Li and Tian 2016). We propose
an Adaptive VNS (AVNS) that selects the current neighborhood based on the
past performance of neighborhoods (see Sect. 3.2.3).

Algorithm 2 presents the pseudocode of the AVNS. It starts with an initial
solution, 5™ found by the GRASP heuristic proposed, and at each iteration,
a neighborhood structure is chosen from the set of neighborhood structures NS
based on their past performances. If the random neighboring solution s in the
chosen neighborhood meets the acceptance criteria (see Sect. 3.2.4), the current
solution, s’ is updated, and if the random neighboring solution s is better
than the best solution s?**’, the best solution, s?* is also updated. At each itera-
tion, the current score of the selected neighborhood, w5 is updated accord-
ing to its performance (see section 3.2.3) and at every n“¥*' iterations, weights
of each neighborhood, w* are updated. In order to avoid local minima, a special
shaking procedure is used. The parameter n*" refers to the shaking period and
after each n*"* non-improving iterations, a random solution is generated using
the shaking procedure (see Sect. 3.2.2). At each iteration, current temperature 7
is cooled by y cooling rate and the algorithm is continuous as long as the stop-
ping criteria (a maximum number of iterations ifer* or a maximum number of
non-improving iterations ifer""-") is not met.
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Algorithm 2 AVNS algorithm

Inputs: s™*l: initial solution and NV S: set of neighborhood structures (Section 3.2.1)

1: iter < 0
2. iternon,imp —0
3: T+ Ty
4 w” <~ 1/|[NS| // The weight of each neighbourhood is initially the same
5. while iter < iter™4 or iter™?"-"mP < jter™aT-non-imp dg
6:  if iter (mod(n®¥*st)) = 0 then
7: Compute weight w” of each neighborhood structure x € N.S // (Section 3.2.3)
8: v¥ ¢ 0,9" < 0,Vx € NS// initialize the weights and the number of application times
to zero
9: end if
10: if iter™"mP (mod(n*h®*¢)) = 0 then
11 seurrent ¢ Shake st°*! and jump to a random solution // (Section 3.2.2)
12: end if
13: N Geurrent + Select a neighborhood structure based on their scores // (Section 3.2.3)
14: s < NGeurrent(geurrent) / / generate a new solution from the chosen neighborhood
150 ife(s)) < e(sPest) then
16: shest o
17: NS NS 4y // increase the score of the chosen neighborhood
18: iteanLimp «—0
19 elseif ¢(s') < ¢(s° ™) then
20: geurrent o S,
21: NS NS Ly // increase the score of the chosen neighborhood
22: iter™On-mP  jtepnonimp 4 ]
23: else
24: generate a random number 7 in [0,1]
25 if ) < o=l m)/T then
26: geurrent o S/
27: YNST NS L 3/ / increase the score of the chosen neighborhood
28: iter™On-mP ( jternonamp 4 |
29: end if
30: end if
31: T+ Ty

32: iter < iter + 1
33: end while
Output: s**, ¢(s)

3.2.1 Neighborhood structures

The proposed AVNS employs the following seven neighborhood structures that
are specifically designed for the problem.

Job relocation A job is removed from the route of the EV, which it is currently
assigned and assigned to another compatible EV to the best position in terms of
cost. All such possible adjustments for all jobs are explored and the best one is
applied.

Random vertical job swap Two jobs that are assigned to two different EVs
and that can be interchanged in terms of competency compatibility are randomly
selected and interchanged.
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Unassigned job insertion A job from the current unassigned job set is assigned to
a compatible EV to the best position in terms of cost. All such insertions are evalu-
ated for all unassigned jobs and the best one is applied.

Greedy EV destruction The jobs assigned to the EV with the fewest number of
jobs are transferred to another compatible EV, if possible, with the aim of eliminat-
ing the former EV.

Nurse-EV swap The assignment of two nurses to two EVs are interchanged,
together with their jobs. The best interchange option in terms of cost, if exists, is
applied.

Nurse swap The nurses of two EVs are interchanged preserving the nurse-job
assignments. The best interchange option in terms of cost, if exists, is applied.

3-opt This operator is a special form of the k-opt algorithm (Dorigo et al. 2006).
It involves removing three links (or edges) of a route an EV and reconnecting the
route in the best of all eight possible ways. The 3-opt algorithm is applied separately
for each EV.

In order to avoid infeasible solutions; the battery feasibility, time window feasi-
bility, and competency feasibility of a candidate neighboring solution are checked
first and only feasible neighboring solutions are evaluated with an acceptance crite-
ria (see section 3.2.4). While checking the battery feasibility of each EV, all CS vis-
its in its route are removed and starting from the first node visited, the SoC at each
node visit is checked and the closest CS visit is inserted to the route when necessary.

3.2.2 Shaking procedure

The shaking procedure in VNS aims to resolve the local minima traps. Let s”**' be
the best-found solution at the time of appliance of the shaking procedure. A basic
shaking procedure is based on choosing a random solution from one of N¥" € Nofa
given solution s”** (Hansen et al. 2016). In the shaking procedure, there is a balance
between perturbing the solution and maintaining good aspects of the solution (Hem-
melmayr et al. 2009). Moving far away from the best solution may degrade the algo-
rithm performance, whereas making minor changes may result in the local minimum
not being escaped. In order to escape from local minima traps, we employed a ran-
dom relocation operator, where a random number of jobs between 1 and relocate™™,
are chosen and reassigned to EVs based on their resulting additional costs.

3.2.3 Weight adjustment procedure

We employed the weight adjustment procedure provided by (Yiicel et al. 2022) to
adjust the weights of neighborhood structures in NS. The score of each neighbor-
hood structure x € NS, namely y*, and the number of times the corresponding
neighborhood structures x € NS is used during the last adjustment period, namely
%, are set to zero at the beginning of each adjustment period n¥“. Let w* be
the weight of the neighborhood structure x € NS. Once a neighborhood struc-
ture x € NS is applied during an iteration, y* is increased by Ay according to
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the performance of the neighboring solution s obtained, where Ay is calculated
based on Equation (54).

ay, if c(s) < c(sbe")

@y, if c(s') < c(seurent

as, if c(s’) > c(s“*") but accepted
0, otherwise

Ay = (54)

At the beginning of each adjustment period, weight of a neighborhood x € N is cal-
culated based on its current weight and its score at the end of the previous period
based on Equation (55).

_J A=pwW +pyr/o* if 0¥ >0
wh= { 1 - pw* , otherwise (55)
where p is the reaction factor taking values in range [0, 1] and is used to adjust the
influence of the recent success and past performance. When p is close to 1, the effect
of the recent success increases, when it is close to 0, the effect of the past perfor-
mance increases. The initial weight of each heuristic is set to 1/INI and at the begin-
ning of each adjustment period the selection probability of a heuristic x € N, p(x), is
calculated based on Equation (56).

w

P =c——
ZxEN wr

(56)

3.2.4 Acceptance criteria

We use the Metropolis criteria introduced by Metropolis et al. (1953) as the
acceptance criteria in the proposed AVNS. It has been successfully used in
many neighborhood search based heuristics. If a neighboring solution s’ is better
than s (i.e. ¢(s') < c(s““™") where c(s) denotes the objective function value
of solution s), then the solution s is always accepted and replaces s’ If a
neighboring solution s’ is worse than s the solution s is accepted with prob-
ability of e~ )= )/T where T denotes the current temperature. Based on the
approach used in Pisinger and Ropke (2007), the initial temperature, T}, is set to
a value that accepts a solution that is ¢p% worse than the initial solution with £%
probability. At each iteration, the current temperature is cooled with a cooling
rate of y.

4 Computational experiments
We now present the results of our computational experiments. We first explain how

the data used in computational analysis is generated in Sect. 4.1. We analyze the
robustness of the proposed algorithms through changing the number of GRASP
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replications in Sect. 4.2. The performance contribution of employing adaptive prob-
abilities of VNS is analyzed in Sect. 4.3. We then compare the performance of the
GRASP and AVNS, and mathematical model on small and medium-sized instances
in Sect. 4.4. We report the results of large-size instances in Sect. 4.5. We analyze
the effects of the problem parameters (such as the number of competency types, the
variance in job durations, the existence of synchronized jobs, and the heterogenity of
the vehicle fleet) on the solutions in Sect. 4.6.

The mathematical model is implemented in Python and solved by CPLEX 20.1
with a run time limit of three hours. The proposed AVNS algorithm is implemented
in Python. The computational experiments are conducted on a workstation with 64
GB of RAM and 17 2.3 GHz CPU. For each instance, an initial solution obtained
through the proposed GRASP algorithm and the GRASP solution is improved
through the proposed AVNS algorithm. For each instance, we performed 10 AVNS
replications and the average and the standard deviation of the results and the best
found solutions over 10 replications are reported. After a parameter tuning process
conducted on small-size instances, the parameters of the GRASP and the AVNS
algorithms are set as provided in Table 1.

4.1 Data

We used both synthetic data based on the literature and real-world data to gener-
ate our benchmark instances. In all instances, nurse working hours start at 8 a.m.

Table 1 Parameters of the GRASP and the AVNS algorithms

Description Value
Parameters of GRASP
1 time window coefficient, Q' 0.10
2 fixed cost coefficient, Q' 0.40
3 competency level coefficient, Q* 0.50
4 number of GRASP replications, GRASP™? 1
Parameters of AVNS
1 maximum number of non-improving iteration iter“-"on-imp 1000
2 maximum number of iteration, iter™** 10,000
3 initial temperature determination parameter-1 (%), ¢ 50
4 initial temperature determination parameter-2 (%), & 50
5 cooling rate, y 0.99
6 reaction factor, p 0.50
7 weight adjustment period, 4" 25
8 shaking period, ke 100
9 score increased for improving the best found solution, «, 70
10 score increased for improving the current solution, a, 50
11 score increased for non-improving but accepted solutions, a; 20
12 maximum number of jobs to be relocated, relocate™* 6
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and finish at 5 p.m. The fixed cost of a nurse, aflv , 1s calculated between 400 and
600 based on the daily salary of a nurse according to Medisozluk (2020), and her/
his competency levels. There are two competency types, i.e.,| U |= 2, and there are
three levels for each.

Patient locations are generated based on the "Address Based Population Registra-
tion System" database of Turkish Statistical Institute (2020), which provides the
population data for each province, district, and neighborhood of the city of Ankara
province. Two different location selection methods are used to determine the patient
locations: (1) random selection, 7s in short, and (2) weighted random selection, wrs
in short. In rs, patient locations are chosen randomly from the neighborhoods of
Ankara. In wrs, patient locations are chosen randomly from the neighborhoods of
Ankara based on their populations. The depot location of each vehicle is set as a ran-
dom one of the public hospitals. Finally, the exact locations of the CSs are deter-
mined by use of Google Maps API (ZES 2020). The distance matrix, i.e., sg’s, is
generated based on the Haversine formula (Movable Type Scripts 2020). ‘

The EV fleet has three types of EVs (types a, b, and c) that differ in capacity and
energy consumption. Consumption rates of EV type a, b, and ¢ are 0.158 kWh,
0.158 kWh, and 0.165 kWh, respectively. Traveling cost is calculated by multiplying
the unit consumption rate by the unit electricity cost in kWh. The battery capacities
of EV types a, b and c are 26.8, 32.3, and 52, respectively. The EV speed to be used
for travel times is determined as 55 km/h based on the study by (Gupta et al. 2017).
In order to serve as many jobs as possible, the cost of not serving a patient job is set
to a;’ = 800,Vj € J.

We generated small-, medium- and large-size instances. Small-size instances have
10 jobs, medium-size instances have 20 or 30 jobs, and large-size instances have 40,
50, or 60 jobs. There are 10 instances generated with s method and 10 instances
generated with wrs method for each job set size, up to 30 jobs. Therefore, a total of
3x10x2=60 small- and medium-size instances are generated. The following naming
convention is used for the small- and medium-size instances, where “” refers to the
number of jobs, “n” to the number of nurses, “cs” to the number of CSs, “s” to the
number of competency types, “w’ to wide time windows for jobs, “t” to narrow time
windows for jobs, “sy” to the number of synchronized jobs, “R” to rs method, and
“W" to wrs method. For example, the instance “10j3n3cs2s-w-1sy-R4” refers to the
fourth instance having 10 randomly selected jobs with wide time windows, three
nurses, three CS, two types of competences, and one synchronized job.

In order to analyze the effect of the problem parameters, large-size instances
are divided into seven groups as G1-G7. The groups differ in the location selection
method (rs or wrs), charger type (super-fast or fast), the existence of competency
requirement (1, corresponding to the case where there is one competency type with
3 levels, or 0, corresponding to the case where all jobs require the same compe-
tency), the percentage of synchronized jobs among all jobs (0% or 10 %), and job
duration (randomly selected in [20, 60] or randomly selected in [10, 90] minutes) as
provided in Table 2.

For e.g., for instances in group G1, rs is used for job locations, fast charger type is
used, all jobs have the same competency requirement, there is no synchronized job
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and the variance in job durations is low. The following naming convention is used
for large-size instances, where “j” refers to the number of jobs, which can be 40,
50, or 60; "G" refers to the group name. For e.g., the instance "40j-G1-1" refers to
the first instance in group G1 having 40 jobs. Therefore, a total of 3x7x2=42 large-
size instances are generated. The generated data is publicly available at Cebeci et al.

(2023).

4.2 An analysis on the robustness of algorithms

In order to analyze the robustness of the GRASP algorithm, we ran the GRASP
algorithm with varying number of replications (1, 50, or 100) on instances having
20 and 40 jobs and compared the best found solution among the replications. In
addition, to analyze how the solution quality and the run time of the proposed AVNS
is affected by the initial solution, we started the AVNS with the best found solu-
tion of the GRASP algorithm having varying number of replications. In Table 3, for
instances having 20 jobs and 40 jobs separately, we report the average, minimum,
and maximum values of the best objective function values and total run times of
the GRASP with one replication and the AVNS starting with that GRASP solution.
In addition, in the table we provide the comparison of the GRASP with 50 and 100
replications and the AVNS starting with those GRASP solutions with the GRASP
with one replication and the AVNS starting with that solution in terms of the aver-
age, minimum, and maximum values of best objective improvement percentages and
the run time increase percentages for the GRASP and AVNS solutions generated
with varying number of replications of the GRASP.

According to the results provided in Table 3, the best solution found in the
GRASP algorithm decreased by at most 20.49 % or increased by at most 23.80 %
when the number of replications increased from 1 to 50 or 100. This is an expected
result of the randomness in the GRASP framework and demonstrates that the robust-
ness of the GRASP can vary depending on the problem instance. On the other hand,
the percentage change in the best found solution of the AVNS algorithm is less than
1%, demonstrating the robustness of the proposed AVNS with respect to the initial
solution quality. Based on this observation and long GRASP run times for a higher

Table 2 Features of large-size instance groups

Group  Location gen-  Charger type(kW/h) | U| % of syn- Job durations
eration method chronized
jobs

Gl rs Fast (0.183) 0 0 randomly selected in [20, 60]
G2 rs Super-fast (0.883) 0 0 randomly selected in [20, 60]
G3 wrs Fast (0.183) 0 0 randomly selected in [20, 60]
G4 wrs Super-fast (0.883) 0 0 randomly selected in [20, 60]
G5 rs Fast (0.183) 1 0 randomly selected in [20, 60]
G6 rs Fast (0.183) 1 0 randomly selected in [10, 90]
G7 rs Fast (0.183) 1 10 randomly selected in [20, 60]
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number of GRASP replications, we set the number of GRASP replications to 1 in
the remaining analysis.

4.3 An analysis on the performance contribution of employing adaptive
probabilities

In order to analyze the performance contribution of employing adaptive probabili-
ties for neighborhood structures in VNS, we compared the results of the proposed
heuristic (AVNS) with and without adaptive component on instances having 20
and 40 jobs. The version of the proposed heuristic without adaptive component is
referred to as the VNS. In Table 4, for instances having 20 and 40 jobs, we report
the average, minimum, and maximum values of the best objective function values
and total run times of the AVNS and its starting solution GRASP. In addition, in the
table we report the comparison of the AVNS and VNS in terms of the average, mini-
mum, and maximum values of best objective improvement percentages of the VNS
solutions compared to AVNS solutions and the run time increase percentages of the
VNS compared to AVNS.

The results in Table 4 shows that removing the adaptive component from the
AVNS leads to 3.72 % decrease on the average (1.11% min. and 9.92% max.) in
the best found objective value for instances having 20 jobs, and 5.84 % decrease
on the average (1.13% min. and 12.71% max.) in the best found objective value
for instances having 40 jobs. In addition, although it cannot be generalized for all
instances, the adaptive component can lead to a run time improvement in the overall
search process. We also note that in the proposed constructive matheuristic, GRASP
framework primarily addresses the job-nurse assignment component of the problem,
while the routing aspect for each nurse is managed through the mathematical model.
Since the Traveling Salesman Problem (TSP) is a special case of the routing prob-
lem solved for each nurse, as observed in Table 4, the solution time of the construc-
tive matheuristic tends to increase significantly as the number of jobs increases.

Table 4 Comparative results for AVNS and VNS
Instance AVNS AVNS vs. VNS

Group GRASP AVNS VNS VNS

BestObj Time(s) BestObj Time(s) BestObj. Imp. (%) Time Inc. (%)

Avg 291722 <1 1771.80 31.55 —3.72 0.70
20 jobs Min  2809.00 <I 1000.93 32.00 —1.11 30.28
Max 435390 <1 3623.65 29.00 —9.92 19.98
Avg  7602.64  29.71 3381.65 153.00 —5.84 11.97
40 jobs Min 719948  30.00 2496.32 75.00 —1.13 —40.55
Max 9703.98  30.00 5535.632  208.00 —12.71 91.26
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4.4 Comparative results on small- and medium-size instances

This section compares the performance of the GRASP and the AVNS with the
mathematical model on small- and medium-size instances. Tables 5, 6 and 7 pro-
vide the results for small- and medium-size instances having 10, 20, and 30 jobs,
respectively. For each instance the objective function value of best found solu-
tion, the number of EVs used, the number of unserved jobs, and the run times are
reported for the MIP and the AVNS, in addition to the objective function value of
the GRASP solution.

According to the Table 5, all small-size instances can be solved to optimality by
both the MIP and the AVNS within 10 s. The AVNS improves the GRASP solution
by 11% on the average.

According to the results in Table 6, for medium-size instances having 20 jobs,
the MIP cannot guarantee the optimality within 3 h for any instance and the AVNS
provides 6.7% better results on the average within 40 s. The number of EVs used in
the AVNS are fewer than the MIP in 5 out of 20 instances. The AVNS improves the
GRASP solution by 39.8% on the average.

According to the results in Table 7, for medium-size instances with 30 jobs, the
MIP cannot guarantee the optimality within 3 h and compared to the MIP, the AVNS
provides 18.3% better results on average (46.6% max., 0.9% min) within 2 min. The
number of EVs used in the AVNS solutions are fewer than the MIP solutions in 15
out of 20 instances. The AVNS improves the GRASP solution by 49.4% on average.

Table 8 provides the average results for small- and medium-size instances in
terms of the best objective value and the solution time for the MIP, GRASP, and
AVNS, and the percentage differences between the best found solutions. Table 8
shows that as the number of jobs increases, the difference between the quality of the
best found solutions of the AVNS and the MIP and the improvement percentage of
the AVNS on the GRASP solution increase.

4.5 Results on large-size instances

The results of the proposed GRASP and AVNS algorithms for large-size instances
having 50 jobs are presented in Table 9 and the results of the instances that have 40
and 60 jobs are presented in Tables 16 and 17 in the Appendix. The tables report the
objective function value for the best solutions found in GRASP and AVNS, the solu-
tion time of AVNS, the share of each cost term in the total cost of the AVNS solu-
tions and the percentage improvement of AVNS in the GRASP solutions.

Table 9 indicates that AVNS improves the GRASP solution by 61.3% on aver-
age (49.1% minimum) in at most 11 min. The fixed nurse costs account for 87.6%
on the average of the total cost and the travel costs account for 7.9% on the aver-
age. The unserved jobs occur in 4 out of 14 instances leading to a share in between
14.3% and 18%. The results in Table 16 show that the AVNS improves the GRASP
solution by 55.5% on the average (43.0% minimum) within at most 4 min. The fixed
nurse cost has the largest share in all instances accounting for 89.9% of the total
cost on the average. The travelling cost accounts for 6.2% of the total cost on the
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average, demonstrating the need for efficient routing. In 3 out of 14 instances, there
are unserved jobs leading to an unserved job cost share in between 14.5% and 20.7%.
Table 17 indicates that the AVNS improves the GRASP solution by 60.1% on the
average (44.6% min) within at most 16 min. The fixed nurse costs account for 80.4%
on the average of the total cost and the travel costs account for 9.9% on the average.
The unserved jobs occur in half of 14 instances leading to a share in between 12.1%
and 35.9%.

4.6 Effects of problem parameters

This section analyzes the effects of the problem parameters such as the existence of
simultaneous jobs, the level of variety in job durations, the existence of competency
levels, synchronization, the dispersion of patient locations, and the heterogeneity of
the vehicle fleet on the results.

The effect of the job location selection method is analyzed by comparing the
average results of G1 and G2, in which wrs is used, with the average results of G3
and G4, in which rs is used. The comparative results are presented in Table 10 in
terms of the best objective value, the value of each cost term in the objective func-
tion, and the average working, spare, service, and travel times of nurses.

According to Table 10, the total cost of AVNS solutions for instances using wrs
method is 10% lower on the average than that of the instances using rs selection
method. As job locations are more dispersed when rs is used and are closer when
wrs is used, the average travel time and therefore, the share of the travelling cost
is larger and the number of jobs that cannot be served is higher when rs is used
although the average working and service times are close to each other for both
cases. This table also shows that the average spare times are very low and nurses are
efficiently utilized during the working day.

The effect of the competency requirement is analyzed by comparing the average
results of G1, in which all jobs have identical competency requirement, with the
average results of G5, in which each job requires a specific level (1, 2, or 3) from
one competency type. The comparative results are presented in Table 11 in terms of
the best objective value, the value of each cost term in the objective function, and
the average working, spare, service, and travel times of nurses.

According to Table 11, the fixed nurse costs are higher when jobs require dif-
ferent levels of competency (for group G1) and nurses can be utilized more effi-
ciently (with lower spare time on the average) if each nurse can serve any job (for
group G5). Although the unserved job cost for group G1 may be expected as lower
than that of group G5, as G1 instances utilize fewer nurse, the unserved job cost for
group G5 is smaller than that of group G1.

The effect of the variety in job durations is analyzed by comparing the average
results of G5, in which job durations are random in between 20 and 60, with the
average results of G6, in which job durations are random in between 10 and 90. The
comparative results are presented in Table 12 in terms of the best objective value,
the value of each cost term in the objective function, and the average working, spare,
service, and travel times of nurses.

@ Springer



E. Cebeci et al.

891 00 66vI- ST 0 urN
oy
9'1Y SeT 0le- 8T 0 € I0LKLL 1> SS166T 00801 0 v LI'€8TT  -Asg-m-pur-sgsopuglog
6'¢T €0 01— I 0 v T8LSTT 1> 8Y'L96T 00801 0 v 0r'S9TT  6d-Asp-1-pur-sgsopuglog
9°6¢ €Ll 87—  6¢ 0 € 0T6L81 1> 0I'916C 00801 0 ¥ 10€LTC  8U-AsQ1-puw-sgsopuglg
891 A 81— 6T I S S9€T9¢ 1> 06°€SEr 00801 I S 979L9¢  LY-KsQ1-pw-szsopuglog
6T 60 L'€l— €€ 0 € 08€P91 1> €I'6L8T 00801 0 € L6LS9T  9Y-AsQ-m-pu-sgsopuglg
I'ey 80 €lL-  OoF 0 € S8OILL 1> 9TSS6T 00801 0 € SPSTLL  SY-Asp-m-pur-sgsopuglog
€ey €1 6'¢l—- 8T 0 € 9TT6SI 1> 0S908T 00801 0 € €LEI9  PY-AsQ-m-pu-s[sopuglog
434 87T S9e—  9¢ 0 € 70789l 1> 6¥0T6C 00801 0 v TS6cic  £d-Asp-1-pur-sysopuglog
8'LT 00 ¢8e— g 0 v LY€LIT 1> TYII0E 00801 0 v 0TYLIT TA-AsQ-m-pur-ssopuglog
99t vl 68— LT 0 € 9¥1091 1> LY'100E 00801 0 € €V€T91  TY-AsQ-M-pu-sosopuglog
Sy 80 L'69-  Lg 0 € 8£9591 > $L7TEYT 00801 0 € 168991 OIM-AST-M-pu-sgsopugloz
8TH 90 8¢l—  0€ 0 € 86191 1> ITET6T 00801 0 € 161891  6M-Ks0-)-pu-sgsopuglog
01¢ T0 Lvr— ST 0 € 9LTOLL 1> 9v'69¥T 00801 0 € 8I'90LI  8M-AsQ-1-pur-sgsopuglog
Yauy 60 T8L- 6T 0 € 8LTI9L 1> #8868 00801 0 € 189291 LM-AS0-)-pur-sgsopuglog
T 9'¢T TUE-  6C 0 € TOLLIT 1> 8ETIE8T 00801 0 ¥ S6IPIT 9M-ASQ-M-pu-sgsopuglog
009 10 6'6vI- 8¢ 0 T LOSIIL 1> 0T96LT 00801 0 T L6SITI SM-AsQ-m-pur-sgsopuglog
99t L1 08— S 0 € OI'6VSI 1> $L006T 00801 0 € 9S9LST PM-KsQ-m-pu-s[sopuglg
9T 61 SSh— ST 0 € I€6TSI 1> 00897 00801 0 € T06SST  £Mm-Asp-1-pur-s[sopuglpg
T9C 90 9pe— 8 0 v 9860z 1> €I'TI8T 00801 0 v $0°880T TM-AsQ-m-pu-s[sopuglg
¥ +9 gee 18— € 0 T €60001 1> 00608 00801 0 € 6I'T0ST 1M-AsQ-m-pu-sosopuglog
(%) (%) %) () SqOf  SAH lao Qo () SqOf SAH a0
duwy mna JIg owl], PIAISUN) JO# JO# 189g  owl], 1S90 QWI], POAISSUN) JO# JO# 189¢g
SNAV-dSVID SNAV-dIN dSVIO-dIN SNAV dSViD dIN Qouelsuy

sqof 0z Suraey seourISUT AZIS-WNIPSW Y} JO S)NSAI dAneredwo) 9 ajqel

pringer

As



The home health care routing with heterogeneous electric...

86¢ L9 7'65— 9'1¢ 10 ¢ 3ay
v'+9 gee 2 I S Xe
(%) (%) %) © sqof SAH fago  ©® Qo (s) sqQof SAH a0
duwy ma JI owl], POAISUN) JO# JOH# 189g  owil], 1S90 QWI], POAISSUN) JO# JO# 1859g
SNAV-dSVID SNAV-dIN dSVID-dIN SNAV dSViD dIN Qoueysuy

(ponunuoo) 9 s|qey

pringer

As



E. Cebeci et al.

THs S€T 0L9— 9 0 ¥ S6L60T ¥ 6085y 00801 0 S 8TEPLT SA-KSO-m-PI-szsosuQ[fog

vd

Iy 081 €Lb— 08 0 S tTs0ST v LT86VY 00801 0 9 S6€s0¢  -Asp-m-pw-s[soguQfog

854 oLl (A4S} | 0 S vITLst v TSYILY 00801 0 9 9I'860€ €d-As0-1-pw-s[sosuQfog

(Al

€9 91T 91—~ 6 0 v 9L7TS61 ¥ THILTY 00801 0 S Srzeve  -Asp-m-pur-sysoguqlog

Ty

€Sy 991 STS— 9 0 S 9897ST S 16'129% 008°01 0 9 Trocos  -Asp-m-pur-spsoguQlog

0IM

8T S'6¢ L'S— L9 0 S 0Evore ¥ SPLOEY 00801 T S PTELOP  -AST-m-pm-sgsoguQ1log

Tss 'l 01Cl- 9 0 ¥ TSLE6I € L9'8TEY 00801 0 ¥ 6£8561 6M-AS03-pm-szsosuQfog

8¢S ' 60L— 96 0 ¥ SE1T0T v T6'8LEY 00801 0 S 01T9ST 8M-ASQ-Pam-szsosuQfog

8+S 01c 6vl— 1L 0 ¥ T8SS6l ¥ €00EEy 00801 0 S SO9LVT LM-KSQI-Pam-szsosuQfog

9IM

L'€S ¥1C 969—  SL 0 ¥ 8€100C S THoTEr 00801 0 ¥ TYLPST  -KsO-m-pm-sgsoguQfog

LS 91z (AP 0 ¥ LTSI6I € 6'9¢Th 00801 0 S 96STPT  SM-ASO-m-pI-szsosuQfog

M

6°LT 60 SLe— Y6 0 S 966THT v PETLEE 00801 0 S S6Iste  -Asp-m-pw-s[soguQfog

v’ L61 008— L9 0 t 69€961 ¥ vI'¥0Py 008°01 0 S €S9¥PT EM-ASO-1-pw-sTsoguQfog

™™

L9S €Ie 918— 18 0 Vv vTShel v LY06¥Y 00801 0 S LTy -Asg-m-pu-sysoguQ1log

M

009 91C 096— +01 0 Vv vSse6l € $TLESY 00801 0 S €089pT  -AsQ-m-pur-spsoguQ1log
(%) (%) ®%) SqQof SAH @0 (9 fq0 (s) Sqof SAH fq0
duwy mna JIQ owIi], PpoAIdSuN JO# JO# 189g ouwly, 1S90 OWIL], POAIOSU() JO# JO# 189g

SNAV-dSVED SNAV-dIN dSVIO-dIN SNAV dSViID dIN Qoue)suy

sqol O¢ SurAey soour)sUT AZIS-WNIPAW UO SI[Nsal oAneIedwWo)) / 3|qel

pringer

As



The home health care routing with heterogeneous electric...

v'6v €81 6'€9— 6'8L 00 9% Say
009 9'9% 0¢— 0T 0 9 XeN
6'LT 60 (V) ) R 0o ¥ Ut
ord
6'LY 99% ST 101 0 S 6LL8LT € 1€'8¥ES 00801 T L STLITS  -ASg-m-pm-sgsoguQrfog
€9 A 9¢8—  S6 0 9 89°L90¢ ¥ €PTILS 00801 0 9 0STIIE 6d-AsQ1-pm-sgsosuQfog
ey 081 ger— 19 0 S §$€96T ¥ 61'86vF 008°01 0 9 08LTIE §I-AsQ1-pm-sgsoguQrlog
01s 97 6'00I— €8 0 S 9%'L09C ¥ 81'9Z¢S 00801 0 S 090S97 LI-AsQ-pm-sgsosuQfog
9
8°0f el 99— 19 0 S 661PLT ¥ PESE9r 00801 0 9 65791  -KsO-m-pm-sgsoguQ[fog
(%) (%) ®» © sqof SAH o (¥ lao (s) sqof SAH fao
duwy ma JIQ owl], PpoAIdSuN JO# JO# 189g  ouwly, 1S90 OWIL], POAIdSU) JO# JO# 189g
SNAV-dSVYED SNAV-dIN dSVID-dIN SNAV dSV¥D dIN Qouejsuy

(ponunuoo) £ s|qey

pringer

As



E. Cebeci et al.

Table 8 Average results on small- and medium-size instances

I/ MIP GRASP AVNS
Best Obj Time (s) Best Obj Time (s) MIP- Best Obj Time (s) MIP- GRASP-
GRASP AVNS AVNS Imp
Diff (%) Diff (%) (%)
10 2070.14 <10 234549 <1 —14.9 2070.14 <10 0 11.2
20 1905.08 10,800 2889.89 <1 —59.4 1786.73 32 6.7 39.8
30 2879.52 10,800 4691.62 3.9 —63.9 2258.54 88 18.3 494
Table9 GRASP and AVNS results for instances with 50 jobs
Instance ~ GRASP AVNS GRASP-
AVNS
Best Obj Time (s) BestObj Time (s) Fixed Travelling Unserved  Imp (%)
Nurse Cost Cost (%) Job
(%) Cost(%)
50j-G1-1 8293.67 62 3594.40 479 91.8 8.2 0.0 56.7
50j-G1-2  11808.35 57 3561.78 269 92.7 7.3 0.0 79.8
50j-G2-1 9680.82 56 2615.12 353 87.9 12.1 0.0 73.0
50j-G2-2 9153.51 58 3661.45 324 90.1 9.9 0.0 60.0
50j-G3-1 10699.81 60 4890.73 426 71.7 59 17.1 54.3
50j-G3-2  9322.02 60 3046.92 427 93.5 6.5 0.0 67.3
50j-G4-1 9725.85 55 3505.86 282 94.1 5.9 0.0 64.0
50j-G4-2  9279.71 57 2942.83 229 95.1 4.9 0.0 68.3
50j-G5-1 783576 58 3603.96 226 91.6 8.4 0.0 54.0
50j-G5-2 10157.95 62 4595.54 575 93.6 6.4 0.0 54.8
50j-G6-1 12360.55 59 3831.33 321 90.0 10.0 0.0 69.0
50j-G6-2 12511.05 63 4445.16 372 77.6 44 18.0 64.5
50j-G7-1 1194240 64 5581.73 416 77.0 8.6 14.3 533
50j-G7-2 1054991 62 536591 224 73.6 11.5 14.9 49.1
Min 224 73.6 44 0.0 49.1
Max 575 95.1 12.1 18.0 73.0
Avg 351.8 87.6 7.9 45 61.3

According to Table 12, the results of instances having job durations in between
20 and 60 are 13% smaller on the average than that of the instances having job
durations in between 10 and 90. The larger average and variance in job durations
for group G6 result in longer service times for nurses, higher fixed nurse costs and

larger unserved job costs.
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The effect of the existence of synchronized jobs is analyzed by comparing the
average results of G5, in which there is no synchronized job, with the average results
of G7, in which 10 % of all jobs are synchronized jobs. The comparative results are
presented in Table 13 in terms of the best objective value, the value of each cost
term in the objective function, and the average working, spare, service, and travel
times of nurses.

According to Table 13, the total cost of instances without synchronized jobs is
15% lower on the average than the instances having synchronized jobs. In group G7,
in which 10% of all jobs are synchronized, 10% of patients require to be served by
more than one nurse at the same time in the patient’s home. Therefore, more nurses
are required and the fixed nurse cost in the G7 instances is 8% higher on the average
than that of the G5 instances. Although the average working times for nurses are
very close for these two groups; for G7 instances, the average nurse service times
and travel times are longer and the average travelling cost and unserved job cost are
significantly higher.

We analyze how the variety of vehicle types affects the results for large-size
instances (G1-G7). To do this, we conduct a comparative assessment by contrast-
ing the average results obtained when employing a homogeneous fleet comprising
exclusively of type ’a’ vehicles (characterized by the lowest consumption rate and
the smallest battery capacity) with those achieved using a mixed fleet of vehicles.
These comparative findings are comprehensively presented in Table 14, encompass-
ing the optimal objective value, the individual cost components within the objective
function, as well as the average durations of nurses’ working, spare, service, and
travel times.

Table 14 reveals that instances that utilize a heterogeneous fleet lead to a decrease
in the objective function compared to those reliant on a homogeneous fleet. This
result is mainly attributed to the larger battery capacity inherent in the heterogene-
ous fleet, which allows for more extensive travel without the need for recharging.
Consequently, this leads to a reduction in the fixed nurse cost within these instances.
Additionally, it is worth noting that the unserved job cost in scenarios involving a
heterogeneous fleet is notably lower compared to instances with a homogeneous
fleet. Although the average working time for nurses remains relatively consistent
across both groups, instances leveraging a heterogeneous fleet tend to exhibit longer
average travel times alongside shorter average spare times.

5 Conclusions
This paper delves into a practical challenge encompassing various facets such
as heterogeneous electric vehicles, fast chargers, synchronized job scheduling,

and time windows within the context of home healthcare routing and schedul-
ing. The primary objective is the minimization of the total cost incurred, which
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comprises energy consumption, fixed nurse expenses, and the cost associated
with unattended jobs. We have introduced a hybrid metaheuristic based on adap-
tive variable neighborhood search (AVNS) algorithm, which employs a GRASP
algorithm that uses a more easily solvable submathematical model to obtain an
initial solution. Our algorithms encompass several specialized heuristic mech-
anisms designed to address the unique intricacies of the problem. In particu-
lar, in our AVNS algorithm, we depart from the traditional variable neighbor-
hood search by introducing adaptive probabilities to select each neighborhood,
improving its problem-solving capabilities.

We have conducted extensive computational studies on small, medium and
large instances. For small instances featuring 10 jobs, our hybrid metaheuris-
tic algorithm consistently identifies optimal solutions in 10 s. In medium-
sized instances involving 20 and 30 jobs, our metaheuristic yielded 6.7% and
18.3% better results on average, respectively, compared to MIP running with
a three-hour time limit. Furthermore, we observed a significant improvement
in the results of the constructive GRASP heuristic with the use of the hybrid
metaheuristic. In other words, our metaheuristic has generated high-performance
solutions in a short time, demonstrating its relevance for practical operations. We
conducted additional computational experiments to explore the impact of vari-
ous parameters of the problem. These factors include the presence of simultane-
ous jobs, the variety of job durations, the considerations of competency level,
the heterogeneity of the vehicle fleet and the dispersion of the patient’s location.
These analyses provide valuable insights into the problem sensitivity to these
parameters. Finally, our study quantifies the advantages of using heterogeneous
electric vehicles over homogeneous counterparts, offering practical guidance for
decision-makers in home healthcare routing and scheduling.

Future work could explore the stochastic extensions of the current problem.
Unforeseen events may occasionally occur, leading to delays in the provision
of health services, which can compromise their quality or safety. Patients typi-
cally require multiple care interventions throughout the day, some of which may
need to be carried out simultaneously, such as dressing, mobilizing, and bath-
ing. Deterministic models overlook these kinds of real-life uncertainty, which can
arise unexpectedly and consequently disrupt adherence to predetermined sched-
ules. In the context of home health care, the primary sources of uncertainty are
travel and service durations. These extensions could be addressed in future stud-
ies through specifically designed solution methods for stochastic programming
such as stochastic mixed integer models, chance constrained models, metaheuris-
tics, matheuristics, stochastic programming models with recourse, and simula-
tions techniques. By incorporating stochastic elements, researchers can better
capture the inherent uncertainties in home healthcare scheduling and routing,
leading to more robust and effective solutions.
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A. Appendix

See the Table 15.

Table 15 Summary of notation

Notation Definition

Sets

J Set of jobs

K Set of EVs

S Set of CSs

N Set of nurses

U Compentence types

1% Set of nodes including J and S, i.e.,V=JUS

Vo, Set of nodes including V and the starting depot of
EVkeK,ie, Vo, =Vu {0}

Vi, Set of nodes including V and the depot of EV k € K,
ie.V, =Vuin}

Vo Set of all nodes that can be visited by EV k € K,
ie, Vo, =VU{0n}

Parameters

sg Distance of arc (i,j) € A

8 Travelling time of arc (i,j) € A

[a;, b;] Time window of jobi € V

[a,,b,] Time window of nurse n € N

d; Service duration of jobi € V

Gin Competency level requirement of job i € V for type
uelU

Qo Competency level of nurse n € N for type u € U

Y, Battery capacity of EV k € K

Cp Consumption rate of EV k € K, i.e., the amount of
energy consumed per unit instance

r Recharging rate of EVs

P Binary parameter indicating whether jobs i,j € J are
synchronized or not

aj‘.” Penalty cost of job j € J

aflv Fixed cost of utilizing a nurse n € N

a€ Unit energy cost of using fast chargers in a CS

Binary variable indicating whether EV k € K travels
on arc (i,j) € A or not

Binary variable indicating whether nurse n € N is
assigned to EV k € K or not

Binary variable indicating whether job j € J is
served or not
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Table 15 (continued)

Notation

Definition

Continuous Variables
Yik

8ik

Lik

Wik

Oik

SoC of EV k € K at the arrival time of nodei € V
SoC of EV k € K at the departure time of CSi € S
Starting time of EV k € K atnodei € V

Charge duration of EVke KatCSie S

Amount of recharged energy at CSi € S for EV

ke K

A.1 GRASP and AVNS results for instances with 40 and 60 jobs

See the Tables 16 and 17.

Table 16 GRASP and AVNS results for instances with 40 jobs

Instance ~ GRASP AVNS GRASP-
AVNS
Best Obj Time (s) Best Obj Time (s) Fixed Travelling Unserved Imp (%)
Nurse Cost Cost (%) Job
(%) Cost(%)

40j-G1-1 8698.46 27 3866.14 144 73.7 5.6 20.7 55.6
40j-G1-2  6632.31 29 3042.50 217 93.7 6.3 0.0 54.1
40j-G2-1 8012.82 26 3101.47 212 91.9 8.1 0.0 61.3
40j-G2-2 8035.67 31 3879.65 91 73.5 59 20.6 51.7
40j-G3-1 7946.11 35 304291 193 93.7 6.3 0.0 61.7
40j-G3-2  7412.32 32 3042.33 175 93.7 6.3 0.0 59.0
40j-G4-1  7199.49 30 2496.32 75 94.1 5.9 0.0 65.3
405-G4-2 5378.24 27 2978.89 136 95.7 43 0.0 44.6
40j-G5-1 7269.29 26 354435 153 94.5 55 0.0 51.2
40j-G5-2  7587.07 30 3056.06 103 93.3 6.7 0.0 59.7
40j-G6-1 7564.80 31 3603.59 215 93.0 7.0 0.0 524
40j-G6-2  9703.98 30 5535.63 208 80.4 52 14.5 43.0
40j-G7-1 7660.90 33 3003.14 124 94.9 5.1 0.0 60.8
40j-G7-2  7335.52 29 3150.17 96 92.1 79 0.0 57.1

Min 75 73.5 43 0.0 43.0

Max 217 95.7 8.1 20.7 65.3

Avg 153 89.9 6.2 4.0 55.5
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Table 17 GRASP and AVNS results for instances with 60 jobs

Instance ~ GRASP AVNS GRASP-
AVNS
Best Obj Time (s) Best Obj Time (s) Fixed Travelling Unserved  Imp (%)
Nurse Cost Cost (%) Job
(%) Cost(%)

60j-G1-1 11495.21 116 4856.17 768 87.5 12.5 0.0 57.8
60j-G1-2 13053.68 117 5612.37 351 66.8 4.7 28.5 57.0
60j-G2-1 14020.07 120 6680.52 846 57.6 6.4 359 52.4
60j-G2-2 1244222 119 4162.29 536 90.1 9.9 0.0 66.5
60j-G3-1 1244433 119 4234.01 852 89.8 10.2 0.0 66.0
60j-G3-2 1123845 117 429825 370 87.2 12.8 0.0 61.8
60j-G4-1 12601.12 122 4173.88 460 92.0 8.0 0.0 66.9
60j-G4-2  10917.84 121 4374.58 856 84.6 15.4 0.0 59.9
60j-G5-1 1412829 116 5115.26 616 733 11.1 15.6 63.8
60j-G5-2  13400.17 119 4771.09 781 78.6 4.6 16.8 64.4
60j-G6—1 14645.61 121 6629.85 836 79.9 8.0 12.1 54.7
60j-G6-2 10934.01 121 4541.85 501 84.8 15.2 0.0 58.5
60j-G7-1 11460.23 122 6344.15 579 76.4 10.9 12.6 44.6
60j-G7-2 1413034 119 5428.29 499 78.3 7.0 14.7 61.6

Min 351 57.6 4.7 0.0 44.6

Max 836 92.0 15.4 359 67.7

Avg 632.2 80.4 9.9 9.7 60.1
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