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Abstract
In this paper, we introduce a last-mile delivery concept that is well suited for urban 
areas. By jointly optimizing the tour of a truck and a cargo bike, we ensure that each 
vehicle is used optimally. Here, we assume that the bike is restocked by meeting 
up with the truck so that no dedicated mini-hubs have to be constructed. We model 
different objective functions and analyze the different variants in comparison to the 
traveling salesperson problem as well as the capacitated vehicle routing problem. 
In an experimental evaluation, we compare MIP formulations for different problem 
variants and assess several heuristic approaches to solve large-scale instances. These 
results show that we can outperform the truck-only delivery in terms of completion 
time while reducing the distance driven by the truck.

Keywords Last-mile logistics · Cargo bike · Mixed-integer programming · Two-
echelon · Routing

1 Introduction

Last-mile deliveries in urban areas are becoming increasingly important, as high-
lighted, for example, in Boysen et al.  (2020). With a given set of demand points, 
the goal is to determine routes for delivery vehicles that cover all demand points 
and minimize a generalized cost function. To avoid straining the urban infrastruc-
ture, even more, fast, efficient and environmentally friendly solution approaches are 
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needed. Thus, recent approaches focus on supplementing truck deliveries with addi-
tional transport modes with a lower environmental impact that is well suited in an 
urban setting. Some approaches include drones, other small autonomous vehicles or 
cargo bikes. Here, each kind of vehicle has its own properties and restrictions, result-
ing in differing modeling approaches. Drones, e.g., have a very limited capacity, but 
can be transported by a delivery truck, while cargo bikes have a significantly higher 
capacity, but usually cannot be transported themselves. By distributing deliveries to 
multiple vehicles, the need to hand over packages from one (larger) vehicle to the 
next (smaller) one arises. This can either take place at dedicated hubs, which might 
also serve as mini-depots, or at any location along the route of the larger vehicle. 
Introducing hubs as mini-depots allows for scheduling the varying delivery vehicles 
almost independently, but requires allocating suitable locations and implies building 
costs. Alternatively, handing over deliveries along the route requires synchroniza-
tion between the routes of different vehicles, which increases flexibility in response 
to demand fluctuations, but results in a more involved model.

In this paper, we model and solve the problem when deliveries are combined 
between a truck and a cargo bike, and goods can be handed over at any stop on 
the route. To be more precise, we have a set of customers, each with a specific 
demand, a truck depot used as a starting point for a delivery truck and storing all 
packages corresponding to the customer’s demand, as well as a bike depot that 
serves as the starting point for one or multiple cargo bikes. Now, each vehicle 
supplies a subset of customers such that all demands of the complete set of cus-
tomers are fulfilled. Due to the limited capacity of the cargo bike and the fact that 
the truck transports all packages, the bike has to meet up with the truck regularly 
to be restocked. This can be done at any customer location while the truck sup-
plies the corresponding customer. Consequently, the objective is to minimize the 
resulting generalized costs depending on time or distance. We illustrate the con-
cept of combine truck-and-cargo-bike tours in Example 1.

Example 1 Figure 1 shows a truck tour (solid edges) and a bike tour (dashed edges). 
Both tours start and end at the respective depots. (Black house in the middle corre-
sponds to the cargo bike depot, and truck depot is on the left.) All other nodes repre-
sent customer locations with unit demand. As the cargo bike has a capacity of two, 
bike and truck tours are synchronized accordingly, such that the first and the fifth 
customer location of the truck tour serve as handover locations.

Assuming unit edge length, the truck tour has a length of nine, while the bike tour 
has a length of eight due to the synchronization at the second handover location. The 
completion time, i.e., the time until both vehicles have returned to the depot, is nine.

As no dedicated infrastructure has to be built for this delivery setting, this 
method can easily be implemented and is robust against changing demand. The 
main contributions of the paper can be summarized as follows:

• we formulate the main problem and introduce MIP formulations for several 
variants with different cost functions, objectives and multiple cargo bikes,
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• we discuss the relationship to the traveling salesperson problem (TSP) as well 
as the capacitated vehicle routing problem, analyze the potential improvements 
compared to the TSP and provide approximation bounds,

• we propose three solution algorithms based on clustering, savings and reinforce-
ment learning,

• and we evaluate the performance of all algorithms and MIP formulations on arti-
ficial and close-to-real-world instances.

In Sect. 2, we discuss the relevant literature and differentiate our setting from exist-
ing papers. We model the problem as a mixed-integer program in Sect. 3 and intro-
duce several possible objective functions as well as problem variants. Three heu-
ristic solution approaches are introduced in Sect.  4 and evaluated experimentally 
on artificial and close-to-real-world instances in Sect. 5. Here, we analyze how the 
instance size, the bike capacity and the speed differences between the vehicles influ-
ence the solution process and the structure of the solutions. Section 6 concludes the 
paper.

2  Literature review

City logistics has gained increasing attention in recent years as urbanization con-
tinues to intensify. It typically refers to the planning, organization and optimization 
of freight transportation and logistics activities within urban areas and includes the 
movement of goods, services and information (Bektas et al.  2015). Addressing the 
complex interactions between various stakeholders such as suppliers, carriers, retail-
ers and consumers, the integration of advanced technologies, such as intelligent 
transport systems, big data and artificial intelligence, plays a crucial role in more 
recent approaches (Taniguchi et  al.  2020). In this work, we address some of the 
arising key challenges, including environmental sustainability, congestion and traffic 

Fig. 1  Example of truck (solid edges) and bike tour (dashed edges) with bike capacity two and two hand-
over locations
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management, and last-mile delivery (Anand et al.  2012; Russo and Comi  2020), 
with a focus on the latter.

There are many different types of last-mile delivery concepts in the literature; for 
an overview, we refer to Boysen et al.  (2020). Often, these concepts are variants or 
extensions of the traveling salesperson problem (TSP) (Jünger et al.  1995; Apple-
gate et al.  2011) or vehicle routing problem (VRP) (Toth and Vigo  2014). Some of 
those include time windows (Desrochers et al.  1992), backhauls (Goetschalckx and 
Jacobs-Blecha  1989), split deliveries (Dror and Trudeau  1990), stochastic demands 
(Bertsimas  1992), stochastic presence of customers (Gendreau et al.  1995) or sto-
chastic travel times (Laporte et al.  1992; Malandraki and Daskin  1992). In other 
variants, a mixed fleet is considered, called heterogeneous fleet VRP (Baldacci et al.  
2008), where the types of vehicles can differ in capacity, speed, variable and fixed 
costs, and the customers that they can access. For example, the truck-and-trailer 
routing problem (Chao  2002; Lin et al.  2011) involves managing a fleet compris-
ing at least two vehicle types: normal trucks without trailers and truck-and-trailer 
combinations. While the latter is attractive due to its larger overall capacity, some 
customers can only be reached by a normal truck. A more general version of this 
is the VRP with Trailers and Transshipments (Drexl  2013) where there is no fixed 
assignment of trailers to trucks.

Another important variant is the pickup and delivery problem (Berbeglia et  al.  
2007), which can be expanded by integrating a fixed route service as in Ghilas et al.  
(2016). Here, requests need to be scheduled involving pickup and drop-off locations 
with specified time windows and maximum ride times. The orders can be fulfilled 
by a delivery truck alone or be supplemented by a fixed route service, meaning that 
it can cover a part of the route and make use of spare capacity. The goal is to allo-
cate vehicles, plan routes efficiently, and meet capacity and time window constraints 
while considering both trucks and fixed route services.

In the vehicle routing problem with cross-docking (Wen et al.  2009), a given set 
of pickup and delivery requests is addressed by a fleet of identical vehicles starting 
and ending at a cross-dock. They are used to drive both a pickup route to collect 
goods from suppliers and transport them to the cross-dock and, after unloading and 
reloading, a delivery route to deliver them to the corresponding customers.

The authors of Zäpfel and Bögl  (2008) tackle the problem of local letter mail 
distribution. This involves simultaneous vehicle and driver routing and schedul-
ing, taking into account constraints on working and driving times and considering 
the option of outsourcing vehicle routes to external carriers. Here, delivery routes, 
transporting shipments from the distribution center to the local post offices, as well 
as separate pickup routes for outbound shipments, have to be planned during one 
week, allowing the reuse of drivers and vehicles across multiple routes.

Our proposed approach corresponds to the field of vehicle routing problems with 
multiple synchronization constraints. Besides the assignment of customers to the 
supplying vehicle, additional synchronization requirements in terms of time, loca-
tion and load are necessary to model the related problems. Typically, there are dif-
ferent types of autonomous and non-autonomous vehicles, capacities, tasks or loads, 
and locations, such as customers, transfer locations or depots. For interested readers, 
we refer to Drexl  (2012). The main difference between our approach to those in 
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Drexl  (2012) lies in the joint consideration of large (truck) and small (cargo bikes) 
independent vehicles, both supplying customers that can serve as transfer locations 
and their synchronization in time.

Our model is related to both models for routing trucks and drones and two-eche-
lon routing problems. Table 1 gives an overview of similarities and differences.

The flying sidekick traveling salesman problem (FSTSP) is introduced in Murray 
and Chu  (2015) and consists of optimal customer assignments for a drone support-
ing a delivery truck. In each drone subtour, starting at the depot or from a customer 
location after synchronizing with the truck, the drone supplies exactly one customer 
within the limited flight endurance. For longer distances, recharging or to conserve 
battery power, the drone can be transported by the truck. In order to minimize the 
time required to serve all customers, the authors proposed an MIP formulation as 
well as a route and re-assign heuristic. Another simple greedy heuristic to solve 
FSTSP is presented in Crişan and Nechita  (2019). Starting from a TSP tour, nodes 
are assigned to the drone in descending order of the corresponding time savings.

The authors of Agatz et al.  (2018) propose the TSP with drone (TSP-D), a simi-
lar concept to FSTSP. Here, the truck can visit customers more than once as this 
could be useful for reloading or transporting the drone and can wait for the drone to 
return to the same node where the drone started. They present an operation-based IP 
formulation, where an operation represents part of a tour that contains at most one 
drone node. Since the number of operations grows exponentially with the number 
of nodes, the IP can only be solved for small instances, and the authors introduce a 
route-first cluster-second heuristic. In Bouman et al.  (2018), the same authors pre-
sented an improved method as well as a variant that considers a subset of operations 
in order to reduce the computational time at the expense of accuracy.

Two alternative MIP formulations to the FSTSP are provided in Schermer et al.  
(2020). In fact, the authors propose a third MIP formulation, partly based on the 
concept of operations introduced in Agatz et al.  (2018), with an exponential number 
of constraints and use this formulation for a branch-and-cut approach.

A slightly different concept regarding the combination of trucks and drones is 
pursued in Amorosi et  al.  (2021). Instead of visiting nodes in the graph, a given 
percentage of the edge lengths of a set of graphs has to be inspected (i.e., visited) by 
a drone. To address this problem, the authors propose a nonlinear MIP formulation 
and a matheuristic.

In two-echelon routing problems (a special case of multi-echelon vehicle routing 
problems (Gonzalez-Feliu et al.  2008; Perboli et al.  2011)), a distribution network 
with two levels (echelons) is considered; see (Cuda et al.  2015; Sluijk et al.  2023). 
Here, the primary vehicles start from a subset of predefined depots and transport 
goods to a subset of predefined handover locations, called satellites, with their own 
capacities. From there, the secondary vehicles deliver the goods to the customers. 
While in some formulations, the subsets of depots and satellites have to be selected 
(e.g., Contardo et  al.  2012), in others, one (Nguyen et  al.  2012) or both (Hem-
melmayr et  al.  2012) are predefined. There are also variants where both vehicles 
have to be at a satellite location at the same time, as there is no way to store the 
goods (Grangier et  al.  2016). A variant of the two-echelon routing problem con-
cerning trucks and cargo bikes, similar to the concept we introduce, can be found in 
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Table 1  Overview of the related literature

Literature PV 
sup-
plies 
cus-
tomers

Multi-
ple SVs 
per PV 
possible

SV 
moves 
on net-
work

SV can 
be trans-
ported

Handover 
at customer 
location

Synchro-
nization of 
PV and SV

SV 
capacity 
> 1 pos-
sible

Predefined 
depot/hando-
ver/assign-
ment

Murray and Chu  (2015) ∙ ◦
a

◦ ∙ ∙ ∙ ◦ ∙/◦/◦

Agatz et al.  (2018) ∙ ◦
a

◦ ∙ ∙ ∙ ◦ ∙/◦/◦

Liu et al.  (2020) ∙ ◦
a ∙ ∙ ∙ ∙ ∙ ∙/◦/◦

Amorosi et al.  (2021) ◦ ∙a ◦ ∙ ◦
c ∙ ◦

g ∙/◦/∙

Anderluh et al.  (2017) ∙ ∙b ∙ ◦ ◦
d ∙ ∙ ∙/∙/∙

Grangier et al.  (2016) ◦ ∙ ∙ ◦ ◦
d ∙ ∙ ∙/∙/∙

Nguyen and Hà  (2023) ∙ ∙a ◦ ◦ ◦
e

◦ ∙h ∙/-/◦

Boysen et al.  (2018) ∙ ∙a ∙ ∙ ∙ ∙ ◦ ∙/◦/∙i

Contardo et al.  (2012) ◦ ∙ ∙ ◦ ◦
d ◦ ∙ ∙j/∙/∙

Nguyen et al.  (2012) ◦ ∙ ∙ ◦ ◦
d ◦ ∙ ∙/∙/∙

Hemmelmayr et al.  
(2012)

◦ ∙ ∙ ◦ ◦
d ◦ ∙ ∙/∙/∙

Anderluh et al.  (2021) ∙ ∙ ∙ ◦ ◦
d ∙ ∙ ∙/∙/∙k

Li et al.  (2021) ◦ ∙ ∙ ◦ ◦
d ∙f ∙ ∙/∙/∙

Li et al.  (2022) ∙ ◦ ∙ ∙ ∙ ∙ ∙ ∙/◦/∙l

Tong et al.  (2022) ∙ ◦
a ∙ ∙ ∙ ∙ ◦ ∙/◦/◦

Bogyrbayeva et al.  
(2023)

∙ ◦
a ∙ ∙ ∙ ∙ ◦ ∙/◦/◦

Sutrisno and Yang  
(2023)

◦ ∙ ∙ ◦ ◦
d ∙ ∙ ∙/∙j/◦

Zhou et al.  (2023) ∙ ∙a ∙ ∙ ∙ ◦ ◦ ∙/◦/◦

Vu et al.  (2022) ◦ ∙a ∙ ∙
◦
d ◦ ◦ ∙/∙j/∙

our approach ∙ ∙b ∙ ◦ ∙ ∙ ∙ ∙/◦/◦

Notation: yes ( ∙ ), no ( ◦ ), primary vehicle (PV), secondary vehicle (SV)
aDrone
bCargo bike
cAnywhere
dSatellite
eDepot
fSynchronization between two types of satellites
gOne target graph per drone
hOnly one customer per drone tour
iPredefined truck tour
jPredefined set of possible depots or handover locations
kPredefined assignment, except for a subset of customers in a so-called gray zone 
lPredefined set of customers that cannot be visited by the primary vehicle, the remaining customers are 
visited by the secondary or both vehicles



1 3

Optimizing combined tours: The truck-and-cargo-bike case  

Anderluh et al.  (2017). As in our concept, both vehicles start at their corresponding 
depot, deliver packages to customers and require synchronization in time and loca-
tion to reload the cargo bike. The main difference to our approach lies in the fact 
that the truck and bike nodes are predefined in Anderluh et al.  (2017), reducing the 
complexity. Moreover, the possible locations to reload the cargo bike differ from the 
customer nodes and are determined a priori. In Anderluh et al.  (2021), the authors 
extend the aforementioned model by allowing a so-called gray zone in which the 
corresponding customers can be supplied by both types of vehicles.

In Appendices B.2 and B.1, we discuss the relationship to truck-and-drone mod-
els as well as two-echelon routing models in more detail by showing how our model 
can be adapted to the problem described in Murray and Chu  (2015); Anderluh et al.  
(2017).

3  Model

To introduce our problem formally, we use the following notation. Let G� = (V ,E�) 
be a digraph, where vt ∈ V  and vb ∈ V  represent the truck depot and the bike depot, 
respectively. The remaining nodes v1, ..., vn ∈ V  serve as the customer locations with 
demand d(vi) ∈ ℝ≥0 (w.l.o.g. d(vi) > 0 ) for all i ∈ [n] . We set d(vt) = d(vb) = 0 for 
completeness. Since we only use one truck, we assume that 

∑

v∈V d(v) ≤ Ct , where 
Ct denotes the truck capacity and Cb the bike capacity. Note that the demand at each 
node has to be served completely by one vehicle.

For each edge e = (vi, vj) ∈ E� , we have truck ct(e) = ct(vi, vj) and bike weights 
cb(e) = cb(vi, vj) corresponding to the costs of the truck and the bike to travel from vi 
to vj , respectively. To simplify the notation for the remainder of the paper, we con-
struct a complete digraph G = (V ,E) from G′ and define ct(x, y) ∶= ct(spt(x, y)) and 
cb(x, y) ∶= cb(spb(x, y)) . Here spt(x, y) denotes the shortest path from x to y (in terms 
of truck costs ct in G′ ) and spb(x, y) the shortest path in terms of bike costs cb in G′ . 
If there exists no path between two nodes x′ and y′ for one of the two vehicles, we 
define ct(x�, y�) ∶= ∞ or cb(x�, y�) ∶= ∞ . As a consequence, both cost functions ct 
and cb in the modified graph G satisfy the triangle inequality. To transfer a solution 
back to the original graph G′ , we store the corresponding shortest paths.

We call (T,B) a solution to the combined logistics problem, where 
T = (t0 = vt, t1, ..., tk = vt) denotes the truck tour with start and end node t0 = vt 
and B = (b0 = vb, b1, ..., bl = vb) the cargo bike tour. For the following notation, we 
assume that both tours T  , B are non-empty.

In particular, there must be at least one node v ∈ V  with 0 ≠ d(v) ≤ Cb ; other-
wise, the bike cannot be used. In addition, to call (T,B) a feasible solution, further 
properties are required.

The combined tour (T,B) has to cover the demand of all nodes v ∈ V , i.e., each node 
has to be served by either the bike or the truck. Nodes visited by both vehicles, called 
combined nodes ( �1, ..., �m ), are supplied by the truck and used to reload the cargo bike 
with the required goods. If vt ≠ vb , the bike starts without any goods. Therefore, the 
first node visited has to be a combined node (i.e., b1 = �1 ). Since the cargo bike has 
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only a limited capacity, the summed demands of the nodes between two successive 
combined nodes on the bike tour B may not exceed Cb.

Problem 2 Let a complete digraph G = (V ,E) with edge costs ct(e), cb(e) , e ∈ E for 
truck and cargo bike be given, as well as a bike capacity Cb and demand d(v), v ∈ V  , 
with no demand at the depots. The combined truck-and-cargo-bike routing problem 
(CTBRP) is to find a feasible combined tour (T,B) such that the generalized costs of 
the combined tour are minimized.

3.1  Cost structure

From the practical application, there are many different interpretations of the general-
ized costs that might be interesting to consider, especially concerning tour durations 
and distance covered. We, therefore, introduce various kinds of objective functions in 
Sect. 3.2. From a theoretical standpoint, the most important distinction is between inde-
pendent costs and synchronized costs. 

1. Independent costs: for some objectives, the costs of the truck tour and the bike 
tour can be computed separately, distributed to the edges as ct(e) and cb(e) , respec-
tively. This includes distance-based costs, i.e., a weighted sum of the distance 
covered by the truck and the cargo bike, but also emission-based costs.

2. Synchronized costs: when the duration of one or both tours is minimized, it does 
not suffice to model the objective independently. At each combined stop, the 
synchronization of both tours has to be guaranteed, i.e., the time since the last 
combined stop has to be long enough for both the truck and the cargo bike to serve 
all intermediate stops.

For independent costs, we define the costs of the truck and cargo bike tour as

For synchronized costs, we take into account that the vehicles have to wait for each 
other at the combined nodes. Subsequently, the duration between two successive 
combined nodes �i , �i+1 on the corresponding tour is the costs of the slower vehicle 
(the vehicle with the higher summed costs) between the two nodes. To determine 
the costs of a tour, we need to sum up these durations between all successive com-
bined nodes, as well as the summed costs (of the corresponding vehicle) between 
the last combined node �m and the depot. To describe this, we extend the notation 
and define the truck costs of a path from node ti to node tj ( i < j ) regarding tour 
T = (t0 = vt, t1, ..., tk = vt) by

ct(T) ∶=

k−1
∑

i=0

ct(ti, ti+1) and cb(B) ∶=

l−1
∑

i=0

cb(bi, bi+1).

ct(ti, tj, T) ∶=

j−1
∑

x=i

ct(tx, tx+1).
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An equivalent definition applies to the bike costs regarding B, bi and bj ( i < j):

Now we have

and similarly, for

We overload the notation and use �0 ∶= vt in ct and �0 ∶= vb in cb.
The preceding definition of the synchronized costs assumes that both vehicles 

start at the same time. This is useful in objective functions minimizing the delivery 
period, also known as completion time in the literature (e.g., Agatz et al.  2018). If 
we want to minimize the longest tour, the former formulation needs a slight modifi-
cation. We can assume that the bike and the truck arrive at the first combined node 
�1 at the same time. Subsequently, we add the summed costs (of the corresponding 
vehicle) between the depot and the first combined node �1 instead of the maximum 
of both vehicles. This results in the following definition:

and similarly, for

Note that if vt ≠ vb , the first node the cargo bike visits after the depot has to be a 
combined node. In this case, cb(vb, �1,B) = cb(vb, b1) = cb(vb, �1) applies.

Obviously, ĉt(T) ≥ c̃t(T) ≥ ct(T) and ĉb(B) ≥ c̃b(B) ≥ cb(B) holds.

3.2  MIP formulations

In this section, we present our main MIP formulation for the combined truck-and-cargo-
bike routing problem with one truck and one bike. This is based on synchronized (time-
based) costs while the objective is to minimize the completion time (tbc_mct). Further-
more, we describe variations of the latter, taking into account different cost structures, 
objective functions and other relevant properties. Note that the MIP formulations only 
consider solutions (T,B) with T ≠ ∅ and B ≠ ∅ . Therefore, an optimal solution of the 

cb(bi, bj,B) ∶=

j−1
∑

x=i

cb(bx, bx+1).

(1)ĉt(T) ∶=

m−1
∑

i=0

max
{

ct(𝜅i, 𝜅i+1, T), c
b(𝜅i, 𝜅i+1,B)

}

+ ct(𝜅m, vt, T),

(2)ĉb(B) ∶=

m−1
∑

i=0

max
{

ct(𝜅i, 𝜅i+1, T), c
b(𝜅i, 𝜅i+1,B)

}

+ cb(𝜅m, vb,B).

(3)

c̃t(T) ∶=

m−1
∑

i=1

max
{

ct(𝜅i, 𝜅i+1, T), c
b(𝜅i, 𝜅i+1,B)

}

+ ct(vt, 𝜅1, T) + ct(𝜅m, vt, T),

(4)

c̃b(B) ∶=

m−1
∑

i=1

max
{

ct(𝜅i, 𝜅i+1, T), c
b(𝜅i, 𝜅i+1,B)

}

+ cb(vb, 𝜅1,B) + cb(𝜅m, vb,B).
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MIP formulation has to be compared to an optimal solution using only the truck or the 
bike, respectively, which can be computed as a TSP.

Starting with the main formulation (tbc_mct), we define binary variables xt
(v,w)

 , 
xb
(v,w)

 , xt
v
 and xb

v
 , which indicate, respectively, whether the corresponding edge 

(v,w) ∈ E or node v ∈ V is on the truck or bike tour.
The variables dv represent the costs of the respective tour starting at vt or vb up to 

node v ∈ V , taking into account that both vehicles have to wait for each other at the 
combined nodes. More intuitively, dv represents the time when the respective vehicle 
reaches node v or the time of the slower vehicle in case v is visited by both the truck 
and cargo bike. Regardless of the cost function, we need these variables to ensure that 
both vehicles visit the combined nodes in the same order.

Last, we define variables �v for v ∈ V to take the limited bike capacity Cb into 
account. The value of �v describes the number of goods delivered from the bike up to 
and including node v, starting after the last reloading at a combined node. The resulting 
MIP is shown in (5)–(19).

Constraints (10)–(11) ensure that each truck and bike node has exactly one incom-
ing and outgoing edge on the corresponding tour. With constraints (7), both tours start 
at their respective depot, and with (9), each node is supplied by at least one of the two 
vehicles. If vt ≠ vb, constraints (12) ensure that the first node visited by the bike is a 
truck node; otherwise, (12) is not necessary.

(5)min z

(6)s.t. d
v
t
, d

v
b
≤ z

(7)xt
vt
, xb

vb
= 1

(8)xb
vt
, xt

vb
= 0

(9)1 ≤ xt
v
+ xb

v
∀ v ∈ V

(10)

∑

w ∈ V

w ≠ v

xt
(v,w)

=
∑

w ∈ V

w ≠ v

xt
(w,v)

= xt
v

∀ v ∈ V

(11)

∑

w ∈ V

w ≠ v

xb
(v,w)

=
∑

w ∈ V

w ≠ v

xb
(w,v)

= xb
v

∀ v ∈ V

(12)xb
(vb,v)

≤ xt
v

∀ v ∈ V

v ≠ vb
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Lemma 3 Constraints (13)–(14) ensure that the cargo bike visits a truck node for 
reloading (if necessary) without exceeding the capacity.

Proof The value of �v describes the number of goods delivered from the bike up to 
and including node v, starting after the last reloading at a combined node. Conse-
quently, this value may not exceed Cb and is set to 0 at each truck node, especially at 
all combined nodes (i.e., all combined nodes are served by the truck). Constraints 
(13) ensure the latter. If v is a truck node, it follows that xt

v
= 1 , and therefore, 

0 ≤ �v ≤ 0 . Otherwise, we have xt
v
= 0 and �v ≤ Cb . If the bike drives from v to w 

(i.e., xb
(v,w)

= 1 ) and w is not a combined node (in particular, not a truck node, i.e., 
xt
w
= 0 ), it follows from constraints (14) that �v + d(w) ≤ �w. For any other case, we 

get (1 − xb
(v,w)

+ xt
w
) ≥ 1 , and since

holds, we get

and obtain 0 ≤ �w . Consequently, there is no relevant bound on �w .   ◻

Lemma 4 The MIP formulation in (5)–(19) ensures that both vehicles meet at the 
same time at a combined node and takes the resulting waiting times into account.

(13)𝓁v ≤ (1 − xt
v
) ⋅ Cb ∀ v ∈ V

(14)𝓁v + d(w) − 𝓁w ≤ (1 − xb
(v,w)

+ xt
w
) ⋅ (Cb +max

v�∈V
{d(v�)}) ∀ (v,w) ∈ E

(15)xt
(vt ,v)

⋅ ct(vt, v) ≤ dv ∀ v ∈ V

(16)xb
(vb,v)

⋅ cb(vb, v) ≤ dv ∀ v ∈ V

(17)

ct(v,w) ⋅ xt
(v,w)

+ cb(v,w) ⋅ xb
(v,w)

≤ dw − dv + (1 − xt
(v,w)

− xb
(v,w)

) ⋅M
∀ (v,w) ∈ E

v ≠ vt, vb

(18)xt
e
, xb

e
, xt

v
, xb

v
∈ {0, 1} ∀ e ∈ E, v ∈ V

(19)dv,�v ≥ 0 ∀ v ∈ V

�v ≤ Cb and d(w) ≤ max
v∈V

{d(v)},

𝓁v
⏟⏟⏟

≤Cb

+ d(w)
⏟⏟⏟

≤maxv∈V{d(v)}

≤ 𝓁w + (1 − xb
(v,w)

+ xt
w
)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
≥1

⋅(Cb +max
v∈V

{d(v)})
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Proof The proof can be found in Appendix A.   ◻

Note that in this formulation, both vehicles start at the same time. Consequently, 
objective (5) minimizes the completion time due to constraints (6).

Lemma 5 Constraints (17) serve as subtour elimination constraints for the truck 
and bike tour, respectively.

Proof The proof can be found in Appendix A.   ◻

For all formulations, including synchronization between the vehicles, we need to 
choose M in constraints (17) large enough. In particular, M has to satisfy

if the corresponding xt
(v,w)

 or xb
(v,w)

 is equal to zero.
While max(v,w)∈E{c

t(v,w), cb(v,w)} is easy to determine a priori, this is not readily 
possible for maxv∈V{dv} . Consequently, we have to estimate the latter by, for example, 
∑

e∈E max{ct(e), cb(e)}.

3.2.1  Time‑based costs minimizing longest tour (tbc_mlt)

To assume the bike and the truck arrive at the first combined node �1 always at the 
same time, our MIP needs a slight modification. By adding continuous variables gt and 
gb , we indicate the gap between the departure time of the first and second vehicle. Sub-
sequently, we have gt > 0, gb = 0 or gt = 0, gb > 0 . In addition, we replace constraints 
(15), (16) and (6) by

Under this assumption, it follows that dvt − gt equals the truck tour costs in (3) and 
dvb − gb equals the bike tour costs in (4). Consequently, the objective function (5) 
minimizes the maximum of both tour costs due to constraints (20) and (21).

dv − dw + max
(v,w)∈E

{ct(v,w), cb(v,w)} ≤ max
v∈V

{dv} + max
(v,w)∈E

{ct(v,w), cb(v,w)},

(20)dvt − gt ≤ z

(21)dvb − gb ≤ z

(22)xt
(vt ,v)

⋅ ct(vt, v) + gt ≤ dv ∀ v ∈ V

(23)xb
(vb,v)

⋅ cb(vb, v) + gb ≤ dv ∀ v ∈ V

(24)gt, gb ≥ 0.
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3.2.2  Time‑based costs minimizing summed tour durations (tbc_mst)

To minimize the summed tour durations with vehicles starting at the same time, we 
can modify our MIP by removing constraints (6) and replacing the objective func-
tion (5) by

Remark If vehicles do not have to start at the same time, we instead use the previous 
formulation (tbc_mlt), replace the objective (5) by

and remove constraints (20) and (21).

3.2.3  Distance‑based costs with synchronization (dbc_ws)

The calculation of the tour costs becomes much easier if ct(v,w) and cb(v,w) repre-
sent distance-based costs between node v and node w. As mentioned at the begin-
ning of this section, we can easily sum up the costs of all edges used since there is 
no need to consider waiting times. Nevertheless, we cannot neglect the variables dv 
and the corresponding constraints to ensure that both vehicles visit the combined 
nodes in the same order. Subsequently, we only remove (6) and replace the objective 
(5) in (5)–(19) by

3.2.4  Distance‑based costs without synchronization (dbc_os)

By assuming that the truck can safely deposit the goods at the combined nodes until 
the bike arrives, the bike and truck do not need to be at a combined node at the same 
time to reload. Therefore, we can remove variables dv and the associated constraints 
in the above formulation.

As a consequence, we have to add extra constraints to eliminate subtours in the 
bike and the truck tour. Those from the Miller–Trucker–Zemlin formulation in 
Miller et al.  (1960) are suitable, as they are also compatible if we allow multiple 
bikes.

3.2.5  MIP model with multiple bikes

We can extend the previous MIP formulations by slightly modifying constraints 
(11), similar to the vehicle routing MIP formulation to model using multiple bikes. 

(25)dvt + dvb .

(26)dvt + dvb − gb − gt,

(27)
∑

(v,w)∈E

(

xt
(v,w)

⋅ ct(v,w) + xb
(v,w)

⋅ cb(v,w)
)

.
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Instead of one, we can set or limit the in- and outgoing edges from the bike depot to 
any constant number B∗ of allowed cargo bikes. Constraints (28)–(29) represent the 
latter and replace constraints (11).

Note that by using more than one bike, dvb denotes the time when the last bike 
returns to the depot node. Therefore, we can only minimize the completion time 
or the distance-based versions since we cannot distinguish between different cargo 
bikes. Consequently, it is not possible to consider multiple bikes with different 
capacity restrictions in this model. To overcome this, we would have to use separate 
variables for each cargo bike.

3.2.6  Remarks and further variations

The different objective functions with the corresponding generalized costs are sum-
marized in Table 2. As a reminder, cb(B) ( ct(T) ) correspond to the bike (truck) costs 
without waiting times, c̃b(B) ( ̃ct(T) ) are the bike (truck) costs when both start inde-
pendently, but wait for each other at the combined nodes and ĉb(B) ( ̂ct(T) ) are the 
bike (truck) costs when both wait for each other at the combined nodes and start at 
the same time.

Although minimizing carbon emissions may seem reasonable, we have not 
included this objective function in Table 2. This is due to the fact that this leads to a 
minimization of the truck tour duration, which in most cases ends in a very long and 
expensive bike tour.

Further variations of the model, especially reformulations of models from Ander-
luh et al.  (2017) and Murray and Chu  (2015), can be found in Appendix B.3.

Moreover, in Appendix C, we discuss the relationship to the traveling salesperson 
problem as well as the capacitated vehicle routing problem and provide results on 
approximating the improvement of optimal solutions compared to TSP solutions.

4  Solution approaches

As CTBRP is NP-hard, we cannot expect to find good solutions by using standard 
MIP solvers for realistically sized instances, as can be seen in the experiments in 
Sect. 5. Therefore, we introduce different heuristic approaches here.

(28)

∑

w ∈ V

w ≠ v

xb
(v,w)

=
∑

w ∈ V

w ≠ v

xb
(w,v)

= xb
v

∀ v ∈ V

v ≠ vb

(29)

∑

w ∈ V

w ≠ vb

xb
(vb,w)

=
∑

w ∈ V

w ≠ vb

xb
(w,vb)

≤ B∗
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Table 2  Objectives and corresponding generalized costs

Name Objective Generalized costs Cost type MIP

(tbc_mct) Completion time max{ĉt(T), ĉb(B)} Synchronized (time-
based)

(5)–(19)

(tbc_mlt) Longest tour max{c̃t(T), c̃b(B)} Synchronized (time-
based)

(5), (7)–(14), (17)–(24)

(tbc_mst) Summed tour dura-
tions

ĉ
t(T) + ĉ

b(B) Synchronized (time-
based)

(7)–(19), (25)

(dbc_ws) Total tour length c
t(T) + c

b(B) Independent (distance-
based)

(7)–(19), (27)

(dbc_os) Total tour length
c
t(T) + c

b(B)
Independent (distance-

based)
(7)–(14), (18), (19), 

(27),a

a Subtour elimination constraints, e.g., those in Miller et al.  (1960)

4.1  Clustering‑based heuristics

We start with a simple heuristic by clustering the customers first and subsequently 
calculating combined tours in and between the clusters.

An easy first idea is to use a typical clustering algorithm, e.g., k-means cluster-
ing, based on the cost function to create a clustering of the customers. After that, 
we calculate an optimal combined tour in each cluster by ensuring that the number 
of customers in each cluster is sufficiently small. Finally, we link the local solutions 
through a truck and bike tour.

We will not give a more detailed description of this approach because of its obvi-
ous bottleneck: Good local solutions can lead to a bad global solution. The follow-
ing example illustrates the latter.

Example 6 Consider the instance on the left side of Fig. 2. For x large enough, two 
clusters A and B result. Both have the same structure, as shown on the right side in 
Fig. 2.

In an optimal solution, the truck supplies the customers in cluster A and the 
bike those in cluster B (if Cb = 3 , vD = vt = vb, 0 < 𝜖 < 1 , and the demand is 
equal to 1 for all customers). However, since the local optimal solutions in the 
clusters use both the bike ( BA = (A1,A2,A1),BB = (B1,B2,B1) ) and the truck 
( TA = (A1,A3,A1), TB = (B1,B3,B1) ), both clusters are served by both vehicles in 
the resulting global solution as well. For � ⟶ 0 , the costs of this solution tend to 
infinity, but those of an optimal solution remain the same.

Thus, we propose an alternative clustering approach. After creating the cluster-
ing, we first calculate the combined tour between the clusters and, subsequently, 
the corresponding solutions in the clusters. To keep the size and number of clus-
ters small enough, applying both previous steps recursively would be possible. We 
call this algorithm Heuristic-Clustering and give a more detailed description in 
Algorithm 1.
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Algorithm 1  Heuristic-Clustering

Note that a dummy node (corresponding to a cluster center) can only be served 
by the bike if the corresponding summed demands of the nodes contained in that 
cluster do not exceed the bike capacity. Depending on the clustering, certain clus-
ters are thus assigned to the truck a priori. To compute the shortest Hamiltonian 
path between two combined nodes, we use simulated annealing.

Fig. 2  Depot and two clusters (left) and the structure of a cluster on the right side with truck (red) and 
bike costs (blue) (color figure online)
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4.2  TSP‑based heuristic

Motivated by the results in Sect. C.2, we consider an algorithm that starts with the 
same tour for both vehicles (containing all nodes, e.g., an optimal TSP tour for the 
truck) and then successively deletes nodes in both tours to improve the solution. This 
is similar to the savings algorithm by Clarke and Wright  (1964) but in a reversed 
fashion. Instead of merging tours until we obtain a feasible solution, we split both 
tours up while maintaining feasibility.

Algorithm 2  Heuristic-TSP

Algorithm 3  CalculateSavings

This algorithm, called Heuristic-TSP, is described in Algorithm 2, and the proce-
dure how to select the nodes that are removed is described in Algorithm 3. The idea 
of the latter is to calculate the possible savings we get if we remove node vi , which 
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has to be a combined node since, in the other case, removing would not be feasible. 
If we delete this node in a tour, the corresponding vehicle can skip this node, and 
as a consequence, there is no need to wait at vi for the respective other vehicle. The 
resulting savings are denoted in line 13 of Algorithm 3. If we consider a distance-
based formulation instead of (tbc_mct), the resulting savings for truck node ti can be 
calculated as follows:

and for bike node bi

For the experimental evaluation in Sect. 5, we use simulated annealing to calculate 
the TSP tour for the truck and only consider the time-based variant.

4.3  Heuristic based on reinforcement learning

In this section, we take a slightly different approach using reinforcement learning. 
The idea of reinforcement learning is that one or more so-called agents interact with 
a dynamic environment and get instant feedback about their actions and the result-
ing changes to the environment. It belongs to the field of artificial intelligence and 
is used, among other things, in combinatorial optimization, e.g., for solving the TSP 
(Gambardella and Dorigo  1995; Júnior et  al.  2010; Alipour and Razavi  2015; 
Zhang et al.  2020), which motivates its application in our model.

We adopt the reinforcement learning method Q-learning for our setting that is 
based on a Markov decision process (Buşoniu et al.  2010). In each state s, the agent 
has information about the environment and possible actions with the corresponding 
reward. Here, the Q-function Q ∶ S × A → ℝ approximates the expected return we 
get if we take the action a ∈ A in state s ∈ S and then follow an optimal policy. The 
latter means following the sequence of actions that leads to the maximal cumulative 
return. It follows that if the Q-function is optimal, we achieve an optimal policy by 
choosing in every state s an action a′ that maximizes Q(s, a�).

To learn the Q-function, we start with an arbitrary one, and when we transit from 
state s to s′ by taking action a and observing the reward r, we update Q(s,  a) as 
follows:

Here, � denotes the learning rate while the following term describes the difference 
between the current estimate Q(s, a) and updated estimate r + � maxa�∈A Q(s

�, a�) of 
the Q-value. The second hyperparameter is the discount factor � that allows mod-
eling uncertainty about future rewards.

In our setting, the environment consists of the complete graph with nodes, edges, 
demands, positions and costs for both vehicles. We have an agent for the truck and 
one for the bike, respectively, with corresponding Q-functions, which we initialize 

(30)s(ti) ∶= ct(ti−1, ti) + ct(ti, ti+1) − ct(ti−1, ti+1),

(31)s(bi) ∶= cb(bi−1, bi) + cb(bi, bi+1) − cb(bi−1, bi+1).

Q(s, a) ⟵ Q(s, a) + �
(

r + � max
a�∈A

Q(s�, a�) − Q(s, a)
)

.
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with the negative costs of the respective cost function. The state s denotes the node 
that the corresponding vehicle is currently visiting (and the current load of the cargo 
bike), while the state space S includes all visitable nodes. In action space A, we have 
all nodes that can be served by the corresponding vehicle as the next node without 
violating any feasibility constraints. To exclude nodes in A that are already visited 
or to keep the bike from exceeding its capacity, we mask the corresponding actions, 
i.e., we temporarily set their Q-values to −∞ . Consequently, the next visited node 
corresponds to action a. The reward of the action a is equal to the negative time 
(costs) the current combined tour would take extra.

To have a balance between exploration and exploitation, we use the epsilon-
greedy approach, i.e., in each step, we select a random next node with probability � 
and otherwise, the action with the highest Q-value. Afterward, � is updated by mul-
tiplying with 0 < 𝜖′ < 1 . After arriving at the next state, we update the Q-function, 
the visited nodes, the positions of the vehicles and the current load of the bike.

To select the vehicle for the next step, we initialize the probability prob of choos-
ing the truck as follows:

Then, in each step, this value is updated in the following way

where ct(T) and cb(B) are the costs of the current truck and bike tour, respectively.
A training episode is finished after all nodes are visited and both vehicles are 

back at their corresponding depot. Our training consists of 1000 episodes, and we 
choose � = 1 , �� = 0.999 , � = 0.95 and � = 0.8.

5  Experimental evaluation

We evaluate six problem variants introduced in this paper on three classes of 
instances. The first class of artificial instances, I1(n, �) , see Fig. 3, is used to evalu-
ate which parameters influence how difficult the problems are to solve. We espe-
cially evaluate the runtime and gap to an optimal solution for various settings of the 
number of customers n and speedup � . More precisely, for a solution with value SOL 
and an optimal solution with value OPT, the gap refers to SOL−OPT

SOL
.

The second and third classes of realistic instances, IW (n,Cb) and IM(n,Cb) , 
see Fig.  7, consist of up to 250 addresses in Wuppertal and Münster, Germany, 
respectively. Here, we especially consider the solution quality compared to the TSP 
optimum.

The formulations with synchronized (time-based) costs are (tbc_mct), (tbc_mlt), 
(tbc_mst) with objective (25) and (tbc_mct2), which is the same formulation as (tbc_
mct) but with up to two bikes as described in Sect. 3.2.5. Those with independent 

prob ∶=

∑

e∈E c
t(e)

∑

e∈E c
t(e) +

∑

e∈E c
b(e)

.

prob ⟵ 0.7 ⋅ prob + 0.3
ct(T)

ct(T) + cb(B)
,
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distance-based costs are (dbc_ws) and (dbc_os). For an overview of the objective 
functions, see Table 2. To solve the MIP formulations, we use Gurobi 8.1.1 (Gurobi 
2019) and a time limit of 60 min for instances I1(n, �) and 180 min for instances 
IW (n,Cb) and IM(n,Cb) , respectively.

5.1  What makes the problems hard to solve?

Our first instance class I1(n, �) consists of the example introduced in Lemma 11 in 
Appendix C.2, where we use six nodes, i.e., n = 5 customers. We extend this recur-
sively by three nodes (i.e., n ∈ {5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35} ) while we 
maintain the structure of the instance and vary the parameter � ∈ [0.05, 1] in steps 
of 0.05. Recall that � corresponds to the lowest speedup of the truck compared to the 
bike. In Fig. 3, instance I1(8, �) is shown.

As described in Lemma 11, the structure of this instance class is theoretically 
perfectly suited to (tbc_mct) and (tbc_mlt). Additionally, we know that for both for-
mulations, the optimal solution value for I1(n, �) is 2

3
�(1 + n).

Solving MIP formulations We first consider the influence of the parameters n 
and � on the runtime of solving the MIP formulations, see Fig.  4 as well as 
Tables 3 and 4. Note that the runtime of the distance-based models (dbc_ws) and 
(dbc_os) is considerably lower than of the time-based models (tbc_mct) and (tbc_
mlt). On average, the distance-based models can be solved about 5 times faster 
than the time-based ones (within a time limit of 60 minutes). This can be 
explained by the synchronization constraints (described in Lemma 4) and the fact 
that in the time-based models, we want to minimize tour durations, including 
waiting times, which are neglected in the distance-based formulations (especially 
in (dbc_os)). Tables 3 and 4 show that for the time-based models, the time limit 
of one hour leads to suboptimal solutions for n ≥ 11 . However, all distance-based 
models can be solved to optimality up to n = 26 and n = 17 , respectively, within 
the time limit. Therefore, we consider the runtime of the distance-based models 
in Fig.  4a. As expected, increasing the number of demand points n leads to 
increased runtimes. However, also the speedup factor � has a large influence on 
the runtime where instances with � ∈ [0.15, 0.35] take considerably more time to 
solve. A similar correlation can be observed for the time-based models (tbc_mct) 
and (tbc_mlt) in Fig.  4b although the influence of the speedup � is less pro-
nounced. Note that for n ≥ 20 , the problem could not be solved to optimality for 
any � , such that we report the gap of the best solution found within the time limit 
to the theoretically optimal solution �

(

4 +
2

3
(n − 5)

)

=
3

2
�(1 + n) , which can be 

derived from the example in Lemma 11. Note that this gap is considerably tighter 
than the MIP gap reported by Gurobi: For average n, the MIP gap ranged between 
68 and 79%, and the gap to an optimal solution to (tbc_mct) and (tbc_mlt) varied 
from 25% to 55% depending on �.

To further investigate the influence of the speedup factor � on the runtime, 
we analyze the runtime of the models for varying values of � averaged over all 
considered n in Fig. 5. As the runtime of the distance-based models is consider-
ably shorter, we depict these separately in Fig. 5a. Here, we observe that adding 
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synchronization constraints in (dbc_ws) significantly increases the runtime and 
that � = 0.15 results in the most difficult problems. When further increasing � , the 
runtime reduces significantly.

For the time-based models, Fig. 5b shows a different correlation. For increas-
ing � , the average runtime of the time-based models increases. Only for � = 1 , 
i.e., when truck and bike have the same speed, the runtime reduces again, pos-
sibly due to Lemma 14, which shows that for � = 1 the problem reduces to a TSP. 
This shows that adding the synchronized drive time and the waiting time into the 
objective structurally changes the problem and the solution process.

More detailed results can be found in Tables 3 and 4 in Appendix D.1.
Heuristics In Fig. 6, we consider the influence of � and n on the solution qual-

ity of for time-based model (tbc_mct) for Heuristic-Clustering, Heuristic-TSP 
and Q-learning. While for Heuristic-TSP and Q-learning, the influence of n 
seems to be marginal, the solution quality improves with increasing � although 
the influence is rather small for 𝛿 > 0.4 . Similar behavior can be observed for 
Heuristic-Clustering, but here, the solution quality varies a lot with changing n. 
This is probably due to the low time limit of 60 s for solving the MIP, which is 
part of the solution process.

Averaged over all instances I1(n, �) , we observe a gap of 36, 44, 54 and 49% 
for the MIP, Heuristic-TSP, Q-learning and Heuristic-Clustering, respectively. If 
we exclude the five smallest instance sets, i.e., we only consider instances with 
n ≥ 20 ; this leads to a gap of 59, 46, 60 and 70% for the previously mentioned 
solution methods. Thus, the heuristic solutions are competitive to MIP solutions 
for sufficiently large instances. This is especially relevant as overall, the solution 
times are considerably lower for the heuristics with < 11 seconds for Heuristic-
TSP, < 60 seconds for Q-learning and < 80 seconds for Heuristic-Clustering) 
compared to the runtimes of the MIP solver. While the runtime increases with 
increasing n, it appears to be to be independent of �.

More detailed results can be found in Table 8 in Appendix D.1.

5.2  Improvements from TSP

The second and third instance classes IW (n,Cb) and IM(n,Cb) consist of 
n ∈ {10, 20, 50, 100, 250} addresses in Wuppertal (Fig. 7a) and Münster (Fig. 7b), 
respectively, with the corresponding distances and durations of the bike and 

Fig. 3  Instance I
1
(8, �) with 

corresponding edge costs of the 
truck, for the bike costs of edge 
e ∈ E we have cb(e) ∶= � ⋅ ct(e)
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Fig. 4  Instance I
1
(n, �) : Mean values of runtimes and gaps depending on the value of � and number of 

customers n 

Fig. 5  Instance I
1
(n, �) : Runtimes depending on the value of � and averaged over all n 

Table 3  Results for algorithms (dbc_os), (dbc_ws) and (tbc_mst)

The percentage of instances solved to optimality for a given n is stated in column optimal. The gap to the 
optimal solution can be found in column gap. The runtime is given in seconds, and all other results are in 
percent

n (dbc_os) (dbc_ws) (tbc_mst)

Runtime MIP gap Optimal Runtime MIP gap Optimal Runtime MIP gap Optimal

5 0.0 0.0 100.0 0.0 0.0 100.0 0.1 0.0 100.0
8 0.2 0.0 100.0 0.2 0.0 100.0 2.5 0.0 100.0
11 0.7 0.0 100.0 1.3 0.0 100.0 1159.4 0.6 95.0
14 2.0 0.0 100.0 6.5 0.0 100.0 3600.0 85.6 0.0
17 8.8 0.0 100.0 20.9 0.0 100.0 3600.0 92.1 0.0
20 23.0 0.0 100.0 414.4 0.4 95.0 3600.0 95.4 0.0
23 58.7 0.0 100.0 993.1 0.0 80.0 3600.0 97.2 0.0
26 215.5 0.0 100.0 1468.6 0.5 60.0 3600.0 97.9 0.0
29 531.9 1.3 90.0 1739.3 1.1 60.0 3600.0 98.1 0.0
32 726.6 1.0 90.0 2219.0 0.0 50.0 3600.0 98.4 0.0
35 1221.2 2.2 80.0 2587.1 0.0 40.0 3600.0 98.6 0.0
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truck. For each instance size, all associated locations are included in the next 
larger instance. We use the data provided by OpenStreetMap (Boeing  2017; 
OpenStreetMap contributors  2017) and typical speeds on the corresponding road 
types and vehicles. The bike depot is located in the inner city (red markers in 
Fig. 7), and the depot of the truck is in the northernmost and southernmost part 
of the map, respectively (blue markers in Fig. 7). All customers have a uniform 
demand equal to 1, while the capacity of the bike is equal to 50. Even though 
this is a common size in real-world applications, it is not reasonable to use such 
a high value for instances with less than 100 nodes. Therefore, we downsize the 
capacity for these instances, i.e., Cb = 0.2n . Additionally, we analyze the impact 
of varying the impact of the bike capacity.

With the selection of these instances, we pursue three main goals. The first is 
to compare cities with two different structures: While Münster is known to be 
very bike-friendly, Wuppertal is the opposite. In Table 5, the different values of � 
and average ratios of the bike and truck weights underline the latter. The second 
goal is to investigate the influence of the bike capacity and compare the optimal 
solutions for the different objective functions. Finally, we study the behavior of 
our three algorithms with increasing instance size and compare it to the optimal 
TSP objective value. Note that in the TSP solution, the truck visits each node, 
including the bike and truck depot.

Comparing the solution structure between the models First, we consider the 
structure of solutions for the different time- and distance-based models for both 
Wuppertal (IW (20, 4)) and Münster (IM(20, 4)) . Note that as in the previous case, 
the distance-based models are solved within a few seconds to optimality, while 
we obtain significantly higher runtimes for the distance-based models. Here, the 
MIP gap of (tbc_mct2) ranged between 17 and 36%, while all remaining formula-
tions are solved to optimality.

Fig. 6  Instance I
1
(n, �) : Gap values (in percent) of the algorithms depending on the value of � for time-

based model (tbc_mct). Each boxplot represents the variation of the gap depending on n. Here, the black 
line represents the median, and the box represents the 25th to 75th percentile of the gap values
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Figure 8 shows the amount of time driving and waiting for both the truck and 
the bike, normalized by the duration of a TSP truck tour. As expected, there are 
considerable differences between the distance and time-based models, as well as 
between Wuppertal and Münster.

For the distance-based models, there are not sufficiently many shortcuts for the 
bike, but by construction, we have to use both vehicles, such that in both cases, 
the combined tour length is longer. The synchronization in (dbc_ws) additionally 
results in a high waiting time, such that the distance-based models provide no 
advantage compared to the TSP tour regarding the completion time.

On the contrary, all time-based models reduce the duration of the truck tour 
significantly, and the respective completion time, as well as the longest tour dura-
tion, is lower than the duration of the TSP. Additionally, we observe that there is 
very little waiting time in the time-based models except for the model minimiz-
ing the completion time with two bikes, (tbc_mct2). Here, the sum of the driving 
times for both bikes is depicted such that the total driving time of the bike signifi-
cantly exceeds that of one of the other models.

Note that for all models, both the duration of the truck tour and the completion 
time of the combined tour are lower for Münster than for Wuppertal. This can be 
attributed to the fact that for Münster, the mean speed difference between the bike 
and the truck is lower than for Wuppertal, see Table 5.

Influence of the bike capacity From an environmental perspective, it is most 
important to reduce the truck tour. In Fig.  9, we consider the influence of the 
bike capacity on reducing the truck tour duration for each model. For Wuppertal 
( IW (20,Cb) ), Fig. 9a shows that depending on the model, the truck duration can 
be reduced by up to 46% where the time-based models have a significantly larger 
impact than the distance-based ones. However, increasing the bike capacity to 
more than 4, i.e., 20% of the truck capacity, has hardly any effect on the dura-
tion of the truck tour. For Münster ( IM(20,Cb) ), on the other hand, the reduc-
tion of the truck tour duration is more pronounced, as up to 51% of reduction are 
reached, see Fig. 9b. Here, the influence of increasing the bike capacity on reduc-
ing the truck tour duration is slightly larger, especially for the time-based model 
(tbc_mst) minimizing the summed tour duration.

Heuristic solutions for larger instances For both instances IW and IM , the 
time limit of three hours allowed for solving instances of up to 20 demand points 
to optimality using the commercial MIP solver (Gurobi 2019). However, larger 
instances could not be solved optimally within this time frame, such that we con-
sider the heuristics Heuristic-Clustering, Heuristic-TSP and Q-learning for solv-
ing (tbc_mct) as introduced in Sect. 4. Table 6 shows that even for n = 250 , the 
runtimes of Heuristic-TSP and Heuristic-Clustering are below two minutes, while 
the runtime of Q-learning increases to up to 18 min.

The difference between the two cities, Wuppertal and Münster, is also reflected 
in the solution quality of the heuristic solutions. Figure 10 depicts the objective 
value of (tbc_mct), i.e., the completion time of the heuristics solutions for a vary-
ing number of demand points. Here, the objective is normalized by the duration 
of a TSP truck tour for the same instance to facilitate comparing the solutions. 
First, note that for Wuppertal, see Fig.  10a, almost no solution improves upon 
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Fig. 7  I
W
(n,C

b
) and I

M
(n,C

b
) . The red triangles correspond to n = 10 and the additional markers to the 

next larger instances: purple squares ( n = 20 ), orange pentagons ( n = 50 ), blue triangles ( n = 100 ) and 
green circles ( n = 250 ). The big red marker in the inner city represents the bike depot, and the blue one 
outside the city represents the truck depot (color figure online)

the TSP tour. Only for 10 and 20 demand points, Heuristic-TSP and the MIP 
formulation find solutions that have a shorter completion time than the duration 
of the TSP tour. When comparing the heuristics to one another, it is apparent 
that Heuristic-Clustering performs worst while for larger instances with n ≥ 50 , 

Fig. 8  Truck, bike and tour durations of different models with C
b
= 4 for Wuppertal and Münster 

( n = 20)
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Q-learning performs best. For small instances with n ≤ 20 , Heuristic-TSP per-
forms best and is comparable to the optimal solution computed by a MIP solver 
as the gap is 9 and 20% for n = 10 and n = 20 , respectively.

A similar behavior can be observed for Münster, see Fig.  10b, where Q-learning 
also finds the best solutions for large instances with n ≥ 100 while Heuristic-Clustering 
performs worst. The most important difference, however, is that for all instances, the 
best heuristic solution outperforms the TSP solution. Even for n = 250 , the completion 
time could be reduced to 75% of the TSP tour duration. Thus, the modeling approach 
developed in this paper helps to reduce the completion time of the delivery process and, 
consequently, the duration of truck tours.

All results can be found in Tables 9, 10 and 11 in Appendix D.2.
As we can see from the different results, Heuristic-Clustering has the advantage of 

being effective on small instance sizes, as it can often solve them exactly. However, due 
to the time limit and the exact solving process, which can become time-consuming, 
it performs worse on larger instances. Concerning the different graph structures, it is 
more suitable on instances with evenly distributed customers, as customers are closer 
together in the same cluster, allowing for more efficient bike routing. Also, Heuristic-
TSP performs better on smaller instances since their optimal solutions of CTBRP share 
more similarities with the optimal TSP solutions, while on larger instance sizes, opti-
mal solutions of CTBRP may deviate significantly from the TSP solution structurally. 
Q-learning consistently performs well across all instance sizes, contingent on the bike 

Fig. 9  Truck tour duration depending on C
b
 and model, 100% corresponds to the duration of the truck 

TSP tour ( n = 20)

Table 5  Average ratios of bike and truck weights and values of � of the different instances IW (n,Cb) and 
IM(n,Cb)

Instance n = 10 n = 20 n = 50 n = 100 n = 250

W M W M W M W M W M

� ∶= min
e∈E

{

c
b(e)

ct (e)

}

0.91 0.58 0.52 0.58 0.52 0.09 0.50 0.09 0.12 0.04

1

∣E∣

∑

e∈E

c
b(e)

ct (e)

1.52 1.13 1.51 1.26 1.52 1.25 1.50 1.23 1.49 1.17
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covering a larger number of customers without meeting the truck after each stop. This 
allows Q-learning to generate practical subtours for instance classes IW (n,Cb) and 
IM(n,Cb) , as opposed to Heuristic-TSP, which is more suitable for I1(n, �) where we 
have alternating bike and truck nodes.

6  Conclusion and future research

In this paper, we present a new concept for last-mile deliveries using two already 
established means of transport: the delivery truck and the cargo bike. We model 
this problem such that the truck both delivers goods and serves as a moving 
mini-depot for the cargo bike that has to be resupplied during the delivery route. 
By using the truck to restock the cargo bike, we do not need to construct mini-
depots throughout the city. This makes our approach more flexible against chang-
ing demands and independent of available construction sites while also reducing 
investment costs. We develop a MIP formulation in various versions, either focus-
ing on minimizing delivery time or distance, and extended this to include multi-
ple cargo bikes. Moreover, we provide upper bounds compared to the truck-only 
delivery and theoretically analyze the complexity of the problem. To connect our 
approach to other delivery concepts from the literature, we show how our models 
can be adapted to cover these concepts as well.

In an experimental proof of concept, we analyze the performance of our dif-
ferent MIP formulations and show the advantages of our approach compared to 
truck-only delivery. These promising results show that we can outperform the tra-
ditional TSP approach in terms of completion time while reducing the distance 
driven by the truck and motivating further research in this field.

As a consequence of the limitations of MIP formulations in solving larger 
instances, we develop three heuristic solution approaches that can provide compa-
rable solutions in a short amount of time. Due to the versatility of our model, cov-
ering a broad class of problems, those approaches might be useful to solve further 
problems in the literature, or conversely, we might adapt established methods. On 
the one hand, it would be interesting to consider the delivery problem as a multi-
criteria problem where tour duration and distance covered are minimized simul-
taneously. On the other hand, uncertainties in the drive times have to be taken 

Table 6  Runtimes of the different heuristic algorithms for solving (tbc_mct) on instances IW (n, 0.2n) and 
IM(n, 0.2n)

All times are given in seconds

n = 10 n = 20 n = 50 n = 100 n = 250

Instance W M W M W M W M W M

Heuristic-TSP 0 0 0 0 2 3 9 9 55 61
Heuristic-Clustering 3 2 2 2 5 9 18 220 102 73
Q-learning 2 3 10 11 36 39 158 198 908 1033
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into account for making the model viable in practice. Here, it would be especially 
interesting to consider the case where truck and cargo bike are not affected in the 
same way by delays, e.g., when the bike can use a separate bike path and is not 
affected by traffic jams. Another interesting variant of the delivery problem is 
to integrate public transport planning, e.g.,  by using an already existing public 
transport line and fixing the corresponding nodes.

As part of future work, we plan to adapt deep Q-learning to learn the Q-values 
using a neural network and refine the reward function. Moreover, to reduce the com-
plexity by one level, we plan to use a two-step approach where the assignment of 
stops to the truck and the cargo bike is fixed first and routes are constructed later.

A MIP formulation

Lemma 4 The MIP formulation in (5)–(19) ensures that both vehicles meet at the 
same time at a combined node and takes the resulting waiting times into account.

Proof Constraints (15) mark the time the first node v′ on the truck tour is visited by 
setting dv� ≥ ct(vt, v

�) . In (16), the same applies for the first node v′′ on the bike tour, 
and if v� = v�� , it follows that dv� = max{ct(vt, v

�), cb(vb, v
�)}.

Due to constraints (17), this process continues iteratively and guarantees the syn-
chronization of the two vehicles at the combined nodes: If the truck drives from 
v ≠ vt to w (i.e., xt

(v,w)
= 1 ), dw is at least dv + ct(v,w) . Otherwise ( xt

(v,w)
= 0 ), there is 

no bound on dw by choosing M sufficiently large. We discuss the meaning of the lat-
ter in Sect. 3.2. The same reasoning applies to the bike tour since we can assume 
that both vehicles never use the same edge.   ◻

Lemma 5 Constraints (17) serve as subtour elimination constraints for the 
truck and bike tour, respectively.

Fig. 10  Completion time, i.e., objective value of (tbc_mct) in percent depending on number of demand 
points n and heuristic. 100% corresponds to the duration of the truck TSP tour of the corresponding 
instance size. Note that C

b
= 0.2n
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Proof These constraints are similar to those in the Miller–Trucker–Zemlin formula-
tion of the TSP in Miller et al.  (1960). They ensure that every truck tour contains 
the truck depot and every bike tour contains the bike depot. Otherwise, there would 
be at least one subtour that does not contain a depot node. Consequently, the values 
dv, dw of all consecutive nodes v and w along this subtour would have to satisfy the 
constraint

depending on the subtour type. This is obviously not possible if ct(v,w) > 0 or 
cb(v,w) > 0 for at least one pair (v,  w) . By merging nodes, if necessary, we can 
assume w.l.o.g. that ct(v,w) > 0 and cb(v,w) > 0 hold for all (v,w) ∈ E.

Since we only allow one outgoing and one incoming bike or truck edge at the 
associated depot in this formulation, it follows that there is exactly one bike and one 
truck tour.   ◻

B Extending the model

B.1 Predefined nodes and satellite locations

As mentioned in Sect. 2, we can formulate the model in Anderluh et al.  (2017) 
as a special case of our approach. Therefore, we set xt

v
= 1 and xb

v
= 0 ( xt

v
= 0 

and xb
v
= 1 ) for all predefined truck nodes (bike nodes) v and add a node with 

demand 0 for each satellite location. Constraints (9) can be removed. To permit 
multiple reload operations at the same satellite, we can add a sufficient number 
of node copies of each satellite. Consequently, all predefined truck nodes (bike 
nodes) are supplied exclusively by the truck (bike). If satellite s is used to reload 
the cargo bike, we obtain xt

s
= 1 and xb

s
= 1 ; otherwise, xt

s
= 0 and xb

s
= 0.

B.2 MIP model with cargo bike transportation

Since our approach is mainly motivated by Murray and Chu  (2015), where a 
drone is used instead of a cargo bike that is able to park at the truck, we are inter-
ested in representing their model with our techniques.

So far, the cargo bike had to drive all roads by itself since all previous MIP for-
mulations exclude free bike transportation by truck. This is due to the fact that we 
consider costs for both vehicles simultaneously. Consequently, in an optimal solu-
tion to the combined logistics problem, the bike and truck do not use the same 
edge (a, b) in G. Even if they use the same edge starting at the same time, the 
faster vehicle would wait at the target node for the respective other one, and if we 
consider distance-based costs, both edge weights are added to the solution value. 
In both cases, the bike could skip node a and drive directly to b, and the triangle 
inequality ensures that the costs do not increase. As a consequence, it would only 
make sense to use the same edge if the truck could pick up the bike.

dv + ct(v,w) ≤ dw or dv + cb(v,w) ≤ dw,
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This leads us to the following modification and extension of our previous for-
mulations. Therefore, we introduce a new variable ye for each edge e ∈ E , which 
is equal to 1 if both vehicles use the corresponding edge e. To ensure this, we add 
the constraints (32)–(35):

The resulting bounds on ye are shown in Table 7. Instead of defining binary vari-
ables, we can replace (35) by ye ≥ 0 ∀ e ∈ E.

As already mentioned, in an optimal solution, both vehicles would only drive 
along the same edge e ( ye = 1 ) if we benefit from transporting the cargo bike. 
Subsequently, the bike needs the same time cb(e) + ye ⋅ (c

t(e) − cb(e)) = ct(e) as 
the truck for driving along this edge e. Therefore, we replace constraints (16) by 
(36) and (37):

If necessary, we can provide a flight (bike) endurance limit Cf  per subtour by adding 
a modified version of the capacity constraints:

Note that in our formulation, as well as in the model of Murray and Chu  (2015), it 
is not possible for both vehicles to drive along an edge (or to visit a node) two times. 
While it would not make sense in the previous formulations, now it could be useful 
for the truck to drive along the same edge repeatedly. This is due to the fact that in 
some situations, the savings of picking up the cargo bike could be higher than the 
additional truck costs. To overcome this limitation, we can add the set VN to V, 
which consists of N node copies v(1), ..., v(N) of each node v ∈ V  with demand 0 and 

(32)ye ≤ xt
e
+ xb

e
∀ e ∈ E

(33)ye ≤ 1 − xt
e
+ xb

e
∀ e ∈ E

(34)ye ≤ 1 + xt
e
− xb

e
∀ e ∈ E

(35)ye ∈ {0, 1} ∀ e ∈ E.

(36)xb
e
⋅ cb(e) + ye ⋅ (c

t(e) − cb(e)) ≤ dv
∀ v ∈ V

e = (vb, v)

(37)dv + cb(e) + ye ⋅ (c
t(e) − cb(e)) ≤ dw + (1 − xb

e
) ⋅M

∀ e = (v,w) ∈ E

v ≠ vb
.

(38)fv ≤ (1 − tv) ⋅ Cf ∀ v ∈ V

(39)fv + cb(v,w) − fw ≤ (1 − xb
(v,w)

+ tw) ⋅ (Cf +max
e∈E

{cb(e)}) ∀ (v,w) ∈ E

(40)fv ≥ 0 ∀ v ∈ V .
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N ∶=

�

1

Cb

⋅

∑

v∈V d(v)
�

− 1 . To ensure that it is not necessary to visit the node cop-
ies, we replace constraints (9) by

In fact, this formulation also covers the model in Agatz et al.  (2018).

B.3 Further variations

In all previous formulations, we use extra variables tv and bv to indicate whether 
node v is a truck or bike node. We can save those variables by replacing constraints 
(10) and (11) by

and

and all remaining tv and bv by 
∑

w ∈ V

w ≠ v

xt
(v,w)

 and 
∑

w ∈ V

w ≠ v

xb
(v,w)

 , respectively.

Furthermore, time incurred at stop v due to delivery or searching for a park-
ing space (depending on the stop, the vehicle and the demand d(v)) can be easily 
added to the edge costs ct(w, v) and cb(w, v) for all v ∈ V  , v ≠ w . This applies to all 
time-based costs.

By adding 
∑

v∈V (tv + bv − 1) ⋅ c� +
∑

v∈V bv ⋅ d(v) ⋅ c
�� to the objective, we can 

take into account the time c′ needed for a reload operation and the loading time 
per package c′′.

To include limitations of the cargo bike (truck) to visit node v, we can set 
xt
v
= 1 and xb

v
= 0 ( xt

v
= 0 and xb

v
= 1).

1 ≤ tv + bv ∀ v ∈ V ⧵ VN .

(41)

∑

w ∈ V

w ≠ v

xt
(v,w)

≤ 1 ∀ v ∈ V

(42)

∑

w ∈ V

w ≠ v

xb
(v,w)

≤ 1 ∀ v ∈ V

Table 7  Bounds (relevant ones 
in bold) on ye for e ∈ E

x
t

e
x
b

e
(32) (33) (34) (35)

0 0 ≤ � ≤ 1 ≤ 1 ≥ �

0 1 ≤ 1 ≤ 2 ≤ � ≥ �

1 0 ≤ 1 ≤ � ≤ 2 ≥ �

1 1 ≤ 2 ≤ � ≤ 1 ≥ �
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If we want to use specified locations to reload the cargo bike, we can use the 
method in Appendix B.2. Thus, we add the set VL , which contains these nodes 
(each with demand 0), to V and replace constraints (9) by

C Theoretical properties

C.1 Relation to TSP and CVRP

As we can see, CTBRP generalizes several concepts from the literature that have 
been shown to be NP-hard. Thus, it is reasonable to expect that this applies to 
CTBRP as well.

Lemma 7 CTBRP is a generalization of the traveling salesperson problem (TSP) 
and thus NP-hard (Laporte  1992).

Proof Concerning distance-based costs, it is easy to see that the combined 
truck and cargo bike problem involves the TSP, which is NP-hard. By setting 
cb(e) ∶= ∞ ∀e ∈ E , we would not use the bike, and the problem reduces to the 
asymmetric TSP.   ◻

If we define Cb ∶= Ct , ct ≡ cb , and vt = vb , both vehicles are equivalent in terms 
of costs, capacity and depot. However, (dbc_ws) does not reduce to CVRP with two 
vehicles, even when adding a capacity constraint to the truck, such as

Lemma 8 With the above assumptions, there are still feasible solutions for (dbc_ws) 
with lower costs than the corresponding optimal solution to CVRP.

Proof An example is shown in Fig. 11.   ◻

For vt ∶= D =∶ vb , Cb ∶= 4 =∶ Ct and � ∈ (0, 4] an optimal solution to (dbc_ws) 
would be T = {D, t1, �1,D} , B = {D, b1, �1, b3, b4,D} but T1 = {D, t1, b1, �1,D} , 
T2 = {D, b3, b4,D} to CVRP.

To create an alternative MIP formulation of CVRP with two vehicles, we addi-
tionally need to replace constraint (9) by

or add a global capacity constraint for the cargo bike, such as

1 ≤ tv + bv ∀ v ∈ V ⧵ VL.

(43)
∑

v∈V

xt
v
⋅ d(v) ≤ Ct.

(44)1 = xt
v
+ xb

v
∀ v ∈ V
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For the latter case, constraints (13) and (14) are redundant.
When comparing (dbc_ws) and the MIP formulation of CVRP, the former 

produces on average 8% better solutions within the time limit of one hour. For 
this purpose, we use the CVRP instance sets B and P in Augerat  (1995) with 33 
instances ranging between 16 and 101 nodes. The capacities are scaled by a factor of 
1

2
(original #vehicles) , as we only allow two vehicles in all instances.

C.2 Approximating optimal solutions

In the following, we investigate how much better solutions of CTBRP can be com-
pared to TSP and show that significant savings can be achieved. Note that we can 
interpret any feasible solution of the TSP as a feasible solution of CTBRP where 
only the truck is used.

In Sect. C.2.1, we analyze the time-based models (tbc_mct) and (tbc_mlt), while 
we give results for (tbc_mst) as well as the distance-based models (dbc_ws) and 
(dbc_os) in Sect. C.2.2.

C.2.1 Time‑based costs minimizing completion time and the longest tour

In this section, we consider bounds on the value of an optimal solution 
to (tbc_mct) and (tbc_mlt). For simplicity, we assume vt = vb and define 
c(T,B) ∶= max{ct(T), cb(B)} as the total costs of the combined tour, i.e., we 
neglect the waiting times of (tbc_mct) and (tbc_mlt), respectively. Furthermore, 
as described in Lemma 5, we can assume that ct(v,w) > 0 and cb(v,w) > 0 holds 
for all (v,w) ∈ E . Since

holds, we can use c(T,B) ∶= max{ct(T), cb(B)} in the following proofs, but the cor-
responding results also apply to (tbc_mct) (with max{ĉt(T), ĉb(B)} ) and (tbc_mlt) 
(with max{c̃t(T), c̃b(B)}).

To evaluate both in relation to the case where we only use the truck, we set 
TSP

t as an optimal solution to the TSP regarding the cost function ct , where 
ct(TSPt) denotes the summed truck costs of an optimal tour TSPt.

First, we consider the case where truck and cargo bike have the same speed 
and show that the solutions of CTBRP can be at most twice as good as optimal 
TSP solutions.

Lemma 9 Let (T,B) be a feasible solution to an instance of CTBRP, and let TSPt be 
an optimal solution to TSP for the same instance. Assuming 
ct(e) = cb(e) for all e ∈ E , it holds that c(T,B) ≥ 1

2
⋅ ct(TSPt).

(45)
∑

v∈V

xb
v
⋅ d(v) ≤ Cb.

(46)max{ĉt(T), ĉb(B)} ≥ max{c̃t(T), c̃b(B)} ≥ max{ct(T), cb(B)}
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Proof Since vt = vb , the cargo bike starts with the required goods from the depot, 
and thus, the first node b1 visited by the bike is not a combined node. The same 
applies to the last node bl−1 , the bike visits before returning to the depot. Since it 
does not have to supply any nodes after bl−1 , there is no need to synchronize with the 
truck at bl−1 . Thus, we can assume that the last bike node is no combined node.

Now, if we ignore the capacity constraint of the cargo bike and skip all the com-
bined nodes �1, ..., �m on the bike tour, we get a tour B� ∶= B⧵{�1, ..., �m} that has 
no node in common with T  except for vt . By the triangle inequality, the costs of this 
tour are at most as high as the costs of B . In particular, there is no need for synchro-
nization of bike and truck in B′ . So we have ct(B) ≥ ct(B�).

Subsequently, we merge T = (vt, t1, ..., tk−1, vt) and 
B
� = (vt, b1, ..., bl−1, vt)⧵{�1, ..., �m} into one tour T � = (v

t
..., t

k−1, b1, ..., vt) by omit-
ting vt after tk−1 and before b1 and connecting (tk−1, b1) directly. It holds that

because ct(tk−1, vt) + ct(vt, b1) ≥ ct(tk−1, b1) applies. Since the combined tour (T,B) 
covers all nodes and we only remove multiple nodes from both tours, it follows that 
T ′ also contains all nodes and forms a feasible solution for the TSP. In particular, 
c
t(T �) ≥ c

t(TSPt) . Together, we have

and thus c
t(TSPt)

c(T,B)
≤ 2 .   ◻

In general, when comparing bike and truck weights for each edge in E, the mini-
mum ratio mine∈E

{

cb(e)

ct(e)

}

 , i.e., the lowest speedup of the truck compared to the 
bike, can be easily determined. In the following, we denote this ratio by � and show 
a generalized version of Lemma 9, inspired by the proof of Theorem 4.1 in Agatz 
et al.  (2018).

c
t(T) + c

t(B�) ≥ c
t(T �),

2 ⋅max{ct(T), cb(B)}) ≥ c
t(T) + c

t(B) ≥ c
t(T) + c

t(B�) ≥ c
t(T �) ≥ c

t(TSPt),

Fig. 11  Instance where the optimal solution value for (dbc_ws) and CVRP differs
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Lemma 10 Let (T,B) be a feasible solution to an instance of CTBRP, and let TSPt 
be an optimal solution to TSP for the same instance. If cb(e) ≥ � ⋅ ct(e)for all e ∈ E , 
it holds that

Proof Let � =
ct(T)

ct(TSPt)
 and note that 𝜆 > 0 . If � ≥ 1 , the costs of the combined tour 

are higher than ct(TSPt) and the lemma follows immediately.
For 𝜆 < 1 , we show that

is satisfied. To prove this claim, we assume that the opposite holds. According to the 
assumption that cb(e) ≥ � ⋅ ct(e) for all e ∈ E , it follows that � ⋅ ct(B) ≤ cb(B) and we 
have

Using the same procedure as in the proof of Lemma 9, we merge T  and B into one 
tour T ′ and by the same argument,

applies. However, from (48) we obtain

resulting in a contradiction and proving (47). Now, we can conclude

where the last inequality holds since max{� ⋅ ct(TSPt), (1 − �) ⋅ � ⋅ ct(TSPt)} is min-
imal if � ⋅ ct(TSPt) = (1 − �) ⋅ � ⋅ ct(TSPt) .   ◻

While the improvement of CTBRP compared to TSP is bounded by �+1
�

 , we show 
that this maximal improvement can actually be attained.

Lemma 11 The upper bound in Lemma 10 respectively Lemma 9 is tight, i.e., there 
exists at least one instance for the above problem with

Proof We show that the following instance I1(5, �) has the required prop-
erties. Again, we have a complete symmetric digraph G = (V ,E) with 
V = {vD, v1, v2, v3, v4, v5} , d(vi) = 1 for i ∈ {1, 2, 3, 4, 5} and a cost function ct 

c(T,B) ≥
�

� + 1
⋅ ct(TSPt).

(47)cb(B) ≥ (1 − �) ⋅ � ⋅ ct(TSPt)

(48)ct(B) < (1 − 𝜆) ⋅ ct(TSPt).

c
t(TSPt) ≤ c

t(T �) ≤ c
t(T) + c

t(B)

ct(T) + ct(B) < 𝜆 ⋅ ct(TSPt) + (1 − 𝜆) ⋅ ct(TSPt) = ct(TSPt),

c(T,B) =max{ct(T), cb(B)} ≥ max{� ⋅ ct(TSPt), (1 − �) ⋅ � ⋅ ct(TSPt)}

≥
�

� + 1
⋅ ct(TSPt),

ct(TSPt)

c(T,B)
=

� + 1

�
.



1 3

Optimizing combined tours: The truck-and-cargo-bike case  

and cb for the truck and the bike, respectively. The corresponding truck edge 
costs are defined as shown in Fig. 12a. For the bike costs of edge e ∈ E , we have 
cb(e) ∶= � ⋅ ct(e) . For reasons of clarity, we have drawn the depot twice, but it is the 
same node. Again, the costs of the undrawn edges are equal to the corresponding 
shortest paths.    ◻

It is easy to verify that the value of an optimal solution to the MIP in (5)–(19) 
equals 4� . A possible solution (T,B) is shown in Fig. 12c, while we have an opti-
mal solution TSPt to the TSP with cost function ct and value 4 + 4� in Fig. 12b.

Subsequently, we obtain

We can use the bounds developed here to approximate the optimal objective value 
of CTBRP.

Corollary 12 Let TSPt be an optimal solution to the TSP. Then (TSPt, �) is a �+1
�

-approximation to (tbc_mct) and (tbc_mlt).

Proof Follows directly with Lemma 10 and (46).   ◻

Corollary 13 An �-approximation to the TSP is an � ⋅
�+1

�
-approximation to (tbc_

mct) and (tbc_mlt). Moreover, every �-approximation algorithm to the TSP is an 
� ⋅

�+1

�
-approximation algorithm to (tbc_mct) and (tbc_mlt).

Proof Follows directly from Corollary 12.   ◻

C.2.2 Time‑based costs with summed tour durations and distance‑based costs

When considering the summed tour durations or distance-based costs, the cargo bike 
must be faster than the truck on at least one edge to benefit from its use. Otherwise, 
it would only cause extra time or distance, respectively. This results in the following 
lemma.

Lemma 14 Let (T,B) be an optimal solution to an instance of CTBRP, and let TSPt 
be an optimal solution to TSP for the same instance. If cb(e) ≥ ct(e) for all e ∈ E , it 
follows that ĉ(T,B) ∶= ĉt(T) + ĉb(B) = ct(TSPt).

Proof If B = � , the lemma follows directly. Therefore, we assume B ≠ ∅ . By 
neglecting the waiting times, the duration of both tours does not increase. Now, we 
proceed in a similar way as in the proof of Lemma 9. We skip the combined nodes 
on the bike tour and call this resulting bike tour B′ . Note that B′ and T  together still 
cover all nodes. Consequently, we have

ct(TSPt)

c(T,B)
=

4 + 4�

4�
=

� + 1

�
.
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since we only omit nodes and the triangle inequalities hold.
Now we merge B′ and T  into one tour T ′ , forming a feasible solution of the TSP. 

With the same argument as above and since cb(e) ≥ ct(e) for all e ∈ E hold, we have

As every feasible solution of the TSP is a feasible solution for our combined prob-
lem, the lemma follows.   ◻

Corollary 15 The result in Lemma 14 also holds for (dbc_ws) and (dbc_os).

Proof Since we have ĉt(T) + ĉb(B) ≥ ct(T) + cb(B) , we can apply the same proof as 
in Lemma 14, except that we do not have waiting times.   ◻

We can use these results to derive a lower bound. Therefore, we define 
c��(e) ∶= min{cb(e), ct(e)} for all e ∈ E . Since the triangle inequalities need not hold 
for c′′ , we set c�(e) ∶= c��(sp��(e)) for all e ∈ E . Here sp��(e) denotes the shortest path 
from a to b (if e = (a, b) ) regarding the cost function c′′.

Lemma 16 If TSP′ represents an optimal solution to the TSP regarding the previ-
ously defined cost function c′ and (T,B) is a feasible solution of the same instance of 
CTBRP, then we have ĉ(T,B) = ĉt(T) + ĉb(B) ≥ c�(TSP�).

Proof The proof follows the one in Lemma 14 until we merge B′ and T  into one tour 
T ′ . Since ct(T) + c

b(B�) ≥ c
�(T �) holds, we can replace (49) by

without using the preconditions of Lemma 14.   ◻

ĉt(T) + ĉb(B) ≥ ct(T) + cb(B�),

(49)c
t(T) + c

b(B�) ≥ c
t(T �) ≥ c

t(TSPt).

c
t(T) + c

b(B�) ≥ c
�(T �) ≥ c

�(TSP�)

Fig. 12  Instance I
1
(5, �) and optimal solutions to TSP and CTBRP
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Corollary 17 The result in Lemma 16 also holds for (dbc_ws) and (dbc_os).

Thus, we can bound the solution quality of CTBRP from above and below by 
solving to instances of TSP.

D Experimental results

D.1 Instance class I1(n,ı)

Experimental results corresponding to Sect. 5.1 averaged over all � . The percentage 
of instances solved to optimality for a given n is stated in column optimal. The gap 
to the optimal solution can be found in column gap. The runtime is given in seconds, 
and all other results are in percent (Table 8).

D.2 Instance class IW(n, Cb) and IM(n, Cb)

Experimental results corresponding to Sect. 5.2. The instance classes IW (n,Cb) and 
IM(n,Cb) are denoted by W and M, respectively (Tables 9, 10 and 11).

Table 8  Results for algorithms Heuristic-Clustering, Heuristic-TSP and Q-learning in Fig. 6

n Heuristic-Clustering Heuristic-TSP Q-learning

Runtime Gap Optimal Runtime Gap Optimal Runtime Gap Optimal

5 0.9 0.0 100.0 0.2 32.6 20.0 1.6 18.5 25.0
8 9.2 0.0 100.0 0.8 39.6 5.0 2.5 44.6 0.0
11 62.5 21.8 25.0 1.2 43.6 0.0 3.7 52.3 0.0
14 62.5 40.0 0.0 1.1 44.1 0.0 4.3 55.5 0.0
17 63.7 57.9 0.0 1.7 43.5 0.0 5.5 57.7 0.0
20 63.7 62.8 0.0 2.6 45.9 0.0 8.0 59.9 0.0
23 64.8 67.3 0.0 1.4 48.2 0.0 8.7 57.7 0.0
26 66.0 69.7 0.0 2.0 44.9 0.0 10.9 60.5 0.0
29 67.0 73.0 0.0 3.0 47.2 0.0 11.7 61.2 0.0
32 66.6 73.1 0.0 2.8 44.8 0.0 14.4 59.7 0.0
35 70.3 74.8 0.0 4.2 47.5 0.0 17.3 61.8 0.0
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Table 10  Results (truck tour durations) for the different formulations in Fig. 9 with n = 20

C
b

TSP (dbc_os) (dbc_ws) (tbc_mct) (tbc_mct2) (tbc_mlt) (tbc_mst)

W M W M W M W M W M W M W M

1 153.0 141.6 153.8 141.6 153.8 141.6 120.2 99.5 104.5 90.0 118.3 98.8 145.3 118.1
2 153.0 141.6 153.8 141.6 153.8 141.6 109.8 94.1 95.9 90.2 106.9 93.6 145.3 116.1
3 153.0 141.6 153.8 141.6 153.8 141.6 106.5 86.8 89.7 76.8 101.1 86.8 145.3 110.0
4 153.0 141.6 153.8 141.6 153.8 141.6 101.2 85.4 86.1 74.2 101.1 85.4 145.4 109.4
5 153.0 141.6 153.8 141.6 153.8 141.6 102.0 85.4 88.7 74.1 99.2 85.4 145.4 110.0
6 153.0 141.6 153.8 141.6 153.8 141.6 101.8 85.4 84.7 70.4 99.2 82.6 145.3 110.0
7 153.0 141.6 153.8 141.6 153.8 141.6 97.2 81.3 84.7 73.4 97.2 80.9 145.4 109.3
8 153.0 141.6 153.8 141.6 153.8 141.6 97.2 79.4 84.0 69.8 95.7 80.9 145.3 95.7
9 153.0 141.6 153.8 141.6 153.8 141.6 97.2 79.4 84.7 73.7 94.5 80.9 145.3 110.0
10 153.0 141.6 153.8 141.6 153.8 141.6 97.2 79.4 81.9 74.1 94.5 80.9 145.3 110.0
11 153.0 141.6 153.8 141.6 153.8 141.6 97.2 79.4 84.0 69.7 94.5 80.9 145.3 109.5
12 153.0 141.6 153.8 141.6 153.8 141.6 97.2 79.4 86.8 74.1 94.5 80.9 145.3 95.9

Table 11  Results (completion time, i.e., objective value of (tbc_mct)) for the different heuristics with 
Cb = 0.2n and TSP in Fig. 10

n MIP TSP Heuristic-Clus-
tering

Heuristic-TSP Q-learning

W M W M W M W M W M

10 60.5 63.7 75.9 92.0 74.7 68.5 66.2 72.4 75.0 68.6
20 103.5 86.2 153.0 141.6 155.8 126.2 128.7 98.2 156.4 134.7
50 – – 260.7 270.7 293.4 287.2 263.9 246.8 258.4 249.6
100 – – 345.9 437.4 493.9 475.0 444.8 410.6 369.8 385.2
250 – – 629.1 1033.1 1374.2 1624.8 997.0 1020.4 706.3 773.7

Table 9  Results for the different 
formulations in Fig. 8 with 
Cb = 4 and n = 20

Formulation Waiting 
time bike

Driving time 
bike

Waiting 
time 
truck

Driving time 
truck

W M W M W M W M

(tbc_mct) 4.7 1.2 98.8 85.0 0.0 0.7 101.2 84.7
(tbc_mct2) 3.9 33.8 168.2 114.6 2.9 3.7 83.2 70.5
(tbc_mlt) 0.0 1.2 101.1 85.0 0.5 0.7 100.6 84.7
(tbc_mst) 10.2 0.0 20.3 43.4 0.0 0.1 145.4 109.2
(dbc_ws) 92.4 111.4 14.0 7.3 0.0 0.0 153.8 141.6
(dbc_os) 0.0 0.0 14.0 7.3 0.0 0.0 153.8 141.6
TSP 0.0 0.0 0.0 0.0 0.0 0.0 153.0 141.6
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