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Abstract
Value-at-risk is one of the most popular risk management tools in the financial 
industry. Over the past 20 years, several attempts to include VaR in the portfolio 
selection process have been proposed. However, using VaR as a risk measure in 
portfolio optimization models leads to problems that are computationally hard to 
solve. In view of this, few practical applications of VaR in portfolio selection have 
appeared in the literature up to now. In this paper, we propose to add the VaR 
criterion to the classical Mean-Variance approach in order to better address the 
typical regulatory constraints of the financial industry. We thus obtain a portfolio 
selection model characterized by three criteria: expected return, variance, and VaR 
at a specified confidence level. The resulting optimization problem consists in 
minimizing variance with parametric constraints on the levels of expected return 
and VaR. This model can be formulated as a mixed-integer quadratic programming 
(MIQP) problem. An extensive empirical analysis on seven real-world datasets 
demonstrates the practical applicability of the proposed approach. Furthermore, 
the out-of-sample performance of the more binding optimal Mean-Variance-VaR 
portfolios seems to be generally better than that of the Equally Weighted and of the 
Mean-Variance-CVaR portfolios.
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1 Introduction

The milestone of modern finance theory for portfolio selection is undoubtedly 
the seminal work of Markowitz (1952, 1959) on the gain-risk analysis. Indeed, 
his famous Mean-Variance (MV) model is still widely used by both academics 
and practitioners to support portfolio selection decisions. The success of this 
bi-objective optimization problem has inevitably drawn many criticisms and 
proposals of alternative or more refined models (Kolm et al. 2014). In fact, many 
refinements of the Markowitz model have been provided in the literature, such 
as the definition of various new risk measures for selecting a portfolio. This is 
justified by the empirical evidences that the asset returns can show asymmetric 
and/or fat tail distributions (see, e.g., Mandelbrot 1972; Pagan 1996; Cont 2001). 
Therefore, measuring the risk of a portfolio with the variance of returns typically 
suffers many practical limitations, since it equally weights positive and negative 
deviations from the mean. As a consequence, several studies have focused on 
more suitable downside risk measures (Biglova et al. 2004). In this regard, value-
at-risk (VaR) is traditionally recognized as the industry standard downside risk 
measure adopted by financial institutions, and has become very popular among 
researchers and practitioners over the years (see, e.g., Duffie and Pan 1997; 
Philippe 2001; Consigli 2002). The VaR of a portfolio represents the maximum 
potential portfolio loss at a given confidence level (typically 1%, 5%, and 10%) 
related to a predefined time horizon. Despite its simple definition and wide use 
in the financial industry, VaR has some drawbacks: losses exceeding VaR are 
not taken into account, VaR is non-convex with respect to the portfolio weights 
and fails to satisfy the subadditivity property, which is a desiderable feature of a 
coherent risk measure (see, e.g., Artzner et al. 1999; Mausser 1998). To address 
these shortcomings, Rockafellar and Uryasev (2000) have proposed a portfolio 
selection approach that uses conditional value-at-risk (CVaR) as a risk measure 
and provided an LP formulation for the corresponding portfolio optimization 
problem. However, although CVaR has the advantage of being a coherent risk 
measure (Acerbi and Tasche 2002), Cont et al. (2010) have observed that using 
CVaR instead of VaR could lead to a less robust risk management model and that 
CVaR is much more sensitive to outliers than VaR (see also de Vries et al. 2005; 
Dhaene et al. 2008; Kou et al. 2013). Lim et al. (2011) have also highlighted the 
high sensitivity of CVaR to estimation errors in data-driven Mean-CVaR portfolio 
selection models. Furthermore, Gneiting (2011) has shown that VaR is elicitable, 
unlike CVaR and the general class of spectral risk measures (see also Bellini and 
Bignozzi 2015). For all these reasons, and also on the basis of the regulatory 
requirement under the Basel II Accord (Basel Committee on Banking Supervision 
2012), VaR is still a widely used risk measure in the financial industry.

The use of VaR in portfolio optimization can be found in Wang (2000), where 
the author first presented a two-stage optimization approach based on the Mean-
Variance and Mean-VaR analysis. Then, he has proposed a Mean-Variance-VaR 
model, but without providing any explicit formulation of this problem and any 
empirical analysis on real markets. Basak and Shapiro (2001) have proposed a 



1045

1 3

Mean‑Variance‑VaR portfolios: MIQP formulation and…

dynamic portfolio optimization problem that maximizes the expected utility 
of the portfolio wealth including a VaR constraint for regulatory requirements. 
Alexander and Baptista (2002) have described a Mean-VaR model assuming 
that the assets’ returns follow a multivariate normal and student-t distributions. 
Consigli (2002) has empirically investigated the behavior of different VaR 
measurement techniques and portfolio optimization strategies during market 
instability periods, when deviating from the assumption of normality of returns 
distribution. Gaivoronski and Pflug (2005) have tackled the problem of VaR 
minimization by considering an approximation, the smoothed value-at-risk 
(SVaR), which requires less computational effort. Another significant theoretical 
and practical contribution to this topic has been provided by Benati and Rizzi 
(2007), who have proved NP-hardness of the Mean-VaR problem and have 
proposed a mixed-integer linear programming (MILP) formulation for it. Pınar 
(2013) has presented a closed-form solution for the Mean-VaR model applied to a 
market with a risk-free asset and n normally distributed risky assets, where short 
sales are allowed. However, a critical issue of portfolio selection models based on 
VaR is its estimation procedure (see, e.g., Pritsker 1997; Manganelli and Engle 
2001), which can yield different results depending on the approach adopted. 
Indeed, several methods to estimate the portfolio VaR have been provided in the 
literature. These can be arranged into two main categories: parametric (see, e.g., 
Cui et al. 2013; Lotfi et al. 2017) and nonparametric (see, e.g., Cui et al. 2018; 
Lwin et al. 2017) methods.

We recall that a large number of portfolio selection models have been formulated 
as optimization problems with more than two objectives. For interested readers, we 
mention the work of Steuer and Na (2003) who have presented an extensive survey 
on multiple criteria decision making applied to several important topics in finance. 
For instance, to better control the shape and characteristics of the portfolio return 
distribution, many scholars have attempted to extend the MV model to higher-order 
moments, such as the portfolio skewness and kurtosis (see, e.g., Konno et al. 1993; 
Konno and Ki 1995; Aracioğlu et al. 2011). Other researches have investigated the 
inclusion of three or more objectives for selecting a portfolio (see, e.g., Chow 1995; 
Lo et  al. 2006; Anagnostopoulos and Mamanis 2010; Utz et  al. 2014; Cesarone 
et al. 2022a; Bera and Park 2008). For regulatory and reporting purposes, Roman 
et al. (2007) have emphasized the important role of risk measures focused on high 
portfolio losses (or equivalently, on low portfolio returns). They have then proposed 
a tri-objective optimization problem, where the portfolio expected return is 
maximized, while variance and CVaR are minimized. In the case of discrete random 
variables, the authors have reformulated this model as a single-objective quadratic 
optimization problem.

In this paper, we propose to add the VaR criterion to the classical Mean-Variance 
approach in order to better address the typical regulatory constraints of the financial 
industry. We thus obtain a nonparametric portfolio selection model characterized by 
three criteria: expected return, variance, and VaR at a specified confidence level. 
The resulting optimization problem consists in minimizing variance with parametric 
constraints on the levels of expected return and VaR. This model can be formulated 
as a mixed-integer quadratic programming (MIQP) problem. An extensive empirical 
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analysis on real-world datasets demonstrates the practical applicability of the 
proposed approach. Furthermore, the out-of-sample performance of the optimal 
Mean-Variance-VaR portfolios seems to be generally better than that of the Equally 
Weighted and of the Mean-Variance-CVaR portfolios.

The paper is organized as follows. In Sect. 2, we introduce the Mean-Variance-VaR 
model and show how to formulate it as an MIQP problem. In Sect. 2.1, we discuss 
how to practically obtain the Mean-Variance-VaR efficient surface, by minimizing 
variance with parametric constraints on the levels of the portfolio expected return and 
of VaR. Section 2.2 describes the Mean-Variance-CVaR model that will be compared 
with the Mean-Variance-VaR approach. In Sect. 3, we provide an extensive empirical 
analysis on six real-world datasets. Finally, Sect. 4 summarizes the main contributions 
of our work and describes some directions for further developments.

2  The Mean‑Variance‑VaR model

We consider an investment universe of n assets, whose linear returns are represented 
by the random variables R1,… ,Rn . In the case of full investment, a long-only port-
folio is identified with a vector x ∈ Δ =

�
x ∈ ℝ

n ∶
∑n

k=1 xk = 1, xk ≥ 0, k = 1,… , n

�
 , where 

xk is the fraction of capital invested in asset k. Thus, the portfolio linear return is 
given by RP(x) = Σn

k=1
xkRk . We assume that the random variables R1,… ,Rn are 

defined on a discrete probability space {Ω,F,P} , with Ω = {�1,… ,�T} , F  a �-
field and P(�t) = pt . In this work, we use a look-back approach where the possible 
realizations of the discrete random returns are obtained from historical data. As it is 
customary in portfolio optimization, the investment decision is made using T equally 
likely historical scenarios (see, e.g., Carleo et  al. 2017, and references therein). 
Then, under scenario t ∈ {1,… , T} , we denote by rkt the return of asset 
k ∈ {1,… , n} and by RPt(x) =

∑n

k=1
xkrkt the portfolio return.

The classical Mean-Variance (MV) portfolio optimization model (Markowitz 
1952, 1959) aims at determining the vector of portfolio weights x =

(
x1, x2,⋯ , xn

)
 

that minimizes the portfolio variance �2
P
(x) =

∑n

k=1

∑n

j=1
xk xj �kj , while restrict-

ing the portfolio expected return �P(x) =
∑n

k=1
�k xk to attain a specified target 

level � . Here, we denote by �k =
1

T

∑T

t=1
rkt the expected return of asset k, and by 

�kj =
1

T

∑T

t=1
(rkt − �k)(rjt − �j) the covariance between assets k and j. Thus, the MV 

model can be formulated as the following convex QP problem

(1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
x

n�
k=1

n�
j=1

xk xj �kj

s.t.
n�

k=1

�k xk ≥ �

n�
k=1

xk = 1

xk ≥ 0 k = 1,… , n
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where the last two constraints represent the budget and the no-short sellings con-
straints, respectively.

Our aim is to include value-at-risk (VaR) as a risk measure in the portfolio selection 
process in addition to the portfolio expected return and variance. VaR is one of the most 
popular risk management tools in the financial industry and it is commonly used to 
control risk (Longerstaey and Spencer 1996). As usual, VaR� represents the maximum 
loss at a given confidence level (1 − �) related to a predefined time horizon {1,… , T} , 
where typically � = 0.01, 0.05, 0.10 . Therefore, for a given portfolio x, VaR�(x) is the 
value such that the portfolio loss LP(x) = −RP(x) = −

∑n

k=1
xkRk exceeds VaR�(x) 

with a probability of �100% . More formally, VaR�(x) of the random portfolio return 
RP(x) is the �-quantile Q�(RP(x)) of its distribution with negative sign

For the Mean-Variance-VaR approach, a random portfolio return RP(x) is preferred 
to RP(y) if and only if �P(x) ≥ �P(y) , �2

P
(x) ≤ �2

P
(y) and VaR�(x) ≤ VaR�(y) , where at 

least one inequality is strict. Therefore, the efficient surface of the Mean-Variance-
VaR model can be obtained by finding the non-dominated portfolios, which are the 
Pareto-optimal solutions of the following tri-objective optimization problem

To practically solve Problem (2), we transform it into a single-objective optimization 
problem, by applying the classical �-constraint method (see, e.g., Cesarone 2020 ) as 
follows

where � and z are the required target levels of the portfolio expected return and VaR, 
respectively. Similar to Benati and Rizzi (2007), we can substitute VaR�(x) = −r� 
by adding the constraints r� ≤

∑n

k=1
rkt xk +M (1 − yt) , ∀t = 1,… , T  and ∑T

t=1
yt ≥ (1 − �)T  , where r� is a real variable, M is a sufficiently large positive 

number, and yt , with t = 1,… , T  , are Boolean variables. Thus, Problem (3) can be 
formulated as the following mixed-integer quadratic (MIQP) problem 

VaR�(x) = −Q�(RP(x)).

(2)

⎧⎪⎪⎨⎪⎪⎩

min
x

�
−�P(x), �

2

P
(x),VaR�(x)

�
s.t.

x ∈ Δ =

�
x ∈ ℝ

n ∶

n�
k=1

xk = 1, xk ≥ 0, k = 1,… , n

�
.

(3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
x

�2

P
(x)

s.t.

�P(x) ≥ �

VaR�(x) ≤ z
n�

k=1

xk = 1

xk ≥ 0 k = 1,… , n
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 Note that when the portfolio loss −
∑n

k=1
rkt xk is above −r� at time t, then, for 

sufficiently large M > 0 , we must have 1 − yt = 1 in constraint (4b) so that yt must 
be equal to 0. On the other hand, constraint (4c) imposes that the number of the 
portfolio loss scenarios that exceed −r� is not greater than �T  . Thus, −r� actually 
represents the VaR of the portfolio x and is bounded above by z (i.e., by the required 
target level of the portfolio VaR) through constraint (4a). In the empirical analysis 
we set � = 0.01, 0.05.

Remark 1 (Computational improvement of the Mean-Variance-VaR model) Model 
(4) is a MIQP problem that contains a big-M coefficient in constraint (4b). It is 
well known that for this type of formulations the computational efficiency of the 
solvers typically improves when reducing the value of M. Clearly, the penalty 
parameter M should be chosen in a way that guarantees the validity of the Mean-
Variance-VaR formulation. To this aim, the lowest possible value of M is given by 
Mideal = max1≤t≤T{−z −

∑n

k=1
rktx

⋆
k
} , where x⋆

k
 is the optimal solution of Model (4). 

However, since the optimal solution of Model (4) is not available a priori, we need 
to use a computable upper bound for this value. Here, we propose to use the value 
M̃ideal = −z −min∀i,t ri,t which clearly satisfies �Mideal > Mideal.

In what follows, we report some computational experiments showing an example 
of the improvement in computational time depending on the choice of the parameter 
M. More precisely, for the computationally demanding case where T = 330 , n = 28 , 
and � = 5% , we obtain Mideal = 0.04 and M̃ideal = 0.30 . We observe that the time 
required to solve Model (4) with M̃ideal and Mideal are essentially the same, namely 

(4a)

min
(x,r�,y)

n∑
k=1

n∑
j=1

xk xj �kj

s.t.

n∑
k=1

�k xk ≥ �

− r� ≤ z

(4b)r� ≤

n∑
k=1

rkt xk +M (1 − yt) t = 1,… , T

(4c)

T∑
t=1

yt ≥ (1 − �)T

n∑
k=1

xk = 1

xk ≥ 0 k = 1,… , n

yt ∈ {0, 1} t = 1,… ,T



1049

1 3

Mean‑Variance‑VaR portfolios: MIQP formulation and…

3 s, while the time required to solve the same model with the trivial bound M = 1 is 
850 s, around two orders of magnitude larger.

As described at the beginning of this section, in Problem (4) we use the sample 
covariance matrix for evaluating the portfolio variance. However, since the 
estimation of the covariance matrix represents a sensitive issue (see, e.g., Kondor 
et al. 2007; DeMiguel et al. 2009; Cesarone et al. 2020a), in the following remark 
we provide some clarifications on this choice.

Remark 2 (About the covariance matrix) The sensitivity to estimation errors of the 
minimum risk portfolios strongly depends on the ratio n

T
 , namely on the size n of 

the investment universe and on the number of observations T. As shown by Kondor 
et al. (2007), when considering a long-short minimum variance portfolio the insta-
bility of the optimal solution bursts for n ≃ T  , namely when the covariance matrix 
becomes singular. We handle this aspect by appropriately setting n and T, namely 
ensuring that n < T  (see Sect.  3). Furthermore, the no-short selling constraints in 
Problem (4) tend to improve the stability of the optimal solutions, as highlighted by 
Jagannathan and Ma (2003). Indeed, the authors show that considering long-only 
portfolios when minimizing the portfolio variance is equivalent to find long-short 
minimum risk portfolios with shrunk covariance matrices that help to reduce esti-
mation errors.

The Mean-Variance-VaR Pareto-optimal portfolios can be obtained as solutions 
of Problem (4) by appropriately varying the target level of the portfolio expected 
return � and the target level of the portfolio VaR z, as shown in the next section.

2.1  Finding the Mean‑Variance‑VaR efficient surface

In this section, we discuss how to practically obtain the Mean-Variance-VaR 
efficient surface by solving Problem (4), similarly to Roman et  al. (2007). 
Basically, we minimize the portfolio variance by appropriately varying the target 
level of the portfolio expected return � and the target level of the portfolio VaR z.

To obtain all the Pareto-optimal portfolios, we first determine an appropriate 
interval for � . This is the interval [�min, �max] , where �min = max{�minV , �minVaR} 
and �max = �P(xmax) with xmax = argmax

x∈Δ

�P(x) . Here, �minV = �P(xminV ) with 

xminV = argmin
x∈Δ

�2
P
(x) and �minVaR = �P(xminVaR) with xminVaR = argmin

x∈Δ

VaR�(x).

Then, for a fixed level � ∈ [�min, �max] , we define the appropriate interval of z,
[zmin(�), zmax(�)] , whose values guarantee that the optimal portfolios of 

Problem (4) are non-dominated. More precisely, zmin(�) = VaR�(xminVaR(�)) , where 
xminVaR(�) is the portfolio with minimum VaR whose expected return is bounded 
below by � , namely it is the optimal solution of the following problem (5)
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On the other hand, zmax(�) = VaR�(xminV (�)) , where xminV (�) is the portfolio with 
minimum variance whose expected return is bounded below by � , namely it is the 
optimal solution of the following problem (6)

In Fig.  1, we report an example of the Pareto-optimal portfolios obtained from 
Model (4) in the Variance-VaR plane for several fixed levels of the portfolio 
expected return � . Note that by solving Problem (4) for different levels of the port-
folio expected return � ∈ [�min, �max] with z = zmin(�) , we obtain the Mean-VaR effi-
cient frontier (see the bold black dashed line). On the other hand, when we solve 
Problem (4) for different values of � ∈ [�min, �max] with z = zmax(�) , we achieve the 
Mean-Variance efficient frontier (see the red dashed line).

For a fixed level of � ∈ [�min, �max] , if we require stronger conditions on the 
portfolio VaR, namely lower levels of z(�) , we clearly obtain efficient portfolios 

(5)

⎧
⎪⎨⎪⎩

min
x

VaR�(x)

s.t.

�P(x) ≥ �

x ∈ Δ

(6)

⎧
⎪⎨⎪⎩

min
x

�2

P
(x)

s.t.

�P(x) ≥ �

x ∈ Δ

Fig. 1  Example of the Mean-Variance-VaR Pareto-optimal portfolios (with � = 1% ) for several levels of 
the portfolio expected return � in the Variance - VaR plane
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with higher variance, because the feasible region in (4) becomes smaller. However, 
the in-sample increase in variance is relatively small for lower levels of required 
expected return � . This behavior is confirmed in our out-of-sample analysis in 
Sect.  3.2. Thus, it seems reasonable to complement the classical Mean-Variance 
model with a restriction on the VaR level, particularly for low levels of �.

We also observe that the number of selected assets in the optimal solutions 
decreases when the required VaR becomes smaller (see also Fig. 3). Furthermore, as 
the required target portfolio return � increases, both the portfolio variance and its VaR 
typically increase as shown in Fig. 1. We also note that for � = �min and z = zmax(�min) , 
we obtain the Global Minimum Variance (GMinV) portfolio (see the bold x in Fig. 1). 
On the other hand, when � = �max , the efficient frontier degenerates into a single point: 
the portfolio composed by the single asset with highest expected return.

2.2  The Mean‑Variance‑CVaR model

For comparison purposes, we also test the model proposed by Roman et al. (2007), 
which we report here for convenience:

Exploiting the LP formulation of Rockafellar and Uryasev (2000) for CVaR, Model 
(7) can be reformulated as a QP, as shown at the end of Sect.  4 of Roman et  al. 
(2007). Again, to determine all the Pareto-optimal portfolios, we detect a proper 
interval for � ∈ [�min, �max] , where �min = max{�minV , �minCVaR} , �max = �P(xmax) 
with xmax = argmax

x∈Δ

�
P
(x) , and �minCVaR = �P(xminCVaR) with x

minCVaR
= argmin

x∈Δ

CVaR�(x) . 

Thus, for a fixed level � ∈ [�min, �max] , we identify the appropriate interval of 
� ∈ [�min(�), �max(�)] , with �min(�) = CVaR�(xminCVaR(�)) and �max(�) = CVaR�(xminV (�)) , 
where xminCVaR(�) and xminV (�) are the portfolios with minimum CVaR and with 
minimum variance, respectively, whose expected returns are bounded below by �.

3  Empirical analysis

In this section, we conduct an extensive analysis on several real-world datasets to 
examine both the practical applicability of the Mean-Variance-VaR model and its 
out-of-sample performance. In Tables  1 and 2, we list the datasets considered in 
this study, containing weekly and daily linear returns, respectively, for some major 
market indexes. The datasets in Table 1 are also available in Bruni et al. (2016), and 
have been widely used in the literature (see Bruni et al. 2017; Cesarone et al. 2019, 

(7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
x

�2

P
(x)

s.t.

�P(x) ≥ �

CVaR�(x) ≤ �
n�

k=1

xk = 1

xk ≥ 0 k = 1,… , n
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2020b; Bellini et al. 2021; Corsaro et al. 2021); the datasets in Table 2 are publicly 
available in the website https:// host. uniro ma3. it/ docen ti/ cesar one/ DataS ets. htm, and 
have been used in other empirical analyses on portfolio selection (Carleo et al. 2017; 
Cesarone et al. 2020a; Benati and Conde 2022).

3.1  Empirical setup and performance measures

We first perform some numerical tests to determine the computational times 
required by Gurobi (Gurobi Optimization 2021), one of the best currently available 
MIQP solvers, to solve our model when varying the number n of the assets in the 
investment universe, the number T of the historical scenarios, and the confidence 
level � . For this purpose, we use the SP500 dataset listed in Table 1.

In Tables  3 and 4, we report the computational times (in seconds) for finding 
a Mean-Variance-VaR portfolio when � is fixed to 1% and 5%, respectively. The 
experiments are performed by varying n from 20 to 442 and T from 52 to 595, for 
each pair of n < T  that guarantees the non-singularity of the covariance matrix (see 
the discussion in Remark 2). As expected, the computational times tend to increase 
with n and T, but most notably when � = 5% . Indeed, in this case, the Gurobi MIQP 
solver typically spends more than eight hours for finding the optimal solution for 
high values of n and T. On the other hand, for � = 10% , the computational times 
tend to exceed one day thus becoming impractical, as also pointed out by Benati 
and Rizzi (2007). All the procedures have been implemented in MATLAB R2019b 
using the GUROBI 9.1 optimization solver, and have been executed on a laptop with 
an Intel(R) Core(TM) i7-8565U CPU @ 1.80 GHz processor and 8,00 GB of RAM.

For the out-of-sample performance analysis, we adopt a rolling time window 
(RTW) scheme of evaluation, namely we allow for the possibility of rebalancing the 
portfolio composition during the holding period at fixed intervals. Here, we choose 
one financial month both as a rebalancing interval and as a holding period. Fur-
thermore, on the basis of the computational times illustrated in Tables 3 and 4, we 
choose � = 1% and 5% , in-sample windows of 2 years (namely 104 observations) for 

Table 1  List of the weekly 
datasets analyzed

Index #assets #weeks Time interval

DowJones 28 1363 Feb 1990–Apr 2016
NASDAQ100 82 596 Nov 2004–Apr 2016
FTSE100 83 717 Jul 2002–Apr 2016
SP500 442 595 Nov 2004–Apr 2016

Table 2  List of the daily 
datasets analyzed

Index #assets #days Time interval

DowJones 28 6819 Feb 1990–Apr 2016
EuroStoxx 50 45 3715 Oct 2006–Dec 2020
Hang Seng 43 2707 Nov 2005–Apr 2016

https://host.uniroma3.it/docenti/cesarone/DataSets.htm
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weekly datasets (see Table 1), and in-sample windows of 10 months (namely 200 
observations) for daily datasets (see Table 2).

The out-of-sample analysis is based on 16 Pareto-optimal portfolios obtained 
from Problem (4) by appropriately varying the target levels of the portfolio expected 
return � and of the portfolio VaR z (see Sect. 2.1).

More precisely, we consider 4 different levels of target return 
�� = �min + � (�max − �min) with � = 0, 1∕4, 1∕2, 3∕4 . Furthermore, for a fixed 
level �� , we choose 4 levels of the portfolio VaR z� in the interval [zmin(��), zmax(��)] : 
z�(��) = zmin(��) + � (zmax(��) − zmin(��)) with � = 0, 1∕3, 2∕3, 1 . Note that for 
� = 0 we obtain the Mean-VaR optimal portfolios (see the bold black dashed line 
in Fig. 1), while for � = 1 we select the Mean-Variance optimal portfolios (see the 
red dashed line in Fig. 1). In Fig. 2, we report an example of the 16 Mean-Variance-
VaR efficient portfolios in the Variance-VaR plane for the DowJones daily dataset 
(see Table  2). Furthermore, to better understand the composition and diversifica-
tion of these 16 Pareto-optimal portfolios, Fig.  3 displays a boxplot showing the 
number of assets selected by each Mean-Variance-VaR efficient portfolio, using the 
RTW scheme of evaluation. We observe that, for a fixed target level of the portfolio 
expected return � , the number of selected assets tends to decrease when lower lev-
els of VaR are required for the portfolio. On the other hand, for a fixed level of the 
portfolio VaR, the number of selected assets tends to decrease when increasing the 
required level � of the portfolio expected return.

The out-of-sample performance of the 16 Mean-Variance-VaR efficient port-
folios is compared with that of the Equally Weighted (EW) portfolio and with 

Fig. 2  Example of the 16 Mean-Variance-VaR efficient portfolios selected for the out-of-sample perfor-
mance analysis
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that of 16 Mean-Variance-CVaR efficient portfolios. Similarly to the VaR 
case, these portfolios are obtained by considering 4 levels of target return 
�� = �min + � (�max − �min) with � = 0, 1∕4, 1∕2, 3∕4 , and, for a fixed level �� , 
4 levels of the portfolio CVaR ��(��) = �min(��) + � (�max(��) − �min(��)) with 
� = 0, 1∕3, 2∕3, 1.

For each portfolio strategy, we evaluate the out-of-sample results by using 
the following performance measures commonly employed in the literature (see, 
e.g., Cesarone and Colucci 2018; Bruni et al. 2017; Cesarone et al. 2022b), and 
described below.

• The Sharpe ratio (Sharpe 1966, 1994) measures the gain per unit risk and is 
defined as 

 where rf = 0 , �out is the sample mean of the out-of-sample portfolio return 
Rout , and �out is its standard deviation. An higher Sharpe ratio indicates a better 
portfolio performance.

• The Maximum DrawDown (MaxDD, Chekhlov et  al. 2005) measures the 
maximum potential out-of-sample loss from the observed peak, and is defined as 

Sharpe =
�out − rf

�out
,

Fig. 3  Number of assets selected by each Mean-Variance-VaR efficient portfolio
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 where T in is the length of the in-sample window, and the DrawDown is 
computed as 

 Here, Wt = Wt−1(1 + Rout
t
) denotes the portfolio wealth at time t, with W0 = 1 . 

The MaxDD is always non-positive, hence higher values are preferable.
• The Ulcer index (Martin and McCann 1989) evaluates the depth and the duration 

of drawdowns in prices over the out-of-sample period, and is defined as 

 A lower Ulcer value indicates a better portfolio performance.
• The Turnover (DeMiguel et al. 2009) evaluates the amount of trading required 

to perform in practice the portfolio strategy, and is defined as 

 where Q represents the number of rebalances, xq,k is the portfolio weight of 
asset k after rebalancing, and xq−1,k is the portfolio weight before rebalancing 
at time q. Lower turnover values indicate better portfolio performance. We 
point out that this definition of portfolio turnover is a proxy of the effective one, 
since it evaluates only the amount of trading generated by the models at each 
rebalance, without considering the trades due to changes in asset prices between 
one rebalance and the next. Thus, by definition, the turnover of the EW portfolio 
is zero.

• The Sortino ratio (Sortino et al. 2001) is defined as 

 where TDD =
√

�[((Rout − rf )−)
2] is the Target Downside Deviation, and rf=0. 

Higher values of the Sortino ratio indicate a better portfolio performance.
• The Rachev ratio (Biglova et  al. 2004) measures the relative gap between the 

mean of the best �% values of Rout − rf  and that of the worst �% ones, and it is 
computed as 

MaxDD = min
T in+1≤t≤T

DDt,

DDt =

Wt − max
T in+1≤�≤t

W�

max
T in+1≤�≤t

W�

, t ∈ {T in + 1,…T}.

Ulcer =

������
T∑

t=T in+1

DD2
t

T − T in
.

Turnover =
1

Q

Q∑
q=1

n∑
k=1

∣ xq,k − xq−1,k ∣,

Sortino =
�out − rf

TDD
,

Rachev =
CVaR�(rf − Rout)

CVaR�(R
out − rf )

,
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 where � = � = 5%, 10% , and rf = 0 . Higher Rachev ratio values are clearly 
preferred.

3.2  Out‑of‑sample performance results

In Table 5, we provide the computational results obtained by the 16 analyzed portfo-
lio strategies and by the benchmark EW portfolio on the EuroStoxx 50 daily dataset 
(see Table 2), with � = 1% . The rank of the performance results is shown in differ-
ent colors. More precisely, for each row the colors range from deep-green to deep-
red, where deep-green represents the best performance, while deep-red represents 
the worst one. We observe that the EW portfolio shows the lowest Sharpe and Sor-
tino ratios, and one of the highest volatilities. As mentioned above, by definition, 
the turnover of the EW portfolio is 0. Furthermore, we notice that by considering 
stronger conditions on the portfolio VaR, the Mean-Variance-VaR portfolios tend to 
improve their out-of-sample performance. This is more evident when choosing high 
levels of the portfolio expected return � , for which the Pareto-optimal portfolios with 
low levels of z achieve the best performance in terms of mean, Sharpe, Sortino, and 
Rachev ratios. This behavior is also confirmed by the trend of the cumulative out-
of-sample portfolio returns, reported in Fig. 4, where the EW portfolio tends to be 
dominated by the Mean-Variance-VaR portfolios for all target levels � . Furthermore, 
there seems to be a behavioral pattern of portfolios with lower levels of z, namely z0 
and z1∕3 , which have better performance w.r.t. the Mean-Variance portfolios (namely, 
the Mean-Variance-VaR portfolios with z1 ). This is more remarkable for the highest 
level of the portfolio expected return, �3∕4.

In Table 6, for each portfolio strategy we show the out-of-sample performance 
results obtained on the DowJones daily dataset (see Table 2), with � = 5%.

In this case, for higher levels of the portfolio expected return � , namely �1∕2 and 
�3∕4 , the portfolios with lower levels of VaR, namely z0 and z1∕3 , show the high-
est mean, Sharpe, Sortino, and Rachev ratios. We highlight that, when comparing 
the efficient Mean-Variance-VaR portfolios with the Mean-Variance ones, we also 
observe a general improvement of the out-of-sample performance, particularly for 
low levels of z. This behavior is also confirmed by the trend of the cumulative out-
of-sample portfolio returns, reported in Fig. 5. In this case, the EW portfolio seems 
to be preferred to the Mean-Variance-VaR portfolios with � = �min and � = �1∕4 , 
while for higher levels of the required portfolio return, the Mean-Variance-VaR port-
folios tend to dominate the EW portfolio in terms of cumulative returns. As in the 
previous case, portfolios with lower levels of z, namely z0 and z1∕3 , seem to exhibit a 
behavioral pattern, showing better performance w.r.t. the Mean-Variance portfolios 
(namely, the Mean-Variance-VaR portfolios with z1 ). This is more noticeable for the 
highest level of the portfolio expected return �3∕4.

For comparison purposes, in Tables 7 and 8 we also provide the out-of-sample 
performance results obtained by the Mean-Variance-CVaR portfolios described in 
Sect.  2.2, using the same experimental setup applied to the Mean-Variance-VaR 
case. Tables 5, 6, 7 and 8 also report the out-of-sample VaR (mean/median) for all 
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Table 5  Out-of-sample performance results of the Mean-Variance-VaR efficient portfolios on the Euro-
Stoxx50 daily dataset with � = 1%(color figure online)
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Table 6  Out-of-sample performance results of the Mean-Variance-VaR efficient portfolios on the Dow-
Jones daily dataset with � = 5%(color figure online)
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the 16 optimal portfolios selected by the Mean-Variance-VaR and the Mean-Vari-
ance-CVaR approaches.

We observe that as the required target levels of the in-sample VaR and the 
in-sample CVaR increase, the out-of-sample VaR typically increases as well.

3.3  Comprehensive analysis of the results

For a better assessment of the performance of Mean-Variance-VaR efficient portfo-
lios, we now report a summary of our computational results on all the datasets listed 
in Tables 1 and 2. The detailed out-of-sample results can be found in the supple-
mentary materials. In Tables 9 and 10, we summarize the number of datasets where 
the Mean-Variance-VaR efficient portfolios achieve equal or better performance than 
that of the EW portfolio when � = 1% and � = 5% , respectively. On the other hand, 
in Table 11 and 12 we report the number of datasets where the Mean-Variance-VaR 
efficient portfolios achieve equal or better performance than that of the Mean-Vari-
ance-CVaR portfolios when � = 1% and � = 5% , respectively. In each table we use 
the green marker when the best performances are obtained in at least 50% of the 

Fig. 5  Cumulative out-of-sample portfolio returns of the Mean-Variance-VaR efficient portfolios using 
different levels of � and � = 5% on the DowJones daily dataset
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Table 7  Out-of-sample performance results of the Mean-Variance-CVaR efficient portfolios on the Euro-
Stoxx50 daily dataset with � = 1%(color figure online)
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Table 8  Out-of-sample performance results of the Mean-Variance-CVaR efficient portfolios on the Dow-
Jones daily dataset with � = 5%(color figure online)
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total cases. We point out that, under stronger conditions on the portfolio VaR, the 
performance of the optimal portfolios of our model seems to be typically better than 
that of the EW portfolio (see Table 10) in terms of mean, Sharpe ratio, Sortino ratio, 
and Maximum Drawdown, particularly when � = 5% . Similarly, the performance of 
the efficient portfolios of our model seems to be generally better than that of the 
Mean-Variance-CVaR portfolios (see Table 11) particularly for � = 1% . As shown 
in Table 12, when � = 5% the good performance of the Mean-Variance-VaR portfo-
lios appears to be less evident. This might be due to the higher robustness of CVaR 
with � = 5% , which seems to better estimate the tail risk, as compared to CVaR with 
� = 1%.

Table 9  Number of datasets out of six where the Mean-Variance-VaR efficient portfolios achieve equal or 
better performance than that of the EW portfolio, when � = 1%(color figure online)

ηmin η1/4 η1/2 η3/4

z0 z1/3 z2/3 z0 z1/3 z2/3 z0 z1/3 z2/3 z0 z1/3 z2/3

µout 2 2 2 4 4 4 6 6 5 5 5 5

σout 6 6 6 6 6 6 2 2 2 1 1 1

Sharpe 3 3 4 4 4 4 5 6 6 5 5 5

MaxDD 5 5 5 3 5 5 2 4 5 1 1 1

Ulcer 2 3 2 2 2 2 2 2 2 1 1 1

Turnover – – – – – – – – – – – –

Sortino 3 3 3 4 4 4 5 6 6 4 4 5

Rachev 5% 1 1 0 1 2 1 2 2 2 3 3 3

Rachev 10% 2 2 1 3 2 2 4 4 4 5 5 5

Table 10  Number of datasets out of six where the Mean-Variance-VaR efficient portfolios achieve equal 
or better performance than that of the EW portfolio, when � = 5%(color figure online)

ηmin η1/4 η1/2 η3/4

z0 z1/3 z2/3 z0 z1/3 z2/3 z0 z1/3 z2/3 z0 z1/3 z2/3

µout 1 1 1 4 4 4 6 5 5 5 5 5

σout 6 6 6 6 6 6 2 2 2 1 1 1

Sharpe 4 4 4 4 5 5 6 6 6 5 4 4

MaxDD 5 5 5 5 5 5 3 5 5 1 2 2

Ulcer 4 3 3 2 3 2 2 2 2 1 1 1

Turnover – – – – – – – – – – – –

Sortino 4 4 4 4 5 5 6 6 6 5 4 4

Rachev 5% 0 0 0 0 0 1 3 2 2 4 3 3

Rachev 10% 2 1 0 1 2 2 5 5 5 5 5 5
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4  Conclusions and future research

In this paper, we have proposed a tri-objective portfolio selection model which 
adds conditions on the portfolio VaR to the classical Mean-Variance approach. 
The Mean-Variance-VaR model is formulated as a MIQP problem and is solved 
using Gurobi. We have described appropriate combinations of the parameters � , 
n, and T, for which we can obtain an optimal solution in a reasonable time. Our 
extensive empirical analysis based on several real-world datasets shows promis-
ing results in terms of various performance measures. Indeed, it seems that the 
Mean-Variance-VaR optimal portfolios can generally achieve equal or better out-
of-sample results than those obtained by the EW and by the Mean-Variance-CVaR 
portfolios. Further future research might be directed to extend this approach to 
other Mean-Risk models and to investigate the stability of the Pareto-optimal 

Table 11  Number of datasets out of six where the Mean-Variance-VaR efficient portfolios achieve equal 
or better performance than that of the Mean-Variance-CVaR portfolios, when � = 1%(color figure online)

ηmin η1/4 η1/2 η3/4

z0 z1/3 z2/3 z0 z1/3 z2/3 z0 z1/3 z2/3 z0 z1/3 z2/3

µout 2 4 4 5 6 6 5 6 5 6 6 5

σout 5 5 3 1 0 0 1 1 1 1 1 1

Sharpe 2 4 5 4 5 6 4 4 3 3 3 3

MaxDD 4 5 4 3 5 4 4 2 2 1 2 1

Ulcer 3 5 4 4 4 3 4 3 2 4 3 2

Turnover 0 1 2 1 0 0 2 5 2 4 5 2

Sortino 2 4 4 4 5 6 4 4 3 3 3 3

Rachev 5% 2 3 3 3 3 4 2 5 5 4 3 5

Rachev 10% 2 3 3 3 5 4 3 4 5 4 4 4

Table 12  Number of datasets out of six where the Mean-Variance-VaR efficient portfolios achieve equal 
or better performance than that of the Mean-Variance-CVaR portfolios, when � = 5%(color figure online)

ηmin η1/4 η1/2 η3/4

z0 z1/3 z2/3 z0 z1/3 z2/3 z0 z1/3 z2/3 z0 z1/3 z2/3

µout 2 3 3 3 5 6 5 5 5 4 4 4

σout 3 5 3 0 0 0 0 0 0 0 0 0

Sharpe 2 2 3 2 5 4 4 5 4 3 2 2

MaxDD 4 4 4 3 4 3 4 2 1 1 1 1

Ulcer 3 3 4 1 2 2 4 2 2 2 1 1

Turnover 0 0 0 0 0 0 0 0 0 0 2 2

Sortino 2 2 3 2 5 4 4 5 4 3 2 1

Rachev 5% 2 3 1 2 4 4 5 4 5 3 5 3

Rachev 10% 2 3 2 3 5 4 4 4 5 3 5 4
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solutions obtained by our model (see, e.g., Cesarone et al. 2020a). Furthermore, a 
broad comparison between parametric and nonparametric estimation approaches 
for VaR-based portfolio selection problems is left for future studies.
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