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Abstract
We propose the first speculative weather-based algorithmic trading strategy on a 
continuous intraday power market. The strategy uses neither production assets nor 
power demand and generates profits purely based on superior information about 
aggregate output of weather-dependent renewable production. We use an optimized 
parametric policy based on state-of-the-art intraday updates of renewable produc-
tion forecasts and evaluate the resulting decisions out-of-sample for one year of trad-
ing based on detailed order book level data for the German market. Our strategies 
yield significant positive profits, which suggests that intraday power markets are not 
semi-strong efficient. Furthermore, sizable additional profits could be made using 
improved forecasts of renewable output, which implies that the quality of forecasts is 
an important factor for profitable trading strategies. This has the potential to trigger 
an arms race for more frequent and more accurate forecasts, which would likely lead 
to increased market efficiency, more reliable price signals, and more liquidity.

Keywords Policy optimization · Intraday power markets · Algorithmic trading · 
Weather-based trading · Stochastic optimization

1 Introduction

In the last decades, the electricity industry in many countries has seen rapid changes. 
One driver of these developments was the transition from a highly vertically inte-
grated, state controlled sector of the economy to a largely competitive and decou-
pled industry Pollitt (2019). Another reason is the climate crisis and the increasing 
efforts to transition to a carbon neutral society. The electricity sector is the key to 
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sustainable energy systems, enabling a change of the nature of energy supply by 
sharply increasing production from variable renewable energy sources (VRES) such 
as wind and photovoltaics.

In the majority of industrialized countries electricity is traded on a range of 
future markets whose products differ in their time to maturity. Recently, the weather-
dependent and unpredictable nature of VRES production has increasingly shifted 
the focus to markets with a high temporal resolution that trade close to delivery 
when production forecasts are reasonably accurate.

Short-term trading is mostly organized in real-time markets or continuous intra-
day markets. While the former is the prevailing design in the US (Milligan et  al. 
2016), the latter is, for example, used in Europe. These volatile markets are attrac-
tive for firms that can quickly adapt their demand or production profiles and can 
thus sell their flexibility to other market participants with balancing needs driven 
by, for example, forecast errors in VRES production. Short-term trading thus pro-
vides incentives to invest in flexible energy sources such as gas turbines and storage, 
which are required to balance the intermittent production from ever growing VRES 
capacities.

Due to the increasing size and sustained price variability, short-term markets are 
not only interesting for flexibility providers but increasingly also for speculative 
traders who neither own production assets nor trade their own electricity demand. 
The essential defining characteristic of speculative trading on electricity markets 
thus is that any open position has to be closed before the respective product goes 
into delivery.

In this paper, we propose a trading strategy for speculative trading on continu-
ous intraday markets. Our approach is motivated by algorithmic trading strategies 
in continuous financial markets that are triggered by signals indicating a change in 
the fundamental value of an asset. Since, as discussed above, VRES production is an 
important driver of short-term electricity trading, we use forecast errors of aggregate 
VRES production as signals for our strategies. The rationale for this choice is that if 
forecasts for VRES production are inaccurate, producers have to correct their posi-
tions taken on the day-ahead market, which, if the errors are large enough, causes a 
shift in intraday prices (Kiesel and Paraschiv 2017; Kremer et al. 2020a, b).

While the literature on asset backed trading on intraday power markets is exten-
sive (see for example Boomsma et al. 2014; Kumbartzky et al. 2017; Séguin et al. 
2017; Bertrand and Papavasiliou 2019; Wozabal and Rameseder 2020; Rintamäki 
et al. 2020), there is virtually no research on optimal bidding strategies for specula-
tive traders that have no assets of their own.

In the following, we review those papers that come closest to our trading strat-
egies. Skajaa et  al. (2015) analyze a wind power producer participating in the 
continuous intraday market as well as the balancing market using detailed data 
from the limit order book (LOB) as well as several updated wind power fore-
casts. Tankov and Tinsi (2021) propose to use repeatedly updated probabilistic 
forecasts instead of point forecasts for weather related variables. Sánchez de la 
Nieta et al. (2020) use several updated weather forecasts for bidding on the Span-
ish day-ahead market, intraday auctions, and imbalance market. Engmark et  al. 
(2018) propose a trading strategy for a hydro power producer on the day-ahead, 
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intraday and balancing market. Dideriksen et  al. (2019) consider trading strat-
egies for a hydropower producer on the intraday market. Koch (2021) uses the 
intraday market to build up a position to be cleared on the balancing market, thus 
arbitraging between the two markets. Kath and Ziel (2018) introduce a forecast 
for the volume weighted continuous intraday price for 15-minutes contracts and 
develop a strategy to choose between trading on the day-ahead auction market 
and the continuous intraday market. Monteiro et al. (2020) evaluate future trad-
ing strategies on the Spanish Mibel market based on long-term electricity futures. 
Maciejowska et  al. (2019) study the problem of a small VRES producer that 
trades on the day-ahead and the intraday market. Wozabal and Rameseder (2020) 
propose trading strategies for a storage that arbitrages between Spanish day-ahead 
and intraday markets. Furthermore, Kath and Ziel (2020) explore optimal order 
execution strategies with the aim to minimize liquidity cost and Glas et al. (2019, 
2020) study optimal VRES trading strategies on the intraday market in an opti-
mal control setting. Finally, Bertrand and Papavasiliou (2019) use reinforcement 
learning to optimize a Markovian strategy for an electricity storage on the Ger-
man intraday market for power.

We contribute to the literature in the following ways: 

1. While there is a growing literature investigating the impact of VRES production 
forecast errors on intraday prices (e.g., Garnier and Madlener 2014; Kiesel and 
Paraschiv 2017; Kremer et al. 2020a, b; Kulakov and Ziel 2019), we are the first 
to propose a demonstrably profitable trading strategy based on this observation. 
We take great care to accurately model market mechanisms, the exact clearing 
algorithm, and the sequence of information. To the best of our knowledge Skajaa 
et al. (2015); Martin and Otterson (2018); Engmark et al. (2018); Bertrand and 
Papavasiliou (2019); Kuppelwieser and Wozabal (2020); Dideriksen et al. (2019) 
are the only other papers that capture the realities of continuous trading in simi-
lar detail. In particular, apart from Skajaa et al. (2015); Engmark et al. (2018); 
Bertrand and Papavasiliou (2019); Dideriksen et al. (2019); Koch (2021), this is 
the first paper that evaluates a trading strategy based on detailed order book data, 
which is different from the extant literature that discretizes the trading to 1 min 
or 15 min brackets to be able to deal with the shear amount of order data (e.g., 
Glas et al. 2019, 2020; Kath and Ziel 2020).

  The resulting trading problem is characterized by substantial uncertainties 
about the future state of the continuous market and a high frequency of arrival of 
new order information, necessitating a large number of decisions which have to 
be taken at random points in time. Consequently, given the complex information 
structure of the problem and the number of decisions to be taken, finding optimal 
decisions is clearly computationally intractable (Bertrand and Papavasiliou 2019). 
We therefore propose a non-anticipative parametric policy that yields significant 
positive profits in controlled out-of-sample experiments and uses sufficiently large 
forecast errors of renewable production as trading signals.

2. Our results show that intraday power markets are far from efficient. In particular, 
it is possible to capitalize on information on day-ahead forecast errors of VRES 
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output. This fact suggests that the market disseminates information slowly and in 
an imperfect manner: While recent results found evidence that intraday electricity 
markets are weak-form efficient (e.g., Oksuz and Ugurlu 2019; Narajewski and 
Ziel 2020), our results illustrate that they violate the more restrictive semi-strong 
version of the efficient market hypothesis, which states that it is impossible to 
consistently generate abnormal returns using publicly available data (Malkiel and 
Fama 1970).

3. Next to demonstrating that strategies based on current state-of-the-art forecasting 
of renewable production are profitable, we quantify the value of a perfect fore-
cast and conclude that there is potential for substantially increased profits from 
weather-based strategies. This finding suggests that in the future the industry 
might see an arms race in forecasting, similar to the arms race for speed observed 
in the financial markets (e.g., Budish et al. 2015).

In our numerical case study, we consider the German intraday power market. We 
first examine the insample performance of our policy for 18 months of trading to 
identify sensible ranges for our parameters and for the timing of trading decisions. 
We find a trade-off between the quality of the signal that is required to trigger the 
strategy and the size of the traded position. Generally speaking, profits per trade 
rise in the quality of the signal. However, if trading is restricted to only those prod-
ucts with high quality signals, trading occurs infrequently reducing overall profits. A 
similar trade-off can be observed for the size of the position: while profits initially 
rise with larger positions, the marginal profit per additional traded MWh is dimin-
ishing due to liquidity costs that increase in order size.

Furthermore, we find that one of the most important aspects of the trading strat-
egy is how it deals with the lack of liquidity that plagues intraday power markets. In 
particular, a trader that seeks to capitalize on informational advantages in forecast-
ing would ideally want to trade as early as possible on this information. However, 
since there is usually very little trading activity until 2-3 h before gate closure, such 
a strategy is running the risk of being unprofitable due to high transaction costs. We 
show how patient strategies based on a sequence of limit orders can significantly 
reduce liquidity costs and outperform simpler impatient strategies based on market 
orders.

In an out-of-sample study, we evaluate our strategies for one year of trad-
ing. The results show that the proposed policies yield significant positive profits 
for both hourly and quarter-hourly products, where the former is characterized by 
larger volumes, higher profits, and more volatile profits per product, while the latter 
yields lower profits and also trades less volumes. These differences can mostly be 
explained by the higher liquidity of hourly products.

We show that the potential additional earnings for a strategy which is based on a 
perfect intraday forecast of VRES production are significant, increasing profits by 
one order of magnitude or, more specifically, from €200,000 to 2 million for hourly 
products and from €60,000 to €300,000 for quarter-hourly products. Hence, there 
is a strong incentive to invest in better forecasts and more frequent updates during 
the day  –  a situation which might trigger an arms race in short-term forecasting 
of renewable output. As opposed to the arms race for speed observed in the share 
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market (e.g., Budish et al. 2015), this development has the potential to increase mar-
ket liquidity in early hours of intraday trading, the accuracy of price discovery, and 
therefore ultimately welfare.

The rest of the paper is organized as follows: In Sect. 2, we describe the relevant 
features of intraday power markets and discuss liquidity and the impact of VRES. 
Section 3 is dedicated to our trading policy. Section 4 describes the setting of our 
case study, while Sect. 5 discusses its results. Finally, Sect. 6 concludes the paper 
and discusses implications as well as avenues for further research.

2  Intraday markets

In this section, we first describe the typical market design of continuous intraday 
power markets in Sect. 2.1, focusing on the German continuous intraday market as 
one of the most liquid markets. Secondly, we discuss the influence of renewable gen-
eration on prices in Sect. 2.2. Finally, we investigate market liquidity and its depend-
ency on time to delivery in Sect. 2.3.

2.1  Market design

Most spot markets for power consist of a day-ahead market that allows market par-
ticipants to trade electricity one day ahead of delivery and a short-term market, 
which gives participants the possibility to adjust their positions until shortly before 
physical delivery. Short-term markets are usually either organized as real-time mar-
kets or as intraday markets. Prominent examples of the former include most US 
power markets (Milligan et al. 2016), while European short-term markets fall in the 
latter category (Shinde and Amelin 2019).

In Europe, there are currently two competing types of intraday trading systems: 
auction markets and continuous intraday trading. In 2015, the EU decided on the 
long-term goal to couple all European intraday markets in a large continuous mar-
ket in order to facilitate a secure energy supply, competitiveness, and fair prices 
(European Commission 2015). While most European countries already transitioned 
to continuous intraday markets that are compatible with the joint European design, 
some countries such as Italy, Spain, and Portugal still use auction markets. In this 
paper, we are interested in continuous intraday markets and for the ease of expo-
sition focus on the European market design and its implementation in Germany 
hosted by the EPEX, the largest power exchange in Europe (see Viehmann 2017, for 
a detailed description). However, we note that other markets are very similar in the 
features crucial for the analysis in this paper.

With the build up of capacities in intermittent and unpredictable production, 
short-term trading on intraday markets is increasingly gaining traction (EPEX 
2020b). As a result, liquidity of the German intraday market has been improving 
in the last years with growing trading volumes, but also an increased prevalence of 
automated trading (EPEX 2020b). In particular, due to the short-term nature of the 
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continuous intraday market, marketing of flexible power sources and electricity stor-
age as well as position closing is often relegated to trading algorithms.

On the German intraday market power can be traded on a national market until 
30 minutes before physical delivery. After that, the national market closes and four 
separate markets, one for every control area, open where market participants can 
trade for delivery in that area until 5 minutes before physical delivery. The intraday 
market opens shortly after the clearing of the day-ahead market and allows to trade 
hourly, half-hourly, and quarter-hourly products. Market participants submit orders 
to the limit order book which are cleared continually. If for a market participant the 
combined orders from spot and future markets deviate from the actual physical pro-
duction or consumption at gate closure of the intraday market, the residual quantities 
are settled on the balancing market. The price charged or paid for these deviations is 
the so-called symmetric reBAP (Bundesnetzagentur 2012).

Each buy and sell order on the intraday market for a given product contains basic 
information about quantity, limit price, and validity time. A market order is cleared 
immediately against the best available order in the limit order book, while a limit 
order is only executed with matching orders on the other side of the market up to 
a certain price (the limit). If this is not possible, the order is kept in the limit order 
book until its end validity date to be cleared with future orders. If the quantities of 
two matched orders do not agree, the order with the higher order quantity is only 
partially cleared and remains in the order book with a correspondingly reduced 
quantity (EPEX 2020a).

Market participants can add the usual order qualifiers such as all-or-nothing, 
immediate-or-cancel, or fill-or-kill. Additionally, iceberg orders are allowed for 
which only a fraction of the order quantity is visible to other market participants. 
As soon as the visible quantity is cleared, the next part of the order is automatically 
placed in the LOB (EPEX 2020a).

The state of the LOB changes with the placement of a new order, with the modifi-
cation of an order, and at the end-validity-time of an active order. The limit price of 
the order with the lowest sell price is called best-ask, while the order with the high-
est buy price defines the best-bid, and the difference between the two prices is the 
bid-ask-spread.

2.2  The influence of renewable generation

Because electricity is bought by most consumers for a price that is only infrequently 
updated, short-term consumption is inelastic. Furthermore, due to limited storage, 
supply and demand have to be matched instantaneously. Consequently, supply and 
demand shocks can lead to massive shifts in short-term prices (Weron 2014).

One frequent source of supply shocks is the deviation of produced wind and solar 
power from its forecast levels. Typically, owners of VRES sell electricity on the day-
ahead market one day before delivery based on forecasts of wind speeds and solar 
irradiation. If those forecasts turn out to be incorrect, the residual quantities have 
to be traded on the intraday market or resolved on the balancing markets. Since the 
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latter offers less favorable prices, VRES producers have an incentive to balance fore-
cast errors on the intraday market as best as they can.

In particular, if a trader sold too much energy on the day-ahead market she will 
try to buy back missing energy on the continuous intraday market as soon as more 
accurate forecasts become available and the error becomes apparent thereby increas-
ing demand. An analogous situation occurs if too little energy was sold, which 
induces an increased supply, leading to downward pressure on the intraday prices. 
Due to the rapid expansion of VRES capacities in many countries and the high cor-
relation of forecast errors for VRES production within a market zone, large unex-
pected aggregate deviations from production forecast are frequently observed and 
significantly influence the intraday price (Karanfil and Li 2017; Kiesel and Para-
schiv 2017; Goodarzi et al. 2019; Kulakov and Ziel 2019; Hu et al. 2021; Spodniak 
et al. 2021).

Traditionally weather forecasts are based on large computationally expensive 
models that depend on satellite images and high altitude measurements of planes 
and weather balloons, which are only collected every couple of hours. These fore-
casts are therefore updated too infrequently to be used as inputs for algorithmic trad-
ing strategies on the intraday market.

However, recently, several providers specialized in combining these traditional 
global weather forecasts with real-time production data and local weather models to 
offer frequent updates of forecasts for renewable production of single plants. Cur-
rently, there are many providers such as Enfor, ConWX, Meteologica, Gnarum, 
enercast, weathernews, or windsim that compete to provide more accurate VRES 
power production forecasts and more frequent updates.

2.3  The role of liquidity

Liquid markets are necessary for the successful implementation of the trading strate-
gies considered in this paper. The observations in this section therefore inform the 
discussions in the later sections. For a more comprehensive treatment of the liquid-
ity of the German intraday market, we refer to Kuppelwieser and Wozabal (2020).

Liquid markets allow trading for fair prices at low transaction costs and with 
little scope for price manipulation by dominant players. While traded volumes on 
the German continuous intraday market have been continuously increasing in the 
last years, the liquidity of the market is still rather limited at times. Most orders 
are placed shortly before the market closes and consequently, liquidity is typically 
low at the beginning of the trading session, increases toward physical delivery, and 
decreases again shortly before the market closes.

As can be seen by comparing panel 1 with panel 2 and 3 of Fig. 1, the liquidity 
of the intraday power market is significantly worse than that of financial markets. 
The comparison reveals that, relative to the price, the bid-ask-spread for a share of a 
large company is roughly 50 times smaller than the bid-ask spread of the continuous 
power market during its most liquid period. Inspecting the lower two plots depicting 
bid and ask prices on the German intraday market for a typical trading session of an 
hourly product, we recognize the characteristic L-shape in the bid-ask spread with 
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large differences between the two prices which suddenly falls to a low value close to 
delivery as also observed by Balardy (2018). We note that the market for half-hourly 
and quarter-hourly products is even thinner than that for hourly products (e.g., Nara-
jewski and Ziel 2020). The comparison of the two plots in panel 2 and 3 reveals 
evidence for an increase in liquidity between the years 2017 and 2018. Finally, the 
high volatility of the intraday price during the trading session, makes the market 
attractive for speculative trading.

3  Trading strategy

Our trading strategy rests on the assumption that a large number of VRES plants sell 
their forecast production on the day-ahead market and use the intraday market to re-
balance their positions so as to take into account updated production forecasts on the 
day of delivery. The idea behind the strategies discussed in this section is to capital-
ize on early intraday updates of aggregate VRES production forecasts for the whole 
of Germany by anticipating the direction of the correction in prices.

To get an accurate measurement of profits, we evaluate the proposed strategy 
based on detailed limit order book data. In particular, we do not merely rely on tick 
data or a discretized version of the market as for example in Glas et al. (2019, 2020); 
Kath and Ziel (2020), but take into account the exact rules of continuous intraday 
market clearing as well as detailed data on orders by other market participants to 
calculate the price at which we buy and sell electricity.

We are interested in trading strategies that work without physical assets or elec-
tricity demand, implying that every product has to be traded separately and positions 

10:00 11:00 12:00 13:00 14:00 15:00
Jun 21, 2012   

220

222

224

226

$/
S

ha
re

AMAZON 2012-06-21

Ask
Bid

Dec 11, 16:00 Dec 11, 20:00 Dec 12, 00:00 Dec 12, 04:00 Dec 12, 08:00
2018   

70

80

90
H12 2018-12-12

Ask
Bid

Dec 11, 16:00 Dec 11, 20:00 Dec 12, 00:00 Dec 12, 04:00 Dec 12, 08:00
2017   

30

40

50
H12 2017-12-12

Ask
Bid
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have to be closed before gate closure. We base our algorithms for the product that 
delivers electricity in period t on the updates in the forecast of renewable production 
s hours before delivery

where f DA
t

 is the day-ahead forecast of renewable production in t while f s
t
 is the 

updated forecast at time t − s . The quantity �s
t
 is thus the best estimate of the forecast 

error in aggregate VRES production at time t which is available at time t − s . We 
adopt the convention that f 0

t
 is the actual production, making �0

t
 the true forecast 

error of the day-ahead forecast.
Our algorithm takes the form of a classic algorithmic trading strategy on financial 

markets and uses �s
t
 as a signal that can be used to infer a change in the fundamental 

value of the product, i.e., electricity to be delivered in period t. This is based on the 
assumption that traders that first become aware of the errors in forecasts can capital-
ize on this knowledge by trading accordingly. For example, as a result of a positive 
�s
t
 , a trader would buy electricity on the intraday market anticipating a rise in prices 

once the rest of the market becomes aware of the shortage.
However, unlike signals in financial markets like earning announcements or 

prices of other assets, which can be regarded as public information as soon as they 
are revealed, information on VRES forecast errors is gradually improved as increas-
ingly better forecasts become available.1 In particular, the notion of a trader reacting 
first makes much less sense than for signals typically used for high frequency trading 
on shares markets, since orders cannot be placed as soon as information arrives and 
the decision when to act on updated forecasts becomes important. Traders thus face 
a trade-off between the reliability of the signal and the speed of the reaction.

To define our strategy, we specify a traded quantity, a price for which we place 
orders, as well as the timing of orders. We depict the sequence of events in Fig. 2. 
The strategy is triggered by the arrival of a new forecast for VRES production at 
time t1 , which is a pre-defined length of time s before delivery of a product t, i.e., 
t1 = t − s . If the forecast error �s

t
 is large enough, we build up a position in the time 

interval [t1, t2] . Subsequently, we hold the position until t3 > t2 and finally unwind 
the position in the time interval [t3, t4] , where t4 is close to gate closure. Note that 
since we assume that the trader does not have a physical asset, we require the posi-
tion to be closed at the end of trading to avoid open positions on the balancing 
market.

More specifically, we open a position of size V± > 0 if the signal �s
t
 observed at 

time t1 exceeds a threshold �± depending on the sign of the deviation. We thus define 
the traded quantity at time t1 as

(1)�
s
t
= f DA

t
− f s

t
,

1 Forecasts of renewable production do not always get better with the passage of time (Tankov and Tinsi 
2021). However, since they tend to get better on average as gate closure approaches, it is inconsequential 
if forecasts get worse in some rare instances as long as in aggregate the proposed strategy is profitable.
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where positive quantities correspond to buying of electricity, i.e., we buy V+ MWh 
of electricity if forecasts are corrected downward by more than a threshold �+.

Apart from the traded quantity V± , we also need to specify a price to place an 
order. We investigate two strategies: an impatient strategy using market orders 
and a patient strategy based on limit orders. If market orders are used, the price 
is set to ±9 999€/MWh, which is the maximum/minimum price the trading system 
allows, i.e., the quantity xt1 is always immediately cleared at time t1 regardless of 
the price, provided the order book on the opposing side of the market is not too 
small to cover the full quantity xt1 . If a market order cannot be (fully) cleared due 
to a lack of market depth, we remove it from the order book and the second trad-
ing phase operates with the correspondingly smaller position. Similarly, at time 
t4 the position is closed using market orders. Choosing this impatient strategy 
thus makes sure that a position is opened as soon as possible and closed at the 
last possible moment. The downside is that if market depth is insufficient, trading 
might happen at unfavorable prices.

In contrast, the patient strategy places limit orders and accepts a delay in order 
execution in exchange for potentially more favorable prices. The strategy places 
an order that outbids the other orders in the system by a small margin 𝛿 > 0 . For 
example, if 𝜀s

t
> 𝛥+ , i.e., we are seeking to buy, we set the price to be the best 

bid plus � €. If an order with a higher price is added to the order stack at time t′ 
with t1 < t′ < t2 by another party, we update the price of our order to ensure that 
we outbid the best bid by � €. We continue in this fashion until either the whole 
quantity is traded or time t2 > t1 comes at which point we remove the order from 
the system.

(2)xt1 =

⎧⎪⎨⎪⎩

V+, if 𝜀s
t
> 𝛥+

−V−, if 𝜀s
t
< −𝛥−

0, otherwise,

Fig. 2  Schematic depiction of the sequence of events of the proposed trading strategy for the case where 
energy is bought
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We start closing the position at t3 by again setting the price such that the order 
is on top of the respective side of the order book and update prices as new orders 
arrive. Finally, if the position is not closed at time t4 > t3 , we place a market order 
to close the position. If the order cannot be fully cleared against orders in the LOB 
at t4 , the rest of the order is cancelled and the residual quantity is cleared on the bal-
ancing market.

Note that opposed to the patient strategy the impatient strategy incurs the full 
bid-ask spread. For example, if the intention is to buy, then an order on the ask side 
of the market is accepted instead of placing orders on the bid side as it is done when 
using limit orders. Similarly, when closing the position with a market order an exist-
ing bid is accepted instead of placing an ask order in the system. Hence, loosely 
speaking the patient strategy avoids the bid-ask spread for the price of delayed order 
execution.

In order to calculate the resulting profit, we denote by T1 the set of time points at 
which the LOB changes in the period [t1, t2] , by T2 the set of time points when the 
LOB changes after t3 until the end of trading of the product at t4 , and by V� as the 
quantity traded as consequence of order stack changes at times � ∈ T ∶= T1 ∪ T2 . 
Further, for � ∈ T  , we denote by P� as the volume weighted average per MWh price 
for which the quantity at time � is traded.

The profit and loss of the strategy in period t can thus be calculated as follows

where Rt is the symmetric balancing market price for period t and F is the per MWh 
trading fee.2 Note that fees on the EPEX are exclusively payable for cleared volumes 
while modifications of limit orders are not charged. However, the number of modi-
fications is limited to avoid an overload of the trading system. For this purpose, the 
order-to-trade ratio (OTR), defined by the number of order changes divided by the 
number of placed orders, is limited to 100 by the EPEX.

Note that the above profit does not account for the cost of the forecast. Hence, Πt 
can also be interpreted as the maximum price a speculative trader that employs the 
above strategy would be willing to pay for the forecast.

4  Case study: setup and data

In this section, we discuss the LOB data and the forecasts of renewable output that 
we use in the case study in Sects. 4.1 and 4.2, respectively. In Sect. 4.3, we discuss 
how we use the data to calibrate the parameters of our strategy.

(3)Πt =
∑
�∈T

V�P� + Rt

∑
�∈T

V� − F
∑
�∈T

|V� |,

2 Clearly, after straightforward modifications to (3), the strategy would work in the same way with asym-
metric balancing prices.



68 T. Kuppelwieser, D. Wozabal 

1 3

4.1  Limit order book data

We use German LOB data for the years 2017 and 2018 as input for the clearing 
algorithm. The data consists of all submitted orders including information on order 
changes with timestamps in milliseconds resolution. To test our strategies, we 
implement the exact EPEX clearing algorithm in JAVA. To enable a concise discus-
sion of results, we limit our attention to hourly and quarter-hourly products and do 
not consider half-hourly products.

Since intraday markets in Europe are increasingly interconnected, some orders 
in our observation period are cleared against orders from neighboring countries at 
times when transmission capacities permit cross-border trading. We use the same 
idea as Martin and Otterson (2018) to deal with this issue by reconstructing the cor-
responding foreign orders using the clearing logs included with the limit order book 
data. In particular, we check for a counterpart for each executed order in the German 
LOB. If such a counterpart cannot be found, we add an order with the correspond-
ing price and quantity to the German order book as described in Martin and Otter-
son (2018), making sure that we can reconstruct published prices with our clearing 
algorithm. In the considered period there are 47 000 560 orders for hourly products, 
1 405 055 ( 2.9% ) of which were cleared against foreign orders. For quarter-hourly 
products there are 139 169 564 orders with 1 495 763 ( 1.06% ) of orders cleared 
against orders from other markets.

We identify orders for which order quantities are updated immediately after the 
volume was fully cleared as iceberg orders. These orders are treated as iceberg in 
our algorithm with the overall quantity that is seen in cleared trades.

The algorithm calculates a clearing at each modification of the limit order book, 
i.e., if a new order is added, an active order is updated, or an order reaches its end-
validity-time. If multiple orders with the same price arrive simultaneously, orders 
with lower ids are cleared first.

Similar to the results in Martin and Otterson (2018), the prices and cleared quan-
tities computed by our clearing algorithm show a good match with the historical 
transaction data published by the EPEX. We thus are able to accurately evaluate 
how the market would have cleared additional orders added to the LOB by our trad-
ing strategies, which enables us to conduct a historical backtesting.

4.2  Forecasts of renewable output

In order to execute our strategies, we require the signals �s
t
 defined in (1), which are 

defined based on aggregated historical forecasts of solar and wind power produc-
tion in Germany kindly provided by Meteologica.3 Our data consists of day-ahead 
forecasts available at 11 a.m.  the day before delivery, the latest available intraday 
forecast before gate closure, and intraday forecasts with an offset of 8, 5, and 3 hours 
before the delivery of a product from July 2017 until December 2018.

3 http:// www. meteo logica. com/

http://www.meteologica.com/
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To assess the forecast errors, we use data on realized production of solar plants 
and wind parks for the four German control areas as provided by ENTSOE.4 Box 
plots of the forecast errors are provided in Fig. 3. We observe an increasing average 
accuracy with smaller offsets as better weather forecasts and measurements of real-
ized production become available.

Our strategy is based on the expectation that errors in day-ahead forecasts are pre-
dominantly traded on the intraday market and therefore have the potential to change 
intraday prices for power, i.e., can be used as valid signal for changes in the true 
fundamental value of the product. Consequently, for our strategy, the most important 
aspect of forecasts is whether the sign of the error of the day-ahead VRES forecast 
can be predicted from the updated intraday forecasts.

We investigate this aspect in Table 1, which displays how often the sign of the 
forecast error �0

t
 is correctly predicted by �s

t
 depending on the magnitude of the sig-

nal, i.e., |�s
t
| . In line with expectations, the precision of the forecast increases as the 

data is restricted to products with higher absolute values of �s
t
 for all s and for both 

types of products. It can also be observed that shorter time to gate closure yields 
a consistently higher hit rate. However, the increase in accuracy is only moderate. 
Hence, it seems that earlier signals are not much worse while at the same time give 
traders more time to react and ensure that the resulting trades are among the first that 
are based on updated information. Finally, comparing hourly with quarter-hourly 
products, we observe that the latter yield worse forecasts of the sign of �0

t
 in most 

cases, but the differences are minute.

Day-Ahead at 11:00 offset=8 hours offset=5 hours offset=3 hours best intraday forecast
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Fig. 3  Forecast errors of intraday forecasts for hourly and quarter-hourly products traded on the German 
intraday power market between July 2017 and December 2018. The best forecast refers to the last fore-
cast before delivery whose exact timing slightly varies with the product

4 https:// trans paren cy. entsoe. eu/

https://transparency.entsoe.eu/
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4.3  Calibration and evaluation of the policy

We generate counterfactual profits for our strategies in an as-if valuation of market 
clearing based on the available LOB data. To that end, we inject orders generated by 
the trading strategy introduced in Sect. 3 into the order book and then clear the mar-
ket according to the rules of continuous trading. Note that this introduces changes 
relative to the historically observed traded quantities and prices and yields the prof-
its that could have been made, if the strategy was used. Of course, a limitation of 
these experiments is that, by the very nature of our analysis and the available data, 
we cannot take into account the effect that the orders placed by the strategy would 
have had on the behavior of other market participants.

As discussed in the previous subsection, we use data on intraday updates of day-
ahead forecasts for VRES production as signals for our strategy. Based on a prelimi-
nary analysis of trading profits and in order to facilitate the discussion of results, we 
only use the forecast published 8 hours before delivery for our policies, i.e., consider 
�8
t
 as signal. This is also supported by the results in Sect. 4.2, which show only a 

moderate improvement of the hit rate for later forecasts.
Furthermore, the choice �8

t
 has two additional advantages: Firstly, it allows the 

policy to start trading relatively early on the updated information before most other 
traders update their expectations on renewable production. Secondly, the long period 
from the arrival of the forecast until gate closure gives the patient strategy ample 
time to build up the position and thereby avoid excessive liquidity costs.

We thus fix the time t1 to start the algorithm at 8 hours before delivery and set 
t2 such that the policy has 5 hours to build up the position. After that, the policy 
waits for 115 minutes and then starts closing the position at t3 , 65 minutes before 
delivery. If the position is not closed at t4 , 35 minutes before delivery, we place a 
market order to close the remaining position. Note that since the liquidity shortly 
before gate closure is markedly better than in the early hours of trading, we are 

Table 1  Distribution of the size of absolute forecast errors (in MWh) in intervals (%) and fraction of cor-
rect predictions (hits) of the sign of the forecast error �0

t
 based on the magnitude of the signals �s

t

Hourly contracts Quarter hourly contracts

s = 8 s = 5 s = 3 s = 8 s = 5 s = 3

|�s
t
| % Hits % Hits % Hits % Hits % Hits % Hits

>0 100.0 71.2 100.0 74.5 100.0 77.9 100.0 71.1 100.0 74.2 100.0 77.4
>100 87.6 73.8 90.3 76.8 91.5 80.0 87.6 73.6 90.3 76.4 91.7 79.7
>200 76.4 76.3 80.8 79.0 83.4 82.1 76.3 75.8 80.8 78.7 83.5 81.7
>300 66.3 77.9 72.0 81.0 75.5 83.8 66.5 77.6 72.2 80.6 75.8 83.4
>400 58.3 79.6 64.0 82.7 68.5 85.4 58.1 79.3 64.2 82.3 68.5 85.1
>500 50.4 81.2 56.8 84.2 61.9 87.0 50.7 80.7 57.2 83.8 62.0 86.5
>1000 25.7 89.0 31.6 90.2 36.1 92.4 26.0 88.5 31.7 89.9 36.4 92.0
>1500 13.6 93.9 17.5 94.3 20.8 96.1 13.8 93.1 17.7 94.1 21.0 95.5
>2000 7.3 97.2 9.7 97.1 12.1 97.8 7.5 96.9 9.9 96.4 12.3 97.6
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able to choose the interval [t3, t4] relatively short in comparison to [t1, t2] . The 
choice of timing and the 8 hour forecast as signal remains constant for all hourly 
and quarter-hourly products and all variants of the strategy.

Having fixed t1,… , t4 , we optimize our strategies by choosing the remain-
ing parameters �± = (�+,�−) and V± = (V+,V−) to maximize profits using 
historical training data on days d ∈ D1 . In particular, we define a set of pos-
sible thresholds L = {100 ⋅ i ∶ 0 ≤ i ≤ 20} ⊆ ℕ and a set of volumes to 
be traded V = {1, 5} ∪ {10 ⋅ i ∶ 1 ≤ i ≤ 30} ⊆ ℕ for hourly products and 
V = {1, 2, 3, 4} ∪ {5 ⋅ i ∶ 1 ≤ i ≤ 6} ⊆ ℕ for quarter-hourly products. We then use 
a simple grid search separately for hourly and quarter-hourly products to solve

where Πd(�
±,V±) is the sum of profits Πt as defined in (3) for all products t that go 

into delivery on day d using the parameters V± and �± . For the calculation, we set 
the trading fees to 0.125€/MWh (EPEX 2020a) and use the quarter-hourly reBAP 
prices available from https:// www. regel leist ung. net/ as balancing prices.

The choice of �± determines whether the algorithm acts on a relatively weak 
signals, i.e., for small values of �s

t
 , or whether a strong signal is required to open 

a position at t1 . Clearly, for small �± the strategy trades products for which the 
forecast error might only have a small effect on prices, resulting in a high chance 
that prices move in the opposite direction due to the influence of other factors 
such as plant outages or changes in demand. Furthermore, for small estimates of 
the forecast error �s

t
 , the probability that the actual forecast error �0

t
 has the oppos-

ing sign is significantly greater than for larger forecast errors as illustrated in the 
discussion in Sect.  4.2. For example, if �8

t
 takes a small positive value 8 hours 

before delivery, forecasting that there will be shortage in production, the actual 
day-ahead forecast error �0

t
 might still be negative, i.e., VRES producers might be 

long.
In contrast, larger values on �± make the strategy react only to strong signals 

increasing the chance that forecast errors �0
t
 have the same sign as �8

t
 and are driv-

ing prices in the anticipated direction in the time window [t3, t4] . However, if �± is 
chosen too large, then the strategy will rarely open a position decreasing overall 
profits. The optimization in (4) thus seeks to navigate this trade-off by choosing 
optimal parameters �±.

The second set of parameter chosen in (4) are the traded volumes V± . Large 
volumes will generate large profits if signals are reliable and the liquidity of the 
market is high, while small orders that incur less transaction costs are preferable 
if markets are illiquid. Note that due to the rules for building up a position, it 
might be that even though V± is large only smaller quantities are actually traded 
in some hours, where the market is illiquid.

In the next section, we will investigate profits obtained from applying our pol-
icy calibrated using a set of training days D1 to some (possibly) different set of 
days D2 , which are used as test data. If D1 = D2 , then the measured profits are 

(4)(𝛥±, V̄±) ∈ argmax

{∑
d∈D1

Πd(𝛥
±,V±) ∶ V± ∈ V × V, 𝛥± ∈ L × L

}
,

https://www.regelleistung.net/
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insample profits, i.e., the policy is calibrated using the same data that is used 
to evaluate profits. If D1 ∩D2 = � , the profits for the days D2 are out-of-sample 
profits.

5  Results and discussion

In this section, we present the results of a case study using 1.5 years of German 
LOB data from 01.07.2017 until 31.12.2018. In Sect. 5.1, we explore the in-sample 
profits made by optimally parameterized patient and impatient policies for hourly 
and quarter-hourly contracts using both the actual forecast error �0

t
 as well as �8

t
 . In 

Sect. 5.2, we focus on the more profitable patient strategies and partition the data in 
calibration and test sets optimizing implementable policies, which we evaluate out-
of-sample for the year 2018.

We consider exclusively products where the day-ahead forecast, the 8-hour ahead 
forecast, as well as the actual production of renewables are available. Furthermore, 
we exclude the third hour on the 29.10.2017 and 28.10.2018 due to data problems 
connected with day-light saving and the whole of the 27.10.2018 due to missing 
LOB data. Additionally, we exclude 69 hourly and 190 quarter-hourly products 
due to an empty LOB shortly before the market closes. This leaves us with 12 492 
hourly and 50 055 quarter-hourly products for the period between 01.07.2017 and 
31.12.2018, excluding in total 5% of hourly products and 4.85% of quarter-hourly 
products.

5.1  Insample results

In this section, we analyze the optimal parameter choice for V± and �± as well as 
optimal profits, setting both the training data, D1 , and the test data, D2 , to the period 
ranging from 01.07.2017 to 31.12.2018. Since we use the same data to calibrate the 
parameters and calculate the profits, the resulting optimal policy violates non-antic-
ipativity and is therefore not practically implementable. In particular, in reality, a 
trader is forced to choose a trading strategy ex-ante, without knowing market out-
comes. The results in this section can therefore be regarded as a in-sample evalua-
tion of optimal profits.

As discussed in the previous section, we start building up a position 8 hours 
before delivery for every hourly and quarter-hourly product in the observation 
period and optimize both the patient and impatient trading strategy. To that end, we 
evaluate the profit separately for products with positive and negative forecast error 
for the 21 × 32 = 672 (for hourly products) and 21 × 10 = 210 (for quarter-hourly 
products) parameter combinations in L × V . The parameters of the policy are kept 
constant for all products in the observation period.

We start by analyzing the patient strategies based on actual forecast errors �0
t
 . 

Figure  4 shows how the choice of parameters influence the profits for the patient 
strategy with the red triangles marking the maximum profit. Observing results for 
fixed thresholds �± , it can be seen that, as expected, higher volumes lead to higher 
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overall profits but due to limited liquidity, the increase is not linear and from a cer-
tain threshold on, there is even a decrease in profits for increasing V± . Similarly, 
there is a sweet-spot for the required strength of the signal: Profits are initially rising 
in the threshold �± and then start to fall again illustrating the trade-off between fre-
quent trading on weaker signals and infrequent trading on stronger signals.

The profits and the optimal parameter choices for the considered policies are 
listed in the first panel of Table 2. The results show that, at least in-sample, a trading 
strategy that is based on a hypothetical 100% accurate intraday update of the day-
ahead forecast of renewable output yields significant positive profits for both hourly 
and quarter hourly products.

Looking at the profits in detail, two observations can be made. Firstly, 
hourly contracts are one order of magnitude more profitable than quarter-hourly 
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Fig. 4  Optimal profits of the patient trader for real forecast errors for hourly products (above) and quar-
ter-hourly products (below)

Table 2  Profits of insample strategies in €  for hourly contracts (H) and quarter-hourly contracts (QH)

Positive Negative Overall

Profit V+ �+ Profit V− �− Profit

Actual ( �0
t
) Patient QH 192659 10 700 214774 10 300 407433

H 1686492 300 1100 1560323 270 1000 3246816
Impatient QH −48892 1 2000 −17350 1 2000 −66242

H 65167 20 2000 3684 1 1600 68852
Forecast ( �8

t
) Patient QH 48438 4 200 52589 4 0 101027

H 157222 200 1200 331196 270 1000 488418
Impatient QH −30937 1 2000 −3766 1 2000 −34703

H 168 1 1600 5607 20 2000 5775
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contracts although there are 4 times more products of the latter. Looking at the 
optimal parameter choices and in particular at the low quantities traded for quar-
ter hourly products, it becomes clear that this is mostly due to missing liquidity 
for quarter-hourly products, which start to affect profits already for much lower 
volumes than this is the case for hourly products. Secondly, we can observe that 
the patient trading strategy based on limit orders performs significantly better 
than the impatient strategy which places market orders. In particular, the results 
suggest that the impatient strategy does not work at all for quarter hourly prod-
ucts and only produces moderate profits for hourly products. Again, this is due to 
the high liquidity costs in the market which has to be fully born by the impatient 
strategy.

Next, we analyze the policy for the more realistic case that the signal is based 
on an updated forecast instead of the actual production, i.e., we use �8

t
 instead of 

�0
t
 as a signal. We again plot the relationship of the parameters of the patient strat-

egy and the profit in Fig. 5. The plot exhibits many of the same characteristics as 
Fig. 4 with the difference that higher volumes V± lead more quickly to less prof-
its, i.e., optimal volumes tend to be smaller. This is due to the lower quality of the 
signal which in many cases leads to a lower than expected forecast error causing 
losses for policies that bid too aggressively based on �8

t
.

Turning to the value of the strategy in panel 2 of Table  2, we observe that, 
compared to the strategy based on �0

t
 , profits are significantly lower for the patient 

trader and stagnate at low levels for the impatient trader. Again, as for �0
t
 , the 

hourly strategies yield higher profits but the relative gap is smaller than for the 
perfect forecast. Although the signal is of a lower quality, surprisingly, the opti-
mal parameters are rather similar to those found for �0

t
 , although optimal volumes 

tend to be slightly lower, explaining parts of the lower profits.
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Fig. 5  Optimal profits of the patient trader for forecast errors with an offset of 8 hours for hourly prod-
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The difference between the profits of the strategies based on �0
t
 and �8

t
 can be 

interpreted as a lower bound on the value of improved forecasting, which is substan-
tial for the patient trader.

To put the profits in perspective, we evaluate daily capital requirements as the 
sum of the cost of opening the positions for all products traded on a day, netting out 
positive and negative costs. The results are displayed in Table 3 and indicate that, on 
average, the strategy requires a negative amount of capital with low positive maxi-
mal values. The profits displayed in Table 2 can therefore be realized with a small 
amount of risk capital and offer a high return on investment.

5.2  Out‑of‑sample results

In this section, we evaluate strategies out-of-sample in the time period from 
01.01.2018 until 31.12.2018. More specifically, we study non-anticipative strategies, 
i.e., make sure that decisions at any point in time only depend on information avail-
able at that time (Shapiro et al. 2009). Since the impatient strategy performs poorly 
in-sample, we exclusively focus on the patient strategy for the experiments in this 
section.

We use a rolling window setting for the out-of-sample evaluation and re-optimize 
the parameters �± and V± every day using the last six months of data for the calibra-
tion. More specifically, we start our evaluation on the 01.01.2018 using 180 days of 
training data spanning the period from 04.07.2017 until 30.12.2017 to calibrate �± 
and V± by grid search as in (4). We then evaluate the profits of the resulting strategy 
on the 01.01.2018 and proceed to the 02.01.2020 by including the 31.12.2017 in 
the training sample while removing the 04.07.2017 and retrain our policy to obtain 
out-of-sample profits for the 02.01.2020. In this manner, we build up out-of-sample 
profits for every product traded in the year 2018.

Figure 6 shows the results of our experiment for hourly products. The first panel 
displays the development of cumulative profits of the strategy based on the signal �8

t
 

and �0
t
 . Looking at the graph for �8

t
 , it becomes clear that while profits over one year 

of trading are significantly positive and close to €200,000, there are single days with 
large losses and extended time periods where the strategy did not generate profits. 

Table 3  Amount of net capital invested per day for the different trading strategies

Mean Max Min Std

Hour Patient �8
t

−22163 5798 −210712 40655

�0
t

−57795 117889 −387446 75280
Impatient �8

t
−68 0 −1015 159

�0
t

−2246 5277 −23798 4015
Quarter Hour Patient �8

t
404 21450 −24865 6256

�0
t

1597 49375 −33657 10711
Impatient �8

t
−141 2613 −19710 1047

�0
t

−276 4069 −10835 1424
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Comparing with the profits based on �0
t
 , we see that, as in the insample results, a per-

fect intraday update of the forecast increases the profits by one order of magnitude. 
Furthermore, the strategy that is based on �0

t
 exhibits a much smoother increase in 

cumulative profits with fewer losses. This suggests that the losses for �8
t
 are mainly 

due to inaccurate forecasts and suggests that better forecasts can not only increase 
the profits of the strategy but also reduce the variance of daily profits and therefore 
the inherent risk of trading.

Turning our attention to panel 2 and 3 of Fig. 6, which display the size and the 
value of the open position after time t2 for the strategy based on �8

t
 , we see that 

the strategy takes long and short positions of up to 200 MWh with a roughly equal 
share of long and short positions. The position values suggest that the capital at risk 
for single products does not exceed €20,000. It can also be observed that there is 
a change in the strategy within the observation period: in the first few months the 
algorithm triggers frequently and short positions tend to be smaller than long posi-
tions. In the summer months, there is generally less trading activity, possibly due to 
lower wind production which lead to smaller forecast errors.

Finally, the last panel of Fig. 6 displays netted daily payments from balancing for 
products for which the position cannot be closed until gate closure. As can be seen, 
there are only 7 days with a requirement for balancing. In most of these instances 
the payment is negative, i.e., the trader has to pay to the grid operator for balancing. 
However, as balancing is rare and none of the single payments to the balancing mar-
ket exceed €5,000, we conclude that balancing fees are not a major driver of profits 
for the chosen strategy.

Figure  7 presents an analogous analysis for trading of quarter-hourly products. 
The plot of the cumulative profits of the strategy reveals that, consistent with the 
insample results, the strategy is less profitable for quarter-hourly products than for 
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hourly products. As with the insample results and the results on hourly products, the 
strategy based on perfect forecast is one order of magnitude more profitable than the 
strategy based on �8

t
 and at the same time is less volatile.

A closer look at the cumulative profits over time reveals that, although the trad-
ing of quarter-hourly products yields only roughly one fourth of the profits that 
can be earned with hourly products, individual earnings for each product fluctuate 
much less than in the case for hourly products. This is due to the generally smaller 
positions taken by the optimal strategies which lead to less exposure to market risk 
as evidenced by panels 2 and 3 of Fig.  7. Observing these plots also reveals that 
there are less seasonal trends in the traded quantities for the quarter-hourly strategy. 
Finally, the last panel of the figure documents that, similar to the case for hourly 
products, balancing occurs infrequently and therefore only plays a minor role.

Table 4 provides detailed figures for overall profits, balancing costs, and summary 
statistics for profits per product for both hourly and quarter-hourly trading. Looking 
at the summary statistics of profits per product confirms that trading quarter-hourly 
products yields profits with a lower dispersion and therefore lower capital require-
ment. Furthermore, conducting t tests, we see that all average per-product profits 
are significantly greater than zero at least at the 0.05% level and, due to their lower 
standard deviation, the significance is greatly increased for quarter-hourly products.

We observe that the number of traded products is nearly twice as high for the 
strategies based on �0

t
 as opposed to �8

t
 . Furthermore, due to the lower thresholds 

for trading, the relative amount of traded products is larger for the quarter-hourly 
products. Despite this and the fact that there are more quarter-hourly products, the 
number of single trades that get cleared as result of our strategy is nearly as high 
for hourly products as for quarter-hourly products. This is due to the larger quanti-
ties traded for the hourly products which often cannot be cleared at once but require 
trades with several of counter-parties dispersed over a longer time span.
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Fig. 7  Cumulative profits, traded volumes, value of traded positions, and daily balancing payments for 
quarter-hourly products (see Fig. 6 for a more detailed description of panels)
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6  Conclusion and outlook

In this paper, we propose a simple parametric trading strategy for continuous 
intraday trading on power markets based on intraday updates of forecast VRES 
production. Our strategy generates significant out-of-sample profits for one year 
of trading by an arbitrage trader that owns no production assets, has no own 
demand, and operates on the German intraday market.

Our results show that one of the most important factors to consider when trad-
ing on the intraday markets is the lack of liquidity and the resulting transaction 
costs. In particular, any algorithmic trading strategy has to cope with the limited 
liquidity of the market, which on the one hand side drives price variability and 
thereby may favorably influence profits but on the other side makes it harder to 
capitalize on informational advantages, as any speculative trading strategy has to 
overcome the bid-ask spread.

We mitigate these problems by designing a patient trading strategy that uses 
limit orders instead of market orders and allows for an extended time to trade 
waiting for favorable orders to arrive on the respective other side of the market. 
We show that this patience is key to making profits and that the impatient strategy 
incurs substantial liquidity costs that absorb most of the profit that can be gener-
ated with weather related information.

Additionally, our results demonstrate that the German intraday market for 
power is not semi-strong efficient, since publicly available data on renewable 
power production forecasts can be used to define a trading strategy that gener-
ates significant profits while requiring a relatively small amount of risk capital. 

Table 4  Descriptive statistics 
for the profits of different 
strategies and the number of 
traded products and trades

Hour Quarter Hour

�8
t

�0
t

�8
t

�0
t

Profit 194385 2087823 62724 297656
Balancing Costs −9865 31202 4214 8055
Mean 22.29 239.43 1.8 8.52
Standard Deviation 968 2110 44 99
p value of t test 0.0316 0.0000 0.0000 0.0000
Minimum −21220 −93030 −1731 −2717
1% quantile −2814 −3740 −98 −246
10% quantile −394 −929 −22 −30
Median 0 0 0 0
90% quantile 522 1824 28 69
99% quantile 3137 5600 118 300
Maximum 15908 32174 1836 3518
Number of products 8288 8288 33189 33187
Number of traded products 2853 4732 21425 21044
Number of individual trades 136863 311802 223593 367719



79

1 3

Intraday power trading: toward an arms race in weather…

Furthermore, there would be a substantial potential for even more profitable trad-
ing if forecasts were to further improve.

Clearly, since there is a finite amount of money to be earned with weather-based 
trading, the presented strategy is self-cannibalizing, i.e., the profits depend on 
how many other traders employ similar strategies. However, this is the case with 
any algorithmic trading policy and therefore does not make the approach obsolete 
but rather implies that only the most competent traders are able to capitalize on the 
respective signal.

This implies that trading strategies similar to the one presented in this paper, 
could be a driver for continued innovations in short-term forecasting of VRES pro-
duction as traders compete in the accuracy of their forecasts. This might trigger an 
arms race in forecasting with market participants trying to capitalize on ever improv-
ing forecasts. Algorithmic traders would consequently help the market to process 
information more efficiently thereby generating price signals of a higher quality and 
at the same time improve market liquidity.

Additional market liquidity would in turn make weather-based trading easier 
and more profitable as is demonstrated by, for example, the higher profits gener-
ated by our algorithm for the more liquid hourly products as opposed to the less 
liquid quarter-hourly products. Hence, such a trend could, at least for a while, feed 
itself and therefore has the potential to lead to a much more responsive intraday mar-
ket. Therefore, as opposed to the arguably adverse welfare effects of the arms race 
for speed that characterizes algorithmic trading on financial markets (Budish et al. 
2015), this development would likely unlock positive welfare effects.

In our study, we take great care to evaluate the proposed trading strategy as real-
istically as possible. To that end, we use detailed limit order book data on submit-
ted orders to calculate profits based on an exact implementation of the EPEX clear-
ing algorithm. Furthermore, we make sure that all our policies are non-anticipative, 
enforcing a strict separation of training and test data.

However, there are still some limitations in our study. Most importantly, we work 
with historical order data to compute counterfactual profits of our strategy in an as-if 
fashion. This analysis by design cannot take into account the reaction of other mar-
ket participants to our trading strategy. A completely different experimental design 
simulating market outcomes, using either artificial agents or laboratory experiments 
with human traders, would be required to overcome this shortcoming.

Another shortcoming of our analysis concerns the quality of the order book 
data. In particular, we only use German orders even if a small amount of orders 
is cleared via cross-border trades. Although we reconstruct the foreign orders that 
were historically cleared against German orders, we cannot completely capture the 
influence that cross-border trading would have had on our results. However, due to 
transmission line restriction, the fraction of German orders cleared with orders from 
other countries is rather small (below 5%) and we therefore think that our results are 
robust with respect to this influence.

Furthermore, the order book data supplied by the EPEX is imperfect in many 
ways impeding a fully accurate what-if analysis. In particular, the end validity 
date of cleared orders is overwritten with the clearing time which makes it impos-
sible to reconstruct the actual end-validity dates of cleared orders. Additionally, 
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it is hard to correctly identify iceberg orders and market orders from the data. 
However, since, apart from very few exceptions, our implementation of the clear-
ing algorithm correctly reconstructs historically observed prices, we are confident 
that the cumulative impact of these issues on our results is negligible.

This work opens some avenues for further research in weather-based auto-
mated trading algorithms on intraday power markets. In particular, it is easy to 
conceive improvements in the proposed trading strategies.

One obvious example is the inclusion of maximum and minimum prices to 
build up a position as additional parameters of the strategy, preventing trades at 
unfavorably high or low prices. For similar reasons, basing the strategy on proba-
bilistic forecasts instead of point forecasts (e.g., Pinson et al. 2007; Tankov and 
Tinsi 2021) might help to avoid trading on noisy signals with a high variance that 
are at risk to be substantially off. The policy can probably also be improved by 
taking into account several forecasts and dynamically adapting the orders in the 
LOB as well as the positions to newly arriving information.

Furthermore, it would be interesting to extent the strategy to a broader set-
ting, which incorporates assets such as renewable generation or electricity storage 
as well as possibly other markets including balancing markets and the day-ahead 
market.

This and other possible refinements would lead to a larger number of parameters 
and would therefore necessitate a more sophisticated optimization approach. Pos-
sible improvements in this direction could be based on machine learning techniques 
such as artificial neural networks or reinforcement learning (e.g., Bertrand and Papa-
vasiliou 2019). Alternatively, one could employ state-of-the art black box solvers 
such as CMAES (see Hansen et al. 2010) to find optimal parameters.

Another large area of improvement is in the use of data. Firstly, it is conceivable 
that the quality of the order book data will improve in the coming years making 
more accurate analysis of the profits possible and mitigate most of the data related 
problems described above. Furthermore, as more data becomes available the train-
ing of strategies will become easier and the results more reliable. Secondly, a more 
careful selection of training data might benefit the performance of the algorithm. 
For the present paper, we simply use the last 180 days of data to train our strategy 
for all products. This implies that data from different times of the day, weekdays, 
and seasons is used indiscriminately to train the strategy for all products in the test 
data. Making sure that the training data matches the test data more closely and thus 
enabling different strategies for different weekdays, seasons, and products has the 
potential to increase trading profits.
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