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Abstract
The price of anarchy is the most well-known measure for quantifying the inef-
ficiency of equilibrium flows in traffic networks and routing games. In this work, 
we give unifying price of anarchy bounds for atomic and non-atomic parallel link 
routing games with polynomial cost functions under various cost objectives includ-
ing the arithmetic mean, geometric mean and worst-case cost objective. We do this 
through the study of the generalized p-mean as cost objective, and obtain upper 
bounds on the price of anarchy in terms of this parameter p. Our bounds unify exist-
ing results from the literature, and, in particular, give alternative proofs for price of 
anarchy results in parallel link routing games with polynomial cost functions under 
the geometric mean objective obtained by Vinci et al. (ACM Trans Econ Comput 
10(2):41, 2022). We recover those simply as a limiting case. To the best of our 
knowledge, these are the first price of anarchy bounds that capture multiple cost 
objectives simultaneously in a closed-form expression.

Keywords Nash equilibrium · Wardrop flow · Price of anarchy · Generalized mean · 
Parallel link networks

1 Introduction

One of the fundamental problems at the intersection of transportation research and 
game theory is to quantify the inefficiency of equilibrium flows in traffic networks. 
Equilibrium flows, also known as Wardrop flows or Nash equilibria, arise as a result 
of autonomous users acting strategically to minimize their individual travel time. 
These flows often do not correpond to a system optimum, which is desired from a 
network designer’s point of view. Pigou (1920) was the first to (theoretically) dem-
onstrate the possibility of inefficiency, and ever since, this topic has been of great 
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interest to both researchers and practitioners in various areas, see, e.g., Dubey 
(1986), Roughgarden (2005), Braess et al. (2005).

Nowadays, the most well-known notion to quantify the inefficiency of equilibrium 
flows is the price of anarchy, introduced by Koutsoupias and Papadimitriou (1999, 
2009). The price of anarchy has been studied extensively in the last 20 years in vari-
ous routing models, both from a theoretical perspective, see, e.g., Roughgarden and 
Tardos (2002), Roughgarden (2003), Christodoulou and Koutsoupias (2005), Aland 
et  al. (2011), Koutsoupias and Papadimitriou (1999), Caragiannis et  al. (2011), 
Roughgarden (2015), as well as in practice, see, e.g., Monnot et al. (2017), Zhang 
et al. (2018), Benita et al. (2020). It is defined as the ratio between the quality of 
a (worst-case) equilibrium flow and a system optimum. The quality is measured 
with respect to a cost objective, such as the artithmetic mean (i.e. average) user cost, 
called the utilitarian objective, or the worst-case cost of any individual user, called 
the egalitarian objective. Recently, also the geometric mean of user costs has gained 
attention (Vinci et al. 2022). In the context of welfare maximization problems, the 
geometric mean of user costs is known as Nash social welfare (John 1950) in game 
theory and economics, where it has been studied extensively. However, much less is 
known about this objective in the context of cost minimization problems, which also 
was one of the motivations for studying this objective in Vinci et  al. (2022). One 
appealing property of the geometric mean is that the price of anarchy is invariant 
with respect to rescaling the costs of individual users. This means users can measure 
their costs with respect to different units such as time or money.1

The choice of cost objective, which is the topic of this work, plays an important 
role in how large the price of anarchy of equilibrium flows can be. For example, 
an equilibrium flow that might be considered “inefficient” under the utilitarian cost 
objective, can be efficient under the egalitarian objective as we will see in Exam-
ple  1.1. The choice of cost objective is therefore also important for practitioners, 
who have to decide whether it is necessary to take measures to reduce the ineffi-
ciency, such as introducing road tolls.

Example 1.1 below can be seen as a discrete version of the well-known exam-
ple of Pigou (1920) that first illustrated inefficieny in traffic networks. The atomic 
routing model used in Example  1.1 is formalized in Sect.  2. We study the three 
cost objectives mentioned above: the utilitarian, egalitarian and geometric mean 
objective.

Example 1.1 We consider an (atomic) routing game played on a parallel link network 
consisting of two links T and B, as illustrated in Fig. 1, that both are equipped with 
a cost (or latency) function cr(x) for r ∈ {T ,B} . The game has two users, a and b, 
both represented by a unit of flow. Both have to choose one of the two links in the 
network over which they have to route their unsplittable unit of flow.

1 The scaling invariance follows from the formulation in (1.2).
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An assignment of users to links is called a strategy profile. For example, if both 
users choose link T, we have the strategy profile s = (sa, sb) = (T , T) . The cost Ci(s) 
of player i in a strategy profile s is the cost incurred on the chosen links, which 
is cr(xr) where xr is the the total amount of flow on link r. In the strategy profile 
s = (T , T) this means both a and b have cost Ca(s) = Cb(s) = cT (2) =

1

2
⋅ 2 = 1 . A 

strategy profile is called a (pure) Nash equilibrium if no user can improve its cost by 
switching to the other link. The profile s = (T , T) is then indeed a Nash equilibrium: 
If one of the users would deviate to link B, their new cost will equal one, which is 
the same as they have in the current profile s.

We next describe three possible cost objectives C(⋅) that can be used to quan-
tify the inefficiency of the Nash equilibrium s. For all these objectives the profile 
s∗ = (s∗

a
, s∗

b
) = (T ,B) minimizes the cost objective over all strategy profiles.

• Arithmetic mean cost (utilitarian objective): It holds that 
C(s∗) = (Ca(s

∗) + Cb(s
∗))∕2 = 0.75 . The Nash equilibrium s = (2, 2) has 

C(s) = (1 + 1)∕2 = 1 . This means the inefficiency of this Nash equilibrium is 
C(s)∕C(s∗) = 4∕3.

• Worst-case cost (egalitarian objective): It holds that 
C(s∗) = max{Ca(s

∗),Cb(s
∗)} = max{1, 1∕2} = 1 . The Nash equilibrium has 

C(s) = max{1, 1} = 1 . This means that the inefficiency is C(s)∕C(s∗) = 1.
• Geometric mean cost: It holds that C(s∗) =

�
Ca(s

∗)Cb(s
∗)
� 1

2 = (1 ⋅ 1∕2)
1

2 = 1∕
√
2 . 

The Nash equilibrium has C(s) = (1 ⋅ 1)
1

2 = 1 . This means the inefficiency is 

C(s)∕C(s∗) =
√
2.

As the above example illustrates, the choice of cost function indeed plays an 
important rule in how large the inefficiency of an equilibrium flow can be. In the 
case of the egalitarian objective, there is no inefficiency, whereas for the utilitar-
ian and geometric mean objective, the inefficiency is roughly 33% and 41% , respec-
tively. These observations give rise to the following, somewhat informal, question:

Is it possible to quantify the price of anarchy for different cost objectives in 
one formula?

The main contribution of this work is that we answer the above question affirm-
atively for parallel link routing games with cost functions on the links being 

Fig. 1  Parallel link network 
consisting of two arcs
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polynomials of degree at most d by considering the so-called generalized p-mean 
cost objective (defined in Sect.  1.1). We study both the atomic routing model of 
Rosenthal (1973) as well as the non-atomic routing model of Wardrop (1952). To 
the best of our knowledge, the results presented here are the first inefficiency results 
for routing games that capture multiple cost objectives such as the utilitarian, egali-
tarian and geometric mean objective at once. We remark that, although parallel link 
networks are the simplest type of traffic networks, they have been studied exten-
sively in the areas of algorithmic game theory and operations research, see, e.g., 
Caragiannis (2008), Gairing et al. (2008), Vinci et al. (2022), Colini-Baldeschi et al. 
(2019), Bonifaci et al. (2011), Harks et al. (2019). Adding to their significance, they 
can also naturally be interpreted as scheduling, or load balancing, problems where 
the links play the roles of machines and users control jobs that have to be scheduled. 
See, e.g., Caragiannis (2008) and references therein.

In the utilitarian case, it is well-known that the price of anarchy typically can 
be characterized by the type of cost functions the links of the traffic network are 
allowed to have (e.g., polynomials of degree at most d = 1, 2, 3,… ). This was first 
established in the seminal work of Roughgarden (2003); see also his smoothness 
framework (Roughgarden 2015) and Sect.  1.3 for more related work. Polynomial 
cost functions also have practical relevance, e.g., the cost functions proposed by the 
Bureau of Public Roads (States 1964) for modelling congestion in road networks are 
polynomials of degree d = 4.

1.1  Our contributions

Parallel link routing games2 consist of a set R = {1,… ,m} of parallel links between 
an origin O and destination D, and a set of users N = {1,… , n} . Every user i ∈ N 
has a subset of links Si ⊆ R , called its strategy set, that they are allowed to use. Every 
link is equipped with a nonnegative, nondecreasing cost function cr ∶ ℝ≥0 → ℝ≥0 . 
The cost Ci(s) of a player in strategy profile s ∈ ×iSi is the cost incurred on the cho-
sen link. To get a general framework capturing all the different cost objectives, we 
consider the so-called generalized p-mean objective

for p ∈ (0,∞) , where w = (w1,… ,wn) is indicating for every i ∈ N the amount of 
(unsplittable) flow wi that user i has to route over one of its links. If wi = 1 for all 
i ∈ N , the game is called unweighted. Furthermore, we have

(1.1)Cp
w
(s) =

�
1∑

i∈N wi

�
i∈N

wi ⋅ Ci(s)
p

� 1

p

(1.2)

C0
w
(s) ∶= lim

p→0
Cp
w
(s) =

��
i∈N

Ci(s)
wi

�1∕
∑

i∈N wi

and C∞
w
(s) ∶= lim

p→∞
Cp
w
(s) = max

i∈N
Ci(s).

2 Formal definitions are given in Sect. 2.
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The generalized p-mean indeed captures the utilitarian objective (p = 1) , egalitarian 
objective (p = ∞) and geometric mean objectives ( p = 0 ) as special cases, as well 
as p-norm objectives for p ≥ 1.

We next summarize our results for parallel link routing games with cost functions 
being polynomials of degree at most d ∈ ℕ . We emphasize that we obtain a price 
of anarchy bound for all values of p ∈ [0,∞] , which allows us to also go beyond 
the utilitarian, egalitarian and geometric mean cost objectives. A comparison with 
existing work, that we capture as special cases, is given in Table  1. We consider 
both the atomic model of Rosenthal (1973) and the non-atomic model of Wardrop 
(1952), whose difference, roughly speaking, lies in whether it is assumed that the wi 
are positive constants, or whether there is a continuum of players all controlling an 
infinitesimally small amount of flow (i.e., wi → 0 ). For all models, we first obtain a 
bound for p ∈ (0,∞) , after which we obtain price of anarchy bounds for p ∈ {0,∞} 
simply as limiting cases, using the expressions in (1.2). In particular, for p = 0 , this 
yields an alternative derivation of the price of anarchy results of Vinci et al. (2022) 
for games with polynomial cost functions and geometric mean objective, which is 
our main technical contribution.

• Non-atomic model: This is the model with a continuum of users that all con-
trol an infinitesimally small fraction of flow.3 We show in Theorem 3.2 that, for 
p ∈ (0,∞) , the price of anarchy is upper bounded by 

Fig. 2  Price of anarchy bounds under the generalized p-mean objective for non-atomic parallel link rout-
ing games for d = 1, 2, 3 (bottom, middle and top function, respectively)

3 One may think of this model as wi → 0 for all i ∈ N with |N| → ∞ , in such a way that the total amount 
of flow in the network remains constant.
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 As limiting cases we get that for p = 0 the price of anarchy is upper bounded 
by (e1∕e)d , and for p = ∞ by 1. These bounds also hold for atomic symmetric 
unweighted parallel link routing games, as explained in Remark 3.5. For an illus-
tration of the obtained bounds in this case, see Fig. 2.

• Weighted atomic model: This is the general model as described above where user 
i ∈ N has to route wi units of (unsplittable) flow over one of its links. We show in 
Theorem 3.6 that, for p ∈ (0,∞) , the price of anarchy is upper bounded by 

where Φpd is the unique nonnegative solution to (x + 1)pd = xpd+1 . As limiting cases, 
we obtain that for p = 0 the price of anarchy can be upper bounded by 2d , but it 
might be unbounded for p → ∞.
• Unweighted atomic model: This is the above model with wi = 1 for all i ∈ N . We 

show in Theorem 3.9 that, for p ∈ (0,∞) , the price of anarchy is upper bounded by 

where k = ⌊Φpd⌋ and Φpd is again the unique nonnegative solution to 
(x + 1)pd = xpd+1 . Again, as limiting cases, we obtain that for p = 0 the price of 
anarchy can be upper bounded by 2d , but it might be unbounded for p → ∞.

The bounds we obtain in (1.3)–(1.5) resemble those for the case p = 1 in Table 1. 
This follows from the fact that we derive our bounds by appropriately adjusting the 
proof techniques for the respective setting with p = 1 . We do this by showing, roughly 
speaking, that it suffices to study the utilitarian objective in the game where the cost 
functions cr(x) are replaced by cr(x)p , i.e., the function cr raised to the power p. For 
the non-atomic case, this can be done by using the results of Correa et  al. (2004), 
but for the atomic cases this requires non-trivial adjustments of the proofs by Aland 
et al. (2011). One of the technical tools we use for this is Descartes’ rule of signs (see 
Appendix  3), which allows one to say something about the number of nonnegative 
roots of a polynomial.

It is interesting to note that the bounds obtained by Vinci et al. (2022) for the geo-
metric mean objective have a much easier form than their counterparts for the arith-
metic mean cost objective. This also motivates the study of the price of anarchy of the 
geometric mean objective in other classes of (routing) games.

1.2  Discussion and lower bounds

It is interesting to note that there is a clear contrast in how the obtained price of 
anarchy bounds behave when comparing the non-atomic and atomic routing models. 

(1.3)
(
1 −

dp

(dp + 1)(dp+1)∕(dp)

)−
1

p

.

(1.4)(Φpd + 1)d,

(1.5)
(

(k + 1)2pd+1 − kpd+1(k + 2)pd

(k + 1)pd+1 − (k + 2)pd + (k + 1)pd − kpd+1

) 1

p

,
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Whereas for the non-atomic model, the price of anarchy is a decreasing function of 
p (see Fig. 2), it is increasing for both the unweighted and weighted atomic model. 
This also shows that not only the choice of cost objective plays a large role, but also 
the underlying model being considered.

Studying the generalized p-mean objective on more general networks is a very 
interesting direction for future research. One of the technical issues that arises is 
that the reduction sketched at the end of Sect. 1.1 breaks down beyond parallel link 
networks, and various nonlinearity issues arise. In fact, Vinci et al. (2022) show that 
there exists a congestion game4 with affine cost functions where the inefficiency of a 
pure Nash equilibrium under the geometric mean objective can grow with the num-
ber of players of the game, which stands in stark contrast to the utilitarian setting, 
for which the price of anarchy is known to be at most 5/2 (Christodoulou and Kout-
soupias 2005) in congestion games with affine cost functions.

Lower bounds. We note that the bounds we obtain in (1.3)–(1.5), and the special 
cases in Table 1, are known to be tight for various values of p and d. The non-atomic 
bound for p ∈ (0,∞) in Theorem 3.2 can be shown to be tight by using a similar 
construction as Correa et al. (2004) for polynomials of degree d (see Appendix 4). 
For the case p = 0 , tightness is shown in Vinci et al. (2022).

For (symmetric) weighted atomic parallel link games, tightness for p = 1 is 
shown in Bhawalkar et al. (2014) for any d. A more general lower bound, using only 
mild assumptions on the cost functions, is provided in Bilò and Vinci (2017). Simi-
lar constructions and reasonings as in Bhawalkar et al. (2014), Bilò and Vinci (2017) 
seem to be able to give a tight lower bound for an arbitrary p. Indeed, Bilò and 
Vinci (2017, Theorem 1) should yield tightness of the bound in (1.4) for symmetric 
weighted atomic parallel link games; we leave the details of this to the interested 
reader.5 Tightness for p = 0 is shown in Vinci et al. (2022).

For unweighted atomic parallel link games, with p = ∞ , Gairing et  al. (2008) 
show that the price of anarchy grows with the number of players (or links) already in 
games with affine cost functions ( d = 1 ), which leads to a best possible upper bound 
of ∞ in case the price of anarchy is parameterized by the cost functions of the links. 
This explains the “ ∞ ” price of anarchy bounds for p = ∞ in Table 1. Tightness of 
the bound in (1.5) for the case d = 1 and p = 1 is shown in Caragiannis et al. (2011), 
and for every d in the case of general network routing games, where the topology 
does not have to be a set of parallel links, still with p = 1 , in Aland et al. (2011). The 
lower bound in Caragiannis et al. (2011) is generalized in Gairing and Schoppmann 
(2007) to arbitrary polynomical cost functions of degree at most d. Similary as for 
weighted games, using (Bilò and Vinci 2017, Theorem 3) this time, it should be pos-
sible to show that the bound in (1.5) is tight.

5 The result in Bilò and Vinci (2017, Theorem 1) works in a blackbox fashion, implicity showing that 
if smoothness parameters (�,�) , as in Roughgarden’s smoothness framework (Roughgarden 2015), are 
best possible, then one automatically gets tightness of the obtained price of anarchy bound. This argu-
ment may also be applied to the results obtained in Sect. 3 assuming the parameters (�,�) obtained there 
are optimal. This comment also applies to unweighted atomic parallel link games; see Bilò and Vinci 
(2017, Theorem 3). We leave the details to the interested reader.

4 Congestion games form a generalization of network routing games.
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1.3  Further related work

The price of anarchy in general (network) routing and congestion games has been stud-
ied extensively in both the non-atomic and atomic setting. In one of the seminal works 
on the price of anarchy for routing games, Roughgarden and Tardos (2002) showed that 
the price of anarchy for affine cost functions equals 4/3 in the non-atomic case. Tight 
bounds for general classes of cost functions, including polynomial cost functions, were 
obtained by Roughgarden (2003) and Correa et al. (2004). In the atomic unweighted 
setting, Christodoulou and Koutsoupias (2005) first showed a bound of 5/2 for games 
with affine cost functions. Tight bounds for polynomial cost functions, both in the 
unweighted and weighted setting, were obtained by Aland et al. (2011). These results, 
applied to the special case of parallel link networks, are captured by our formulas in 
(1.3)–(1.5). Further works considering congestion games with polynomial cost func-
tions are, e.g., Gairing et al. (2006), Gairing and Schoppmann (2007), Christodoulou 
et al. (2011), Bhawalkar et al. (2014), Bilò and Vinci (2017), Bilò and Vinci (2019).

Various extensions and variations on the classical models of Rosenthal (1973) and 
Wardrop (1952) have been proposed in the literature, which, from a technical perspec-
tive, can often be seen as quantifying the price of anarchy along one or more param-
eters induced by the extended setting of interest (similar to what we do in this work by 
means of the parameter p). Such models are used to capture, e.g., altruistic behavior 
(Chen et al. 2014; Schröder 2020), risk-aversion (Fotakis et al. 2015), tolls (or taxes) 
(Caragiannis et  al. 2010; Bonifaci et  al. 2011) or uncertainty (Piliouras et  al. 2016; 
Cominetti et al. 2019). A unifying framework of such models in the case of affine cost 
functions can be found in Kleer and Schäfer (2019b), where the (utilitarian) cost objec-
tive, as well as the individual user costs, contain a parameter along which the price 
of anarchy is studied. There is also a line of work quantifying the impact on the qual-
ity of equilibrium flows, as a result of perturbation or uncertainties in the input of the 
game, where instead of comparing to an optimal flow, one instead compares the new 
(perturbed) equilibrium flow to the original (unperturbed) equilibrium flow. This leads 
to new inefficiency notions such as (in chronological order of introduction) the price 
of risk aversion (Nikolova and Stier-Moses 2014; Lianeas et al. 2019), the deviation 
ratio (Kleer and Schäfer 2017, 2019a) or the price of satisficing (Takalloo and Kwon 
2020). Inefficiency results for such notions are typically also parameterized by an input 
parameter.

Another fundamental inefficiency notion that has been studied extensively is the 
price of stability (Anshelevich et al. 2008) that compares the best possible social cost 
of a Nash equilibrium with that of a social optimum, i.e., the minimal “price” a system 
designer has to pay in order to get a system which is stable from the players’ perspec-
tive. Further references here are, e.g., Christodoulou and Gairing (2015), Christodoulou 
et al. (2019), Kleer and Schäfer (2021).
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1.4  Outline

We continue in Sect. 2 with a formal description of the routing models we consider 
in this work. After that, we prove our upper bounds on the price of anarchy under 
the generalized p-mean objective in Sect. 3. We conclude in Sect. 4.

2  Routing models

In this section we describe the routing models studied in this work together with the 
price of anarchy under the generalized p-mean objective.

2.1  Atomic parallel link routing game

A weighted atomic parallel link routing game Γ = (N,R, (wi)i∈N , (Ci)i∈N) is given 
by a set of users N = {1,… , n} and a set of parallel (directed) links R = {r1,… , rm} 
between an origin O and destination D (as in Fig. 1). Every user i has a strategy set 
Si ⊆ R of links it is allowed to use, and a weight wi ≥ 0 . In case Si = R for every 
i ∈ N , the game is called symmetric.6 Every link r ∈ R is equipped with a cost func-
tion cr ∶ ℝ≥0 → ℝ≥0 that is assumed to be non-decreasing (and non-negative by def-
inition). User i places its (unpslittable) flow wi on one of its links r ∈ Si . That is, if 
in strategy profile s user i chooses link si , we write

The (total) flow on link r ∈ R is defined as xr(s) =
∑

i∈N xi
r
(s) . For convenience, we 

sometimes write xr instead of xr(s) if it’s clear what strategy profile we are consider-
ing. The cost of user i on its chosen link si is given by

7

Note that all users placing their weight on the same link, have the same cost.
We write s−i = (s1,… , si−1, si+1,… , sn) for the strategy profile in which si is left 

out. Slightly abusing notation, we then write (s�
i
, s−i) = (s1,… , si−1, s

�
i
, si+1,… , sn) . 

A strategy profile s ∈ ×iSi is called pure Nash equilibrium if

xi
j
(s) =

{
wi if j = si
0 otherwise.

Ci(s) = csi (xsi).

(2.1)Ci(s) ≤ Ci(s
�
i
, s−i)

7 We note that sometimes the cost of a user is defined as wicr(xr(s)) but this is equivalent to our defini-
tion as the weight is taken into account in the objective Cp

w (and leaving it out does not affect the set of 
pure Nash equilibria).

6 What we call a symmetric parallel link routing game is sometimes referred to as a parallel link routing 
game in the literature. What we call a (general) parallel link routing game is sometimes referred to as a 
restricted parallel link routing game in the literature.



37

1 3

Price of anarchy for parallel link networks with generalized…

for all i ∈ N and unilateral deviations s�
i
∈ Si . We write PNE(Γ) for the set of all 

pure Nash equilibria of the game Γ.
We define the p-price of anarchy (p-PoA) as

with Cp
w(s) as in (1.1) for p ∈ (0,∞) or (1.2) for p ∈ {0,∞} . It is important to note 

that the set PNE(Γ) is the same for every value of p ∈ [0,∞] , as the inequality in 
(2.1) does not depend on p. A strategy minimizing the cost objective Cp

w is called a 
socially optimal strategy profile (or system optimum). We next argue that in order to 
study the p-PoA, it suffices to study the utilitarian case in the game where the cost 
functions are raised to the power p.

For p ∈ (0,∞) , in order to derive an upper bound of � ≥ 1 on the p-PoA, it suf-
fices to show

where s = (s1,… , sn) is any pure Nash equilibrium and s∗ = (s∗
1
,… , s∗

n
) a socially 

optimal strategy profile. This is equivalent to showing

As every user chooses one link, this reduces to

Note that for any strategy profile t = (t1,… , tn) , we may write the cost objective as 
an aggregation over link contributions,8 i.e.,

and so (2.3) is equivalent to showing

Moreover, for p ∈ (0,∞) it holds that (2.1) is true if and only if

(2.2)p-PoA(Γ) =
maxs∈PNE(Γ) C

p
w(s)

mint∈×iSi
C
p
w(t)

Cp
w
(s) ≤ � ⋅ Cp

w
(s∗)

(2.3)
∑
i∈N

wi ⋅ Ci(s)
p ≤ �p

∑
i∈N

wi ⋅ Ci(s
∗)p.

(2.4)
∑
i∈N

wi ⋅ csi(xsi )
p ≤ �p

∑
i∈N

wi ⋅ cs∗
i
(xs∗

i
)p

∑
i∈N

wi ⋅ cti (xti )
p =

∑
r∈R

xr(t)cr(xr(t))
p,

(2.5)
∑
r∈R

xr(s)cr(xr(s))
p ≤ �p

∑
r∈R

xr(s
∗)cr(xr(s

∗))p.

(2.6)csi(xsi )
p ≤ ct(xt + wi)

p,

8 This is the critical point where we use the fact that we consider parallel link routing games. This rea-
soning brakes down if strategies consist of multiple links, as then one can not write the cost objective as 
an additive aggregation of link contributions.
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for every i ∈ N and t ∈ Si , as the mapping x ↦ xp is increasing in x ≥ 0 whenever 
p > 0 . This means that in order to bound the p-price of anarchy, it suffices to study 
the utilitarian case for the game Γp in which for every r ∈ R , the cost function cr is 
replaced by cpr defined by cpr (x) = cr(x)

p for all x ≥ 0 . In particular, the above discus-
sion implies that for atomic parallel link routing games

A simple argument shows that upper bounds on the p-PoA for p ∈ {0,∞} can be 
obtained as limits of upper bounds on the p-PoA for p ∈ (0,∞) . We will sketch this 
argument for p = 0 . Let f(p) be an upper bound on p-PoA(Γ) . Let s ∈ PNE(Γ) and 
s∗ be a worst-case Nash equilibrium and social optimum, respectively, with respect 
to C0

w
(⋅) . Note that s is a Nash equilibrium, independent of the value of p, and that 

C
p
w(s

�) is a continuous function w.r.t. p for any fixed strategy profile s′ . This means 
that

The first inequality follows from the fact that Cp
w(s) can always be upper bounded 

by Cp
w(s(p)) , where s(p) is a worst-case Nash equilibrium w.r.t Cp

w for a given p, and 
C
p
w(s

∗) can be lower bounded by Cp
w(s

∗(p)) where s∗(p) is a social optimum w.r.t Cp
w 

for a given p. The same argument works for p = ∞.

2.2  Non‑atomic parallel link routing game

In a non-atomic parallel link routing game there is a continuum of users that all 
control an infinitely small amount of flow that has to be assigned to one of the 
links in their strategy set. More formally, a non-atomic parallel link routing game 
Γ = (R, (dj)j∈[k], (Sj)j∈[k], (cr)r∈R) is given by a set of links R and a number of com-
modities [k] = {1,… , k} where a commodity has demand dj > 0 for j ∈ [k] and 
strategy set Sj ⊆ R . Every link is equipped with a cost function cr ∶ ℝ≥0 → ℝ≥0 . 
A feasible flow for commodity j is a mapping f j ∶ R → ℝ≥0 , where we write 
f j(r) = f

j
r  , such that 

∑
r∈R f

j
r = dj . A feasible flow for the non-atomic paral-

lel link routing game is defined by the tuple f = (f 1,… , f k) . The aggregation 
of the feasible flows f 1,… , f k for the individual commodities is defined by 
fr = f (r) =

∑
j∈[k] f

j
r  for r ∈ R.

A feasible flow f is a Wardrop flow if for every j ∈ [k] and r ∈ Sj with f jr > 0

for all t ∈ Sj . The cost objective Cp(f ) , the natural equivalent of the expressions in 
(2.10), is given by

(2.7)p-PoA(Γ) =
(
1-PoA(Γp)

) 1

p

.

(2.8)0-PoA(Γ) =
C0
w
(s)

C0
w
(s∗)

= lim
p→0

C
p
w(s)

C
p
w(s

∗)
≤ lim

p→0
p-PoA(Γ) ≤ lim

p→0
f (p).

(2.9)cr(fr) ≤ ct(ft)
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Similarly as for the atomic case, one may argue that in order to study the p-PoA for 
p ∈ (0,∞) it suffices to study the utilitarian case in the game Γ where all the cost 
functions cr are replaced by cpr (and the cases p ∈ {0,∞} can be studied by taking 
limits). That is, we have

2.3  Polynomial cost functions

In this work we will mostly be concerned with polynomial cost functions cr of maxi-
mum degree d ∈ ℕ , i.e.,

where aj,r ≥ 0 for all j = 0,… , d . We write Pd for the collection of all polynomials 
of degree at most d. We emphasize that, in general, cpr is not a polynomial function 
for p > 0.

3  Price of anarchy bounds

In this section we give all our unifying price of anarchy upper bounds. In Sects. 3.2 and 
3.3, we rely on modified versions of lemmas from Aland et al. (2011). These are given 
in Appendix 2.

3.1  Non‑atomic case

It is well-known that in non-atomic parallel link routing games (and more general non-
atomic congestion games), the price of anarchy can be upper bounded by a so-called 
smoothness parameter defined based on the cost functions of the game. Let D be a 
class of continuous, non-decreasing cost functions. Define

(2.10)Cp(f ) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

��
i∈N

fr ⋅ 𝓁r(fr)
p

� 1

p

if p ∈ (0,∞)

�
i∈N

𝓁r(fr)
fr if p = 0

max
i∈N

𝓁r(fr) if p = ∞

(2.11)p-PoA(Γ) =
(
1-PoA(Γp)

) 1

p

.

cr(x) =

d∑
j=0

aj,rx
j

(3.1)𝜌(D) ∶= (1 − 𝛽(D))−1, where 𝛽(D) = sup
d∈D

sup
x,y∈ℝ∶x≥y>0

y(d(x) − d(y))

xd(x)
.
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Theorem 3.1 (Roughgarden 2003; Correa et al. 2004) Let Γ be a non-atomic paral-
lel link routing game with cost functions from class D . Then 1-PoA(Γ) ≤ �(D).

The value of �(D) is well-understood for many important classes of functions. 
Relevant to us is the class

for given k ∈ ℝ≥0 . In Correa et al. (2004), it is shown that

and thus

An obvious fact is that for p ∈ (0,∞)

This readily implies the following result based on (2.11).

Theorem 3.2 Let Γ be a non-atomic parallel link routing game whose cost functions 
are polynomials of degree at most d for some d ∈ ℕ . Then for p ∈ (0,∞) , we have

An example illustrating tightness of the bound in (3.3) is given in Appendix 4. 
As a direct corollary, we obtain an alternative proof of the price of anarchy bound 
for the geometric mean objective of Vinci et al. (2022).

Corollary 3.3 (Vinci et al. 2022) Let Γ be a non-atomic parallel link routing game 
whose cost functions are polynomials of degree at most d for some d ∈ ℕ . The price 
of anarchy for the geometric mean objective satisfies

Proof Take the limit p → 0 in the right hand side of (3.3). An explanation of the 
calculation of this limit is deferred to Proposition 5.1 in Appendix 1.   ◻

Corollary 3.4 Let Γ be a non-atomic parallel link routing game whose cost functions 
are polynomials of degree at most d for some d ∈ ℕ . The price of anarchy for the 
egalitarian cost objective satisfies

Dk = {g ∶ ℝ≥0 → ℝ≥0 ∶ g(�x) ≥ �kg(x) ∀� ∈ [0, 1]}

�(Dk) ≤
k

(k + 1)(k+1)∕k

�(Dk) ≤

(
1 −

k

(k + 1)(k+1)∕k

)−1

.

(3.2)cr ∈ Dk ⇒ cp
r
∈ Dk⋅p.

(3.3)p-PoA(Γ) ≤

(
1 −

dp

(dp + 1)(dp+1)∕(dp)

)−
1

p

.

0-PoA(Γ) ≤
(
e

1

e

)d

≈ 1.44d.
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Proof Take the limit p → ∞ in the right hand side of (3.3). An explanation of the 
calculation of this limit is deferred to Proposition 5.1 in Appendix 1.   ◻

Remark 3.5 (Symmetric unweighted atomic parallel link routing games) Fotakis 
(2010) showed that for symmetric unweighted atomic parallel link routing games 
with utilitarian cost objective, the price of anarchy can also be upper bounded by 
the smoothness parameter �(D) . This implies that the results in Theorem 3.2, Corol-
lary 3.3 and Corollary 3.4 also hold for symmetric unweighted atomic parallel link 
routing games Γ.

3.2  Weighted atomic case

In order to upper bound the price of anarchy for weighted atomic parallel link rout-
ing games, we follow the ideas of Aland et  al. (2011) who study (un)weighted 
atomic congestion games under the utalitarian cost objective. We generalize their 
bounds, obtained by setting p = 1 , for the case of parallel link routing games. The 
main result is as follows.

Theorem  3.6 Let Γ be a atomic weighted parallel link routing game whose cost 
functions are polynomials of degree at most d ∈ ℕ , and let p ∈ (0,∞) . Let Φpd be 
the unique non-negative solution to (x + 1)pd = xpd+1 . Then

As a limiting case, we obtain an alternative proof of the result of Vinci et  al. 
(2022) for the geometric mean objective.

Corollary 3.7 (Vinci et  al. 2022) Let Γ be a weighted atomic parallel link routing 
game whose cost functions are polynomials of degree at most d for some d ∈ ℕ . The 
price of anarchy for the geometric mean objective satisfies

Proof Rewriting the definition of Φpd , we have

From this it follows directly that Φpd ≥ 1 for all pd ∈ ℝ>0 , and then also

∞-PoA(Γ) = 1.

(3.4)p-PoA(Γ) ≤
(
Φ

pd+1

pd

) 1

p

= (Φpd + 1)d.

0-PoA(Γ) ≤ 2d.

(
1 +

1

Φpd

)pd

= Φpd.

(3.5)lim
p→0

Φpd = 1
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since 1 ≤ 1 + 1∕Φpd ≤ 2 . Now, by definition of Φpd it holds that Φpd+1

pd
= (Φpd + 1)pd . 

We then have

where we use (3.5) in the last step (and the fact that y ↦ yd is a continuous func-
tion).   ◻

We continue with the proof of Theorem 3.6.

Proof of Theorem  3.6 We start with a technical lemma to simplify the analysis. It 
essentially states (as will follow from the arguments that we give later) that it suf-
fices to focus on cost functions of the form cr(x) = xd in the main technical argument 
needed to prove (3.4). The proof of Lemma 3.8 uses Descartes’ rule of signs (see 
Appendix 3), which is of independent interest.   ◻

Lemma 3.8 Let d ∈ ℕ , p ∈ (0,∞) , and (�,�) ∈ ℝ≥0 × (0, 1) be a given pair. Then

for all x, y ∈ ℝ≥0 if and only if for all � ∈ Pd

for all x, y ∈ ℝ≥0.

Proof First note that if (3.7) holds for all � ∈ Pd , then (3.6) certainly also holds, by 
taking �(x) = xd . We continue with the other, more involved, implication.

The statement is clearly true when y = 0 , so assume y > 0 . We write

where a0,… , ad ≥ 0 . Let h ∶= max{x, y} > 0 and set 𝓁(z) = ã ⋅ zd where

i.e., ã is chosen so that �(h) = �̃(h) . The polynomial

has non-negative coefficients, except for ad − ã . Descartes’ rule of signs (see Appen-
dix 3) implies that g has at most one positive root (which is h). As �̃(0) ≤ �(0) , it 
follows that

lim
p→0

(
Φ

pd+1

pd

) 1

p

= lim
p→0

(
(Φpd + 1)pd

) 1

p = lim
p→0

(Φpd + 1)d = 2d

(3.6)y ⋅ (x + y)pd ≤ � ⋅ ypd+1 + � ⋅ xpd+1

(3.7)y ⋅ [𝓁(x + y)]p ≤ � ⋅ y ⋅ [𝓁(y)]p + � ⋅ x ⋅ [𝓁(x)]p

�(z) =

d∑
j=0

ajz
j

ã =
1

hd

d∑
j=0

ajh
j,

g(z) = �(z) − �̃(z) = (ad − ã)xd +

d−1∑
j=0

ajz
j
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and then also

as for p ∈ (0,∞) the mapping z ↦ zp is an increasing function for z ≥ 0 . Multiply-
ing (3.6) with ãp we obtain

It then follows that

where we use (3.9) in the second inequality, and (3.8) in the first and last inequality 
based on the fact that x, y ≤ h ≤ x + y . This proves the claim.   ◻

Now, let (xr)r∈R be the (total) flow vector of a pure Nash equilibrium s and (yr)r∈R 
that of a system optimum s∗ . Assume that for a given pair (�,�) ∈ ℝ≥0 × (0, 1) it holds 
that

for all r ∈ R . Following a standard argument, see, e.g., Aland et  al. (2011, Theo-
rem 3.2), we first apply the Nash inequality (2.1) once for every user i ∈ N , with the 
deviation of every user being the resource they use in the system optimum. We then 
find

for every user i, where the second inequality holds, because user i uses resource s∗
i
 in 

the system optimum, and hence wi ≤ ys∗
i
 . Summing up these inequalities (and rewrit-

ing the resulting sum in terms of resource loads), it then follows that

and, hence, by rearranging,

{
�̃(z) ≥ �(z) for z ≥ h

�̃(z) ≤ �(z) for 0 ≤ z ≤ h

(3.8)
{

�̃(z)p ≥ �(z)p for z ≥ h

�̃(z)p ≤ �(z)p for 0 ≤ z ≤ h

(3.9)y ⋅ [𝓁(x + y)]p ≤ 𝜆 ⋅ y ⋅ [𝓁(y)]p + 𝜇 ⋅ x ⋅ [𝓁(x)]p.

(3.10)

y ⋅ [𝓁(x + y)]p ≤ y ⋅ [𝓁(x + y)]p ≤ 𝜆 ⋅ y ⋅ [𝓁(y)]p + 𝜇 ⋅ x ⋅ [𝓁(x)]p ≤ 𝜆 ⋅ y ⋅ [𝓁(y)]p

+ 𝜇 ⋅ x ⋅ [𝓁(x)]p,

(3.11)yr ⋅ c
p
r
(xr + yr) ≤ � ⋅ yrc

p
r
(yr) + � ⋅ xrc

p
r
(xr)

csi(xsi )
p ≤ cs∗

i
(xs∗

i
+ wi)

p ≤ cs∗
i
(xs∗

i
+ ys∗

i
)p

∑
r∈R

xrc
p
r
(xr) ≤

∑
r∈R

yr ⋅ c
p
r
(xr + yr)

≤ �
∑
r∈R

yr ⋅ c
p
r
(yr) + �

∑
r∈R

xr ⋅ c
p
r
(xr) (using 3.11)

p-PoA(Γ) ≤

(
�

1 − �

) 1

p

.
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In order to find the best bound on the p-PoA , we consider the infimum over all pos-
sible choices of (�,�) . By Lemma 3.8, it follows that

where the last equality holds because of Lemma 6.2 in Appendix 2.
In order to analyse the infimum in (3.12), we may use Lemma 6.3 in Appendix 2. 

In particular, the infimum in (3.12) is equal to Φpd+1

pd
. This then completes the proof 

of Theorem 3.6.

3.3  Unweighted atomic case

We continue with the price of anarchy for unweighted atomic parallel link routing 
games. The main result is as follows.

Theorem 3.9 Let Γ be an atomic unweighted parallel link routing game whose cost 
functions are polynomials of degree at most d for some d ∈ ℕ , and let p ∈ (0,∞) . 
Let Φpd be the unique non-negative solution to (x + 1)pd = xpd+1 and k = ⌊Φpd⌋ . Then

As a limiting case, we obtain the result of Vinci et al. (2022) for the geometric 
mean objective.

Corollary 3.10 (Vinci et al. 2022) Let Γ be an unweighted atomic parallel link rout-
ing game whose cost functions are polynomials of degree at most d for some d ∈ ℕ . 
The price of anarchy for the geometric mean objective satisfies

Proof Take the limit p → 0 in the right hand side of (3.13). A sketch of the calcula-
tion of this limit is deferred to Proposition 5.2 in Appendix 1.   ◻

It is known that for the egalitarian cost objective, the price of anarchy is 
unbounded, already for unweighted atomic parallel link routing games with linear 
cost functions (Czumaj and Vöcking 2007). Indeed, the bound from Theorem 3.9 
grows indefinitely as p → ∞ , already for d = 1.

(3.12)

inf
(�,�)∈ℝ≥0×(0,1)

{

�
1 − �

|

|

|

|

|

∀x, y ∈ ℝ≥0,� ∈ d:y ⋅ [�(x + y)]p ≤ � ⋅ y ⋅ [�(y)]p + � ⋅ x ⋅ [�(x)]p
}

= inf
(�,�)∈ℝ≥0×(0,1)

{

�
1 − �

|

|

|

|

|

∀x, y ∈ ℝ≥0:y ⋅ (x + y)pd ≤ � ⋅ ypd+1 + � ⋅ xpd+1
}

= inf
�∈(0,1)

{

max
x∈ℝ≥0

{

(x + 1)pd − � ⋅ xpd+1

1 − �

}}

(3.13)p-PoA(Γ) ≤

(
(k + 1)2pd+1 − kpd+1(k + 2)pd

(k + 1)pd+1 − (k + 2)pd + (k + 1)pd − kpd+1

) 1

p

.

0-PoA(Γ) ≤ 2d.
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Proof of Theorem 3.9 The proof uses the same approach as for the weighted case, 
with some differences. It is again based on the analysis of Aland et al. (2011). We 
start with a technical lemma that will simplify the analysis later on. It is the ana-
logue of Lemma 3.8. Although we require � ≥ 0 in the statement of Lemma 3.11, 
we will in fact only apply it for the case � ≥ 1 later on.   ◻

Lemma 3.11 Let d ∈ ℕ , p ∈ (0,∞) , and (�,�) ∈ ℝ≥0 × (0, 1) be a given pair. Then

for all x, y ∈ ℕ with x ≥ y > 0 if and only if for all � ∈ Pd.

for all x, y ∈ ℕ with x ≥ y > 0.

Proof The proof is similar to the proof of Lemma 3.8. Rouhgly speaking, the 
only difference is that }}x + yε is replaced by }}x + 1ε in the left hand side of 
(3.6) and (3.7). This is not a problem as the argument in (3.10) still works, since 
x, y ≤ max{x, y} ≤ x + 1 by assumption of x ≥ y .   ◻

Now, let (xr)r∈R be the (total) flow vector of a pure Nash equilibrium s and (yr)r∈R 
that of a system optimum s∗ . We write R∗ = {r ∈ R ∶ yr > 0} and partition it as

Assume that for a given pair (�,�) ∈ [1,∞) × (0, 1) it holds that

for all r ∈ R+ . Note that, as we require � ≥ 1 , it also holds that

for all r ∈ R− as in that case xr + 1 ≤ yr.
Again, using the same standard argument as in the proof of Theorem 3.6, we find

using (3.16) and (3.17) in the second inequality, and the fact that all cost functions 
are non-negative.

(3.14)y ⋅ (x + 1)pd ≤ � ⋅ ypd+1 + � ⋅ xpd+1

(3.15)y ⋅ [𝓁(x + 1)]p ≤ � ⋅ y ⋅ [𝓁(y)]p + � ⋅ x ⋅ [𝓁(x)]p

R+ = {r ∈ R ∶ xr ≥ yr > 0} and R− = {r ∈ R ∶ xr < yr with yr > 0}.

(3.16)yr ⋅ c
p
r
(xr + 1) ≤ � ⋅ yrc

p
r
(yr) + � ⋅ xrc

p
r
(xr)

(3.17)yr ⋅ c
p
r
(xr + 1) ≤ � ⋅ yrc

p
r
(yr) + � ⋅ xrc

p
r
(xr)

∑
r∈R

xrc
p
r
(xr) ≤

∑
r∈R

yrc
p
r
(xr + 1) =

∑
r∈R∗

yrc
p
r
(xr + 1)

=
∑
r∈R+

yrc
p
r
(xr + 1) +

∑
r∈R−

yrc
p
r
(xr + 1)

≤ �
∑
r∈R∗

yrc
p
r
(yr) + �

∑
r∈R∗

xrc
p
r
(xr)

≤ �
∑
r∈R

yrc
p
r
(yr) + �

∑
r∈R

xrc
p
r
(xr)
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Rewriting gives that

In order to find the best pair (�,�) , we consider (an upper bound on) the infimum 
over all possible choices. By Lemma 3.11 we have that

where the last equality holds because of Lemma 6.4 in Appendix 2. The inequality 
in (3.18), where we switch from � ≥ 0 to � ≥ 1 is justified by setting x = 0 , as it then 
follows that the optimal choice of � in (3.18) satisfies � ≥ 1.

In order to compute the final infimum in (3.19) we may use the same analysis as 
in the proof of Aland et al. (2011, Lemma 5.9) which also works for real values of 
t = pd instead of only integral values of t. This computation results in the expression 
in the right hand side of (3.13) without the exponent 1/p. This completes the proof 
of Theorem 3.9.

4  Conclusion

In this work we have given bounds on the p-price of anarchy for atomic and non-atomic 
parallel link routing games that unify many results in the literature for different cost 
objectives. To the best of our knowledge, these are the first price of anarchy bounds that 
unify various different well-known cost objectives such as the egalitarian, utilitarian and 
geometric mean objective. Our unification through the generalized p-mean objective 
also allows one to obtain price of anarchy bounds that can be seen as an interpolation 
between, e.g., the utilitarian objective and the geometric mean objective (by choosing 
p ∈ [0, 1] ). Understanding how the price of anarchy behaves under different cost objec-
tives is important to decide how inefficient (from a quantitative point of view) an equilib-
rium flow actually is, and whether or not measures are needed to reduce it.

We note that Vinci et al. (2022) also obtain a result for the geometric mean objec-
tive in the setting of online load balancing using a greedy algorithm. In Appendix 5 
we show that there exists a unification of their result and that of Caragiannis (2008), 

p-PoA(Γ) ≤

(
�

1 − �

) 1

p

.

(3.18)

inf
(�,�)∈ℝ≥1×(0,1)

{
�

1 − �

|||||
∀x, y ∈ ℕ with x ≥ y,𝓁 ∈ Pd ∶ y ⋅ [𝓁(x + 1)]p

≤ � ⋅ y ⋅ [𝓁(y)]p + � ⋅ x ⋅ [𝓁(x)]p}

= inf
(�,�)∈ℝ≥1×(0,1)

{
�

1 − �

|||||
∀x, y ∈ ℕ with x ≥ y ∶ y ⋅ (x + 1)pd ≤ � ⋅ ypd+1 + � ⋅ xpd+1

}

≤ inf
(�,�)∈ℝ≥0×(0,1)

{
�

1 − �

|||||
∀x, y ∈ ℕ0 ∶ y ⋅ (x + 1)pd ≤ � ⋅ ypd+1 + � ⋅ xpd+1

}

(3.19)= inf
�∈(0,1)

{
max
x∈ℕ0

{
(x + 1)pd − � ⋅ xpd+1

1 − �

}}
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who studies the same greedy algorithm under the Lp-norm objective, when the links 
r ∈ R have cost functions of the form cr(x) = arx

d for a given d ∈ ℕ . We suspect a 
similar result holds true for general polynomial cost functions of degree at most d, 
but leave this as a problem for future work. Further related works on online load bal-
ancing are, e.g., Awerbuch et al. (1995), Bilò and Vinci (2017), Klimm et al. (2019).

Appendix 1: Limit calculations

Proposition 5.1 Let d > 0 be given. Then

and

Proof Setting t = dp , we obtain

It now suffices to study the limit t → 0 , or t → ∞ , as d is fixed. We have

Therefore, it suffices to show that

and

In order to prove these identities, one may use L’Hôpital’s rule (i.e., replace the func-
tions in the nominator and denominator by their derivatives). These are somewhat 

lim
p→0

(
1 −

dp

(dp + 1)(dp+1)∕(dp)

)−
1

p

=
(
e

1

e

)d

lim
p→∞

(
1 −

dp

(dp + 1)(dp+1)∕(dp)

)−
1

p

= 1

(
1 −

dp

(dp + 1)(dp+1)∕(dp)

)−
1

p

=

[(
1 −

t

(t + 1)(t+1)∕t

)−
1

t

]d

(
1 −

t

(t + 1)(t+1)∕t

)−
1

t

= e
−

ln

(
1−

t

(t+1)(t+1)∕t

)

t

(5.1)lim
t→0

ln
(
1 −

t

(t+1)(t+1)∕t

)

t
= −

1

e

(5.2)lim
t→∞

ln
(
1 −

t

(t+1)(t+1)∕t

)

t
= 0
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tedious, but elementary, calculus exercises for which we only give informal sketches 
here.

For t → 0 , note that (t + 1)
t+1

t = (1 + t)(1 + t)
1

t ≈ e as limt→0(1 + t)
1

t = e . Substi-
tuting this in (5.1) gives

where the second to last equality is an application of L’Hôpital’s rule.
For t → ∞ , note that (t + 1)

t+1

t = (1 + t)(1 + t)
1

t ≈ 1 + t as limt→∞(1 + t)
1

t = 1 . 
Then (5.2) becomes

where again the second to last equality is an application of L’Hôpital’s rule.   ◻

Proposition 5.2 Let d > 0 be given and let p ∈ (0,∞) . Let Φpd be the unique non-
negative solution to (x + 1)pd = xpd+1 and k = ⌊Φpd⌋ . Then

Proof Setting t = dp , we obtain

Therefore, it suffices to show

For t = pd small enough, it holds that k = ⌊Φpd⌋ = 1 . To see this, note that if x ≥ 0 
is such that (x + 1)t = xt+1 then we must have x ≥ 1 , and x = x(t) is increasing in t. 
Then (5.3) reduces to

lim
t→0

ln
(
1 −

t

(t+1)(t+1)∕t

)

t
≈ lim

t→0

ln
(
1 −

t

e

)

t
= lim

t→0

−
1

e

1 −
t

e

= −
1

e

lim
t→∞

ln
(
1 −

t

(t+1)(t+1)∕t

)

t
≈ lim

t→∞

ln
(
1 −

t

t+1

)

t
= lim

t→∞

ln
(

1

t+1

)

t
= lim

t→∞

t + 1

−(1 + t)2
= 0,

lim
p→0

(
(k + 1)2pd+1 − kpd+1(k + 2)pd

(k + 1)pd+1 − (k + 2)pd + (k + 1)pd − kpd+1

) 1

p

= 2d

(
(k + 1)2pd+1 − kpd+1(k + 2)pd

(k + 1)pd+1 − (k + 2)pd + (k + 1)pd − kpd+1

) 1

p

=

[(
(k + 1)2t+1 − kt+1(k + 2)t

(k + 1)t+1 − (k + 2)t + (k + 1)t − kt+1

) 1

t

]d

.

(5.3)lim
t→0

(
(k + 1)2t+1 − kt+1(k + 2)t

(k + 1)t+1 − (k + 2)t + (k + 1)t − kt+1

) 1

t

= 2
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This identity can be shown using L’Hôpital’s rule after exponentiating the left hand 
side similar to what was done in the proof of Proposition 5.1. That is, it suffices to 
show that

Using L’Hôpital’s rule, we have

and

Substracting 2 ln(2) − ln(3) + ln(2) = ln(8∕3) from ln(16∕3) then indeed gives us 
ln(2) , as desired.   ◻

Appendix 2: Lemmas from Aland et al. (2011)

This section contains all the lemmata from Aland et  al. (2011) that we rely on. 
Lemma  6.1 can be proved using the proof of Aland et  al.  (2011,  Lemma 5.2) 
verbatim.

Lemma 6.1 Let � ∈ (0, 1] and t > 0 . Define g ∶ ℝ≥0 → ℝ as g(x) = (x + 1)t − � ⋅ xt+1 . 
Then it holds that g has exactly one local maximum at some 𝜉 ∈ ℝ>0 . Moreover, g is 
strictly increasing in [0, �) , and strictly decreasing in (�,∞).

The following lemma is a relaxed version of Aland et al. (2011, Lemma 5.5).

Lemma 6.2 Let t = pd > 0 . Then

(5.4)lim
t→0

(
22t+1 − 3t

2t+1 − 3t + 2t − 1

) 1

t

= 2

lim
t→0

ln
(

22t+1−3t

2t+1−3t+2t−1

)

t
= lim

t→0

ln
(
22t+1 − 3t

)
t

− lim
t→0

ln
(
2t+1 − 3t + 2t − 1

)
t

= ln(2)

lim
t→0

ln
(
22t+1 − 3t

)
t

= lim
t→0

2 ln(4)4t − ln(3)3t

22t+1 − 3t
= 2 ln(4) − ln(3) = ln(16∕3)

lim
t→0

ln
(
2t+1 − 3t + 2t − 1

)
t

= lim
t→0

2 ln(2)2t − ln(3)3t + ln(2)2t − 1

2t+1 − 3t + 2t − 1
= 2 ln(2) − ln(3) + ln(2)

(6.1)

inf
(�,�)∈ℝ≥0×(0,1)

{
�

1 − �

|||||
∀x, y ∈ ℝ≥0 ∶ y ⋅ (x + y)pd ≤ � ⋅ ypd+1 + � ⋅ xpd+1

}

= inf
�∈(0,1)

{
max
x∈ℝ≥0

{
(x + 1)pd − � ⋅ xpd+1

1 − �

}}
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In order to prove Lemma  6.2 one may follow the proof of Aland 
et  al.  (2011,  Lemma 5.5). Aland et  al. (2011) give the proof for t ∈ ℕ , but 
the only time this assumption is used, is when the proof relies on Aland 
et al. (2011, Lemma 5.5), which in fact also holds for any real t > 0 , as summa-
rized in Lemma 6.1. Furthermore, the statement of Aland et  al.  (2011,  Lemma 
5.5) is phrased in terms of general polynomials, but the proof proceeds by making 
a reduction to monomials with coefficient 1, which is our starting point (as we 
reduced to monomials already in Lemma 3.8).

Lemma 6.3 Let t = pd > 0 . Then

In order to prove Lemma  6.3 we may use the calculus proof of Aland 
et al. (2011, Lemma 5.6) by observing that it also verbatim works for real values 
of t = pd instead of only t ∈ ℕ by using Lemmas 6.1 and 6.2 in the argumentation 
as opposed to Aland et al. (2011, Lemmas 5.2 and 5.5), respectively.

Lemma 6.4 Let t = pd > 0 . Then

The first equality can be proved in a similar way as the proofs of Aland 
et al. (2011, Lemmas 5.7 and 5.8). The second equality can be proved similarly as 
Aland et al. (2011, Lemmas 5.9). The proofs of these lemmas also hold verbatim 
for real t = pd instead of only t ∈ ℕ.

inf
�∈(0,1)

{
max
x∈ℝ≥0

{
(x + 1)pd − � ⋅ xpd+1

1 − �

}}
= Φ

pd+1

pd
.

inf
(�,�)∈ℝ≥0×(0,1)

{
�

1 − �

|||||
∀x, y ∈ ℕ0 ∶ y ⋅ (x + 1)pd ≤ � ⋅ ypd+1 + � ⋅ xpd+1

}

= inf
�∈(0,1)

{
max
x∈ℕ0

{
(x + 1)pd − � ⋅ xpd+1

1 − �

}}

=
(k + 1)2pd+1 − kpd+1(k + 2)pd

(k + 1)pd+1 − (k + 2)pd + (k + 1)pd − kpd+1
.

Fig. 3  Parallel link network 
consisting of two arcs
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Appendix 3: Descartes’ rule of signs

Descartes’ rule of signs can be used to upper bound the number of positive roots 
of a polynomial in terms of the number of sign changes of the coefficients of 
the polynomial. The version that we use of it in this work can be summarized as 
follows.

Let f (x) = anx
n + an−1x

n−1 +⋯ + a1x + a0 be a polynomial of degree (at most) n 
with real coefficients an,… , a0 . Define

where [n] = {1, 2,… , n} . Here we use the sign function sgn ∶ ℝ → {−1,+1} 
defined by sgn(a) = 1 if a > 0 and sgn(a) = −1 if a < 0 . We refer to |SC(f)| as the 
number of sign changes of f. Descartes’ rule of signs (in particular) says that the 
number of positive real roots of f is at most the number of sign changes of f.

Appendix 4: Lower bound for non‑atomic games

In this section we give a lower bound on a parallel link network with two links, illus-
trating the tightness of the bound in Theorem 3.2. This is the same example as used 
in Correa et al. (2004); Roughgarden (2003). We have one link B with cB(x) = 1 and 
one link T with cT (x) = xd ; see also Fig. 3. There is one commodity with a total flow 
of d1 = 1 . It is not hard to see that a Wardrop flow f is given by routing the whole unit 
of flow of the commodity over T. The social optimum w.r.t. Cp(f ) is given by routing 
1 − dp(dp + 1)

dp+1

dp  units of flow over link T, and the remainder over link B. A simple 
calculation of the resulting price of anarchy shows that this gives the desired bound as 
in Theorem 3.2.

Appendix 5: Online load balancing and the greedy algorithm

An instance of online load balancing consists of the same components as an 
atomic weighted parallel link routing game, but proceeds differently. The users in 
N = {1,… , n} , often called clients, arrive online and have to irrevocably be assigned 
to some link r ∈ R from their strategy set. We assume without loss of generality that 
the clients arrive according to the permutation (1, 2,… , n) , so in step t of this process, 
client t has to be assigned. The goal is to find an assignment that minimizes the social 
cost, which in our case, based on (2.7), is equivalent to

The greedy algorithm, as the name suggests, makes the assignment decision “greed-
ily” meaning that we assign a client to a link in her strategy set that yields the small-
est increase in cost objective Cp

w (based on the clients that have been assigned so far). 

SC(f ) = {i ∈ [n] ∶ sgn(ai) ≠ sgn(ai−1)}

(∑
r∈R

xrc
p
r
(xr)

) 1

p
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To be precise, suppose that s(t) = (s1,… , st) ∈ ×t
i=1

Si is the profile in which clients 
1,… , t have been assigned so far. Then we assign client t + 1 to the link

If p ∈ (0,∞) , we equivalently have

as the function y ↦ yp is increasing in y ≥ 0.
If, for some d ∈ ℕ , we have cr(x) = arx

d with ar > 0 for every r ∈ R , then we 
have

We define

for r ∈ R . With the definition of wir in hand, we can rephrase the social cost as

where zr(s) =
∑

i∶si=r
wir is the sum of the weights of the clients assigned to resource 

r. If we define q = 1 + dp , we have arrived at (a special case of) the setting of Cara-
giannis (2008). To be more precise, (5.3) corresponds to studying the Ldp+1-norm 
cost objective raised to the power (dp + 1)∕p.9

We next restate (Caragiannis 2008, Theorem 3.1) in a slightly different form. The 
guarantee given in (5.4) is the same as that in Caragiannis (2008,  Theorem  3.1), 
with the parameter p in Caragiannis (2008) replaced by dp + 1 , and raised to the 
power (dp + 1)∕p as a consequence of (5.3).

Theorem 5.1 (Caragiannis 2008) For d ∈ ℕ and p ∈ (0,∞) , consider an instance of 
online load balancing with cost functions of the form cr(x) = arx

d for r ∈ R . Let s be 
the strategy profile obtained with the greedy algorithm defined by the rule in (5.2), 
and let s∗ be a system optimum. Then

(5.1)st+1 = argminr∈St+1
Cp
w
(s(t), r)

(5.2)st+1 = argminr∈St+1

∑
r∈R

xrc
p
r
(xr)

∑
r∈R

xrc
p
r
(xr) =

∑
r∈R

arx
dp+1
r

=
∑
r∈R

(a1∕(dp+1)
r

xr)
dp+1

wir = a1∕(dp+1)
r

wi

(5.3)
⎡⎢⎢⎣

��
r∈R

�r(zr(s))
1+dp

� 1

1+dp ⎤⎥⎥⎦

dp+1

p

(5.4)
C
p
w(s)

C
p
w(s

∗)
≤ (21∕(dp+1) − 1)−(dp+1)∕p.

9 Our parameter dp + 1 plays the role of the parameter “p” in Caragiannis (2008).
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As a corollary we obtain the bound of Vinci et al. (2022) for this class of cost 
functions. We note that their result for p = 0 holds for arbitrary polynomials of 
degree d with non-negative coefficients.

Corollary 5.2 For d ∈ ℕ , consider an instance of online load balancing with cost 
functions of the form cr(x) = arx

d for r ∈ R . Let s be the strategy profile obtained 
with the greedy algorithm defined by the rule in (5.2), and let s∗ be a system opti-
mum. Then

Proof We take the limit p → 0 on the right hand side of (5.4), i.e.,

which can be shown by setting t = pd , and then exponentiating and applying 
L’Hôpital’s rule (as for the limits analysed in Appendix 1). That is, we can write

It suffices to show that

We have

Taking t → 0 in the first term gives zero. Applying L’Hôpital’s rule to the second 
term gives

which gives the desired result.   ◻

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
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C0
w
(s)

C0
w
(s∗)

≤ 4d.
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(21∕(dp+1) − 1)−(dp+1)∕p = 4d

(
21∕(dp+1) − 1
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