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Abstract
This paper proposes an alternative for the two-step Shapley value for cooperative 
games with coalition structure that has earlier been proposed by Kamijo. The value 
is based on the idea that within a union of players, worth should be distributed based 
on the solidarity principle. Specifically, we propose a two-step Shapley-solidarity 
value, in which the surplus of a union’s Shapley value in the quotient game is dis-
tributed equally among the union’s members, and players obtain the solidarity value 
of the respective subgame within their union. We provide an intuitive procedural 
characterization for this value and give three axiomatizations to pinpoint the differ-
ences to comparable values.
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1  Introduction

A transferable utility cooperative game (TU game) formulates a situation in which 
a finite set of n players can cooperate with each other and generate joint revenues. 
The cooperative behavior among players is captured by the assumption that coali-
tions S ⊆ {1,… , n} of players can form, and the worth of a coalition S represents 
the revenue that can be obtained by that coalition. Assuming that the grand coali-
tion N = {1,… , n} is being formed, one of the major questions in cooperative game 
theory is how the worth of the grand coalition should be distributed among the play-
ers. An answer to this question is a mapping of any given game to a payoff vec-
tor (�1,… ,�n) , which is called a value of a cooperative game. Arguably the most 
well-known value in cooperative game theory is the Shapley value (Shapley 1953b), 
which offers each player her expected marginal contribution when assuming all pos-
sible n! orders of the n players happen with the same probability.

It should be clear that the assumption of free cooperation between any subsets 
of players is sometimes not realistic. One concept to capture such situations is that 
players are partitioned into subgroups C1,… ,Cm , for example due to physical char-
acteristics such as geographic location, or because players actively organize them-
selves into subgroups in order to improve their bargaining position, such as cartels 
and syndicates. Such pre-defined subgroups then mean that the cooperation among 
players can happen within a given subgroup Ck , while cooperation outside the sub-
groups happens on the level of the subgroups themselves. The partition is usually 
called a coalition structure, and the subgroups Ck are referred to as unions.

TU games with coalition structure were first considered by Aumann and Dreze 
(1974). They assume the grand coalition is divided into disjoint and independent 
unions, and there is no side payment between unions. In the Aumann-Drèze (AD) 
value (Aumann and Dreze 1974), every player receives the payoff allocated to her 
by the Shapley value in the subgame she is playing within her union. The possi-
bility of cooperation between unions begins with Owen (1977), who interpreted 
the unions as “bargaining blocks”. Owen assumes that the coalition of all players 
is being formed, and hence, the worth of the grand coalition is distributed. The 
Owen value (Owen 1977) is defined by taking two levels of interaction among 
players into account, first among unions and then within each union: First the 
unions get the Shapley value of the game played in the so-called quotient game, 
which is the game where the unions are the players. Then, to distribute the each 
union’s Shapley payoff over its players, Owen defines an induced internal game 
in which he considers the worth of a coalition S ⊆ Ck to be the union’s Shapley 
value of the quotient game where the union Ck is replaced with S. The payoff is 
then again distributed using the Shapley value. Following the Owen procedure, 
several other values have been extended to TU games with coalition structure, 
including the Banzhaf value (Banzhaf 1965), the �-value (Tijs 1981), the equal 
division surplus value (Driessen and Funaki 1991), etc. We refer to Owen (1982), 
Casas-Méndez et al. (2003) and Alonso-Meijide et al. (2020) for these.

In this paper, along the lines of the previously mentioned papers, we suggest 
a new value for cooperative games with coalition structure. This value is closely 
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related to another value for cooperative games with coalition structure that has 
been suggested by Kamijo (2009), the so-called two-step Shapley value. That 
value exhibits a certain conceptual simplicity, e.g., when compared to Owen’s 
value: In the first step, all players of a union equally share the Shapley net sur-
plus of the union containing them, i.e., there is an equal distribution of the dif-
ference between the Shapley value obtained by this union in the quotient game, 
and the worth of it. That means the union is left with its worth, which is again 
distributed using the Shapley value. However, we believe that it lies in the nature 
of games with coalition structure that players within one union should exhibit a 
higher degree of solidarity, which is not captured by using the Shapley value for 
the game within unions. In the following, we elaborate a bit more on Kamijo’s 
value, as well as other closely related values from the literature, in order to moti-
vate our proposal.

Kamijo’s two-step Shapley value actually establishes an “interpolation” 
between the approaches suggested by Owen and Aumann and Drèze. On the one 
hand, it affirms Owen’s assumption that the grand coalition is being formed, and 
unions first play the quotient game to distribute the worth of the grand coalition 
among them. This is the same as in the first step of Owen’s approach. On the 
other hand, it also retains the idea of separation between unions, because cooper-
ation of the players within a union is simply modelled by the corresponding sub-
game restricted to the players of a union, as by Aumann and Drèze. In the second 
step, every player is just assigned the Shapley value of the respective subgame, 
and the sum of the two parts gives the two-step Shapley value (Kamijo 2009). 
With a change to the weighted Shapley value (Shapley 1953a) in the first step, 
this was generalized even further to the so-called collective value (Kamijo 2013).

Observe that solidarity among players within one union is embedded in Kam-
ijo’s approach only from the perspective of interaction among unions, as the 
union’s Shapley surplus is equally divided among its members in the first step. 
However, solidarity is not really reflected by using the Shapley value for the 
games within the unions, because the Shapley value is known to be a purely per-
formance-based value, which has been formalized elegantly by an axiomatization 
based on marginality as given by Young (1985). Here, marginality refers to the 
fact that a player’s payoff only depends on her own marginal contribution.

Almost parallel to our work, Hu (2020) also suggested to address this issue, 
i.e., incorporating a higher degree of solidarity among the players within a union, 
by using the equal division value for the subgames per union, which then gives 
rise to the so-called weighted Shapley-egalitarian value (Hu 2020). The equal 
division value, however, is totally independent of players’ performance. Another 
value that suggests itself in this context is the solidarity value by Sprumont (1990) 
and Nowak and Radzik (1994). Unlike equal division, the solidarity value takes 
individuals’ differences into consideration, yet implements the solidarity prin-
ciple as well: It employs the average marginal contribution instead of marginal 
contribution as in the Shapley value, and in this way, the value is equipped with 
the feature of solidarity by providing support to “weaker” players: a player who 
contributes less than the average marginal contribution is supported by stronger 
partners.
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That said, it should be mentioned that the solidarity value has previously been 
adopted into games with coalition structure by Calvo and Gutiérrez (2013). They 
also use the Shapley value for the quotient game of all unions, but following Owen’s 
procedure, consider the induced internal games to distribute the unions’ Shapley 
payoffs among the players, and this is based on the solidarity value. The resulting 
value is the Shapley-solidarity value.

In this paper, inspired by the conceptual simplicity of Kamijo’s two-step 
approach, and the idea to incorporate a realistic level of solidarity among the players 
of a given union, we suggest to marry Kamijo’s two-step approach with the idea to 
use the solidarity value for the game played by players within any given union. Note 
that this is different from Owen’s value as well as Calvo and Gutiérrez’s Shapley-
solidarity value, as we follow Kamijo’s approach and only distribute the net surplus 
of the unions’ Shapley payoffs in the first step. Hence, for the second step, there is 
no need to revert to Owen’s induced internal game, and we simply use the solidarity 
value to distribute the union’s worth among its players. Arguably, this is conceptu-
ally simpler.

In lack of a better name and to avoid confusion with the values proposed earlier, 
we call this new value the two-step Shapley-solidarity value. Our main contributions 
are an intuitive procedural interpretation for this new value, and to give three axi-
omatizations that highlight the differences between this value and specifically the 
two-step Shapley value. As to the technical contribution of the paper, in order to get 
our axiomatizations done, we use a property that we call coalitional A-null player 
property, and moreover, we have to revert to a new basis of the space of all games.

The rest of the paper is organized as follows. Section 2 contains some prelimi-
naries, fixes the notation used, and gives a quick recap of the most relevant values 
that have been proposed earlier. After introducing the two-step Shapley-solidarity 
value in Sect.  3, we provide a procedural interpretation for it in Sect.  4. Finally, 
three axiomatic characterizations are presented in Sect. 5. Section 6 gives some final 
conclusions.

2 � Definitions and notations

2.1 � TU games and values

A cooperative game with transferable utility (or TU game) is a pair (N, v) consisting 
of a nonempty and finite set of players N and the characteristic function v ∶ 2N → ℝ 
such that v(�) = 0 . An element i ∈ N and a subset S of N are called a player and a 
coalition, respectively. Especially, we call N the grand coalition. With some abuse of 
notation, we omit the braces for singletons. Thus, we write S ∪ i for S ∪ {i} , S⧵i for 
S⧵{i} , etc. For each S ⊆ N , v(S) is the worth of coalition S. The cardinality of S is 
denoted by the corresponding lower case letter s or |S|.

Let GN be the family of all TU games over N. For any two TU games 
(N, v), (N,w) ∈ G

N , � ∈ ℝ , the characteristic functions of TU games (N, v + w) and 
(N, �v) ∈ G

N are respectively given by (v + w)(S) = v(S) + w(S) and (�v)(S) = �v(S) 
for all S ⊆ N . For T ∈ 2N�� , the subgame of (N,  v) when the player set is 
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restricted to T is denoted by TU game (T , v|T ) ∈ G
T , where v|T (S) = v(S) for all 

S ⊆ T  . The TU game (N, uT ) ∈ G
N , where uT (S) = 1 if T ⊆ S and uT (S) = 0 other-

wise, is called a unanimity game. Any TU game can be uniquely represented by 
unanimity games,

where cT =
∑

S⊆T (−1)
t−sv(S) is called the Harsanyi dividend (Harsanyi 1963).

A player i ∈ N is a null player in (N, v) ∈ G
N if v(S) = v(S ∪ i) for all S ⊆ N⧵i 

and a dummy player if v(S ∪ i) = v(S) + v(i) for all S ⊆ N ⧵ i . A player i ∈ N is an 
A-null player in (N, v) ∈ G

N if the average marginal contribution of the singleton 
players in any coalition S ∋ i is zero, that is, 1

s

∑
j∈S(v(S) − v(S⧵j)) = 0 for all S ⊆ N 

with i ∈ S . Replacing individual marginal contributions by average marginal con-
tributions can be seen as a means of solidarity among the players in a coalition. 
An A-null player does not contribute anything to any coalition in this average 
sense. Two players i, j ∈ N are symmetric in (N, v) ∈ G

N if v(S ∪ i) = v(S ∪ j) for 
all S ⊆ N⧵{i, j} . A permutation on N is a mapping � ∶ N → N  that associates 
every player i with a position �(i) . Let ΠN denote the collection of all n! permuta-
tions on N. Given � ∈ ΠN , the set of players that are in positions before player i, 
called the predecessors of i, is denoted by P�(N, i) = {j ∈ N |�(j) ≤ �(i)}.

A value on GN is an operator that assigns a payoff vector �(N, v) = (�i(N, v))
i∈N ∈ ℝn to every TU game (N, v) ∈ G

N . The Shapley value (Shapley 1953b) is 
probably the best known value. For any (N, v) ∈ G

N , it is given by

while the solidarity value (Sprumont 1990) is given by

In order to describe values of games by their characteristic properties, consider 
the following axioms of a value � on GN:

•	 Efficiency (E): For all (N, v) ∈ G
N , 
∑

i∈N �i(N, v) = v(N).
•	 Symmetry (S): For all (N, v) ∈ G

N and {i, j} ⊆ N , if i,  j are symmetric, then 
�i(N, v) = �j(N, v).

•	 Additivity (A): For all (N, v), (N,w) ∈ G
N , �i(N, v + w) = �i(N, v) + �i(N,w).

•	 Null player axiom (NP): For all (N, v) ∈ G
N and i ∈ N , if i is a null player in 

(N, v), then �i(N, v) = 0.
•	 A-Null player axiom (ANP): For all (N, v) ∈ G

N and i ∈ N , if i is an A-null 
player in (N, v), then �i(N, v) = 0.

(1)v =
∑

T⊆N,T≠�

cTuT ,

Shi(N, v) =
∑
S⊆N�i

s!(n − s − 1)!

n!
[v(S ∪ {i}) − v(S)], i ∈ N,

Soli(N, v) =
∑
S∋i

(s − 1)!(n − s)!

n!

[
1

s

∑
j∈S

(v(S) − v(S ⧵ j))

]
, i ∈ N.
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While the Shapley value is characterized by E, A, S and NP, the characterization of 
the solidarity value can be obtained by replacing NP with ANP.

Theorem 1  (Shapley 1953b) A value � on GN satisfies efficiency, additivity, symme-
try and null player axiom if and only if �(N, v) = Sh(N, v) for each (N, v) ∈ G

N.

Theorem 2  (Nowak and Radzik 1994) A value � on GN satisfies efficiency, additiv-
ity, symmetry and A-null player axiom if and only if �(N, v) = Sol(N, v) for each 
(N, v) ∈ G

N.

2.2 � TU games with coalition structure and some coalitional values

Given a finite set of players N, a coalition structure over N is a partition of the 
player set N, i.e., C = {C1,C2,… ,Cm} is a coalition structure if 

⋃
h∈M Ch = N , 

where M = {1, 2,… ,m} , and Ch ∩ Cr = � when h ≠ r . We call an element 
Ch ∈ C a union. There are two trivial coalition structures, namely CN = {N} and 
C
n = {{i} | i ∈ N} , where only the grand coalition forms in CN and each union is 

a singleton in Cn . Denote by CN the set of all possible coalition structures over 
N. For any S ⊆ N , we denote the restriction of C on the player set S as C|S , i.e., 
C|S = {Ch ∩ S |Ch ∈ C and Ch ∩ S ≠ �}.

For a given coalition structure C , a permutation � ∈ ΠN is consistent with C if 
i ∈ Ch ∈ C and j ∈ Ch ∈ C and k ∈ N , 𝜋(i) < 𝜋(k) < 𝜋(j) implies that the player k 
also belongs to union Ch . The set of all the permutations on N that are consistent 
with C is denoted by ΠN,C.

A cooperative game with a coalition structure is a triple (N, v, C) where (N, v) 
is a TU game and C is a coalition structure over N. We denote by CGN the col-
lection of all TU games with coalition structure over player set N, and by CG the 
collection of all TU games with coalition structure. Given a non-empty coalition 
S, denote the restriction of (N, v, C) ∈ CGN to S as the TU game with coalition 
structure (S, v|S, C|S) . Given a TU game with a coalition structure (N, v, C) ∈ CGN , 
the quotient game (M, vC) is defined as

We say that Ch ∈ C is a null coalition in (N, v, C) if h is a null player in (M, vC) , and 
Ch,Cr ∈ C are symmetric coalitions in (N, v, C) if h and r are symmetric players in 
(M, vC).

A coalitional value is a function � : CGN
→ ℝ

n that assigns to each cooperative 
game with coalition structure (N, v, C) a payoff vector.

The Shapley-solidarity value (SS value) employs different rules between guiding 
cooperation among the players within a union and interaction among unions. Firstly, at 
the union level, all unions play the corresponding quotient game and get their payoffs 
prescribed by the Shapley value, i.e., for each (N, v, C) and Ck ∈ C,

vC(Q) = v(∪h∈QCh), Q ⊆ M.
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For players within a union Ck ∈ C , they play an induced internal game (Ck, vCk
) in 

which the worth of a coalition is reassessed. For coalition S ⊆ Ck , assume that its 
complement S̄ , where S̄ = Ck ⧵ S , leaves the game. The worth of S in the induced 
internal game is specified by the Shapley value of the quotient game when replacing 
the union Ck with coalition S. That is

Then, a player i ∈ Ck gets payoff according to the solidarity value (Calvo and Gutié-
rrez 2013),

Unlike the two-step procedure above, Kamijo (2009) introduced the two-step Shap-
ley value with a different, arguably simpler, two-step approach. To be more spe-
cific, one considers the surplus Shk(M, vC) − v(Ck) in the first step, which is equally 
divided among the players in Ck . Then, there is no need to resort to a new worth to 
assess a coalition’s power when considering the intra-union bargaining. For Ck ∈ C , 
one can just consider the corresponding subgame (Ck, v|Ck

) and Kamijo proposes to 
use the Shapley value to distribute v(Ck) . For each (N, v, C) ∈ CGN and i ∈ Ck , the 
two-step Shapley value (Kamijo 2009) is therefore given by

3 � The two‑step Shapley‑solidarity value

Similar to the two-step Shapley value and the collective value, the two-step Shap-
ley-solidarity value proposed here also distributes the worth of the grand coali-
tion in two steps. Firstly, players within one union act collectively to bargain with 
other unions, all unions play the quotient game and obtain a payoff prescribed by 
the Shapley value. The surplus of the difference between the obtained payoff and 
the worth of the union is distributed equally among union members. Then, play-
ers within one union negotiate the worth that they can guarantee on their own, 
namely the worth of the union they belong to, and they obtain the solidarity value 
for the subgame restricted on the corresponding union.

Definition 1  For each (N, v, C) ∈ CGN and i ∈ Ck ∈ C , the two-step Shapley-solidar-
ity value is given by

∑
i∈Ck

SS
i
(N, v, C) = Sh

k

(
M, v

C
)
.

v
Ck
(S) = Sh

k

(
M, (v|N⧵S̄)C|N⧵S̄

)
.

SSi(N, v, C) = Soli(Ck, vCk
).

TSh
i
(N, v, C) = Sh

i
(C

k
, v|Ck

) +
Sh

k

(
M, vC

)
− v

(
C
k

)
|C

k
| .
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Clearly, the so defined two-step Shapley-solidarity value will degenerate to the 
Shapley value, respectively the solidarity value in the two extreme cases when the coa-
lition structure is either all singleton players, or the grand coalition.

Remark 1  For (N, v, C) ∈ CGN and if C = C
N , TSS(N, v, C) = Sol(N, v) , and for 

(N, v, C) ∈ CGN and C = C
n , TSS(N, v, C) = Sh(N, v).

In that sense, the level of solidarity increases with more players joining unions. The 
same property is shared by the Shapley-solidarity value of Calvo and Gutiérrez (2013). 
Except for the equal distribution of the surplus of a union which is not present there, the 
main difference lies in another intra-union game, i.e., Owen’s induced internal game. 
In this game the unions’ internal behavior is actually re-assessed from a “non-solidar-
ity” perspective. Intuitively speaking, a coalition S contained in one union Ck takes into 
consideration that the remaining members Ck ⧵ S might defect. Hence, they re-evaluate 
their worth to be what they can earn in the quotient game while assuming the remain-
ing members are breaking away from their union.

Compared with the two close relatives, the two-step Shapley value and the Shap-
ley-solidarity value, the two-step Shapley-solidarity value embeds more of a solidarity 
principle in the intra-union game, as it avoids the possible divergence among union 
members for the evaluation of their internal cooperation, and as it uses the solidarity 
value instead of the Shapley value. In this sense, the outcome should reflect a larger 
level of solidarity within unions. This can also be illustrated with the following, simple 
example of a four player game.

Example 1  Consider player set N = {1, 2, 3, 4} and TU game (N, v) where the char-
acteristic function v is given by v({3}) = v({1, 2, 3}) = 1 , v({4}) = v({3, 4}) = v

({1, 2, 4}) = v({1, 3, 4}) = v({2, 3, 4}) = v(N) = L ( L ∈ ℝ+ ), and v(S) = 0 other-
wise. Now, players 1, 2 and 3 form the union CI and player 4 remains alone, which 
gives rise to the coalition structure C = {CI = {1, 2, 3},CII = {4}}.

The above description gives rise to the TU game with coalition structure (N, v, C) . 
Note that players 1 and 2 can be considered the “weak” players for union CI , because 
they cannot generate any worth on their own, no matter if they choose to act alone or 
cooperate. The corresponding quotient game (M, vC) is a two-person TU game where 
M = {I, II} . Hence, it is easy to get that

Following Owen’s procedure, we get the induced internal game for union 
CI , namely (CI , vCI

) , where vCI
({1}) = vCI

({2}) = −L∕2 , vCI
({3}) = 1∕2 , 

vCI
({1, 2}) = vCI

({1, 3}) = vCI
({2, 3}) = 0 and finally, vCI

({1, 2, 3}) = 1∕2 . Obvi-
ously, players 1 and 2 are symmetric in (CI , vCI

) . For Kamijo’s two-step approach, 

(2)TSSi(N, v, C) = Soli(Ck, v|Ck
) +

Shk(M, vC) − v(Ck)

|Ck| .

Sh
I
(M, v

C) =
1

2

, Sh
II

(
M, v

C
)
= L −

1

2

.
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players 1, 2 and 3 bargain with their union worth based on the restricted subgame 
(CI , v|CI

) , and the symmetric relationship between player 1 and 2 holds in this sub-
game as well. Meanwhile, there is no need to consider the intra-bargaining for union 
CII since it only contains player 4. Then, we can compute the three coalitional values 
for the TU game with the coalition structure in Example 1 as shown in Table 1.

Player 4 obtains the Shapley value in the quotient game as the final payoff since she 
forms a union alone, and there exists no difference in her payoff assigned by the three 
coalitional values. We focus on the payoffs of players in union CI : The symmetry of 
players 1 and 2 accounts for their same payoff in all three coalitional values. Hence, 
the payoff difference between them and player 3 directly reflects the level of solidar-
ity of union CI . For this example, the difference is 1/4 within players of union CI for 
the two-step Shapley-solidarity value, compared to 1/2 for the two-step Shapley value. 
We see the same effect also when compared to the Shapley-solidarity value, as long as 
L > 1 . Moreover, it turns out that the Shapley-solidarity value has a payoff difference 
of (L + 1)∕8 within the players of union CI which grows linearly in L, even though the 
subgame within union CI has worths 0 and 1 only.

4 � Procedural characterization of the two‑step Shapley‑solidarity 
value

Along the lines of Shapley’s procedural characterization of the Shapley value via 
average marginal contributions for all n! permutations of players, we here pro-
vide a corresponding characterization of the two-step Shapley-solidarity value. 
First, with the restriction of coalition structure, it is assumed that the grand coali-
tion forms in a consistent permutation, which indicates that the players within 
the same union enter the grand coalition consecutively. For each �c ∈ ΠN,C 
and i ∈ Ck , we denote by p�c(N, i) and p�c(Ck, i) the predecessors of player i 
with respect to N and Ck respectively, i.e., p�c(N, i) = {j ∈ N |�c(j) ≤ �c(i)} , 
p�c(Ck, i) = {j ∈ Ck |�c(j) ≤ �c(i)} . The predecessors of a union Ck ∈ C is denoted 
by p𝜋c(N,Ck) = {j ∈ N |𝜋c(j) < mini∈Ck

𝜋c(i)} . In the following, we present a 
procedure in which the allocation scenario is envisaged to generate the two-step 
Shapley-solidarity value.

Given a TU game with coalition structure (N, v, C) ∈ CGN , the procedure con-
sists of the following steps: 

Step 1	� The players enter the grand coalition in a consistent permutation, and all 
consistent permutations have the same probability.

Table 1   Three payoff vectors for Example 1

Values TSh(N, v, C) Kamijo (2009) SS(N, v, C) Calvo and Gutiérrez (2013) TSS(N, v, C)

Payoffs (0, 0,
1

2

,L −
1

2

) (
1

8

−
L

24

,

1

8

−
L

24

,

1

4

+
L

12

,L −
1

2

) (
1

12

,

1

12

,

1

3

,L −
1

2

)
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Step 2	� Every entering player i ∈ Ck ∈ C joins in and forms the new 
coalition p�c(N, i) . The player brings the marginal contribu-
tion M

�c
i
(N) ∶= v(p�c (N, i)) − v(p�c (N, i) ⧵ i) . With a near-sighted 

union solidarity principle in mind, the player takes her mar-
ginal contribution with respect to the union she belongs to, namely 
M

�c
i
(Ck) ∶= v(p�c (Ck, i)) − v(p�c (Ck, i) ⧵ i) , and splits it equally among her 

union predecessors p�c(Ck, i).

Step 3	� The residual (negative or positive) brought by player i’s joining, 
M

�c
i
(N) −M

�c
i
(Ck) , is equally shared by the union successors of player i, 

i.e., s𝜋c(Ck, i) = {j ∈ Ck |𝜋c(j) > 𝜋c(i)}.

Step 4	� The last player of a union i ∈ Ck ∈ C , so when |p�c(Ck, i)| = |Ck| , 
is then to be treated in a special way, and obtains a residual of 
M

�c
i
(N) −M

�c
i
(Ck) − v(p�c (N,Ck)) , which is denoted by ��c

i
.

As shown in the procedure, each player focuses only on the corresponding 
union members under the restriction of the coalition structure. Either one player’s 
marginal contribution or the residual is shared only by the players who are in the 
same union. This is exactly an embodiment of solidarity within a union. Besides, 
with the last union member joining in, this union is complete and the last player 
of the union thereby affords a payment to the union’s predecessors to prevent 
their coalition’s worth from being infringed. In view of the fact that the last union 
player has no union successors, a residual of M�c

i
(N) −M

�c
i
(Ck) − v(p�c (N,Ck)) is 

shared “by herself”.
In order to show that this procedural description coincides with the two-step 

Shapley-solidarity value, note that for each (N, v, C) ∈ CGN and each �c ∈ ΠN,C , 
Steps 1–4 determine a payoff ��c

i
(N, v, C) for each i ∈ Ck ∈ C as follows:

where

and

Then, for i ∈ Ck ∈ C the procedural outcome is given by

(3)𝜓
𝜋c
i
(N, v, C) =

⎧
⎪⎨⎪⎩

M
𝜋c
i
(Ck) + 𝛽

𝜋c
i
, 𝜋c(i) = �p𝜋c(N,Ck)� + 1;

M
𝜋c
i
(Ck)

�p𝜋c (Ck ,i)� + 𝛽
𝜋c
i
+ 𝛼

𝜋c
i
, 1 < 𝜋c(i) − �p𝜋c (N,Ck)� < �Ck�;

M
𝜋c
i
(Ck)

�p𝜋c (Ck ,i)� + 𝛼
𝜋c
i
+ 𝛾

𝜋c
i
, 𝜋c(i) = �p𝜋c (N,Ck)� + �Ck�,

�
�c
i

=

�c(i)−1∑
r=|p�c (N,Ck)|+1

M
�c
�−1
c
(r)
(N) −M

�c
�−1
c
(r)
(Ck)

|p�c (N,Ck)| + |Ck| − r
,

�
�c
i

=

|p�c (N,Ck)|+|Ck|∑
z=�c(i)+1

M
�c
�−1
c
(z)
(Ck)

|p�c(Ck,�
−1
c
(z))| .
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Next, we will show the coincidence between the procedural outcome and the two-
step Shapley-solidarity value.

Theorem 3  For each TU game with coalition structure (N, v, C) ∈ CGN , the proce-
dural outcome given by Eq.(4), �(N, v, C) coincides with the two-step Shapley-soli-
darity value TSS(N, v, C).

The proof is mainly technical, and can be found in Appendix A.

5 � Axiomatizations

As we can see, the two-step Shapley-solidarity value and the two-step Shapley value 
exactly differ in what principle is agreed to be used in bargaining on each union’s 
worth. Hence, we next propose axiomatizations to further indicate the precise simi-
larities and differences between these two values.

5.1 � Coalitional A‑null player

To begin with, we proceed with recalling some axioms in coalition structure setting.

Axiom 1  Efficiency (E). For each (N, v, C) ∈ CGN , 
∑

i∈N �i(N, v, C) = v(N).

Axiom 2  Additivity (A). For (N, v, C), (N,w, C) ∈ CGN , �
i
(N, v + w, C) = �

i

(N, v, C) + �
i
(N,w, C).

Axiom 3  Coalitional symmetry (CS). For each (N, v, C) ∈ CGN , and {h, r} ⊆ M , if Ch 
and Cr are symmetric coalitions in (N, v, C) , then 

∑
i∈Ch

�i(N, v, C) =
∑

i∈Cr
�i(N, v, C).

Axiom 4  Internal equity (IE). For each (N, v, C) ∈ CGN , each k ∈ M and {i, j} ⊆ Ck , 
if i and j are symmetric players in (Ck, v|Ck

) , then �i(N, v, C) = �j(N, v, C).

Efficiency, additivity and coalition symmetry are standard and most of coalitional 
values meet these requirements. Coalitional symmetry requires to treat symmetric 
unions equally. Kamijo (2009) introduces the internal equity axiom to consider the 
symmetric situation from the player’s level. It states that two players who are judged 
to be symmetric in the internal situation should be treated equally and thus receive 
equal payoff. The following coalitional null player axiom is proposed in Kamijo 
(2009), with which the two-step Shapley value is characterized.

(4)�i(N, v, C) ∶=
1

|ΠN,C|
∑

�c∈ΠN,C

�
�c
i
(N, v, C).
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Axiom 5  Coalitional null player (CNP). For each (N, v, C) ∈ CGN , each k ∈ M 
and i ∈ Ck , if i is a null player in (N,  v), and k is a dummy player in (M, vC) , then 
�i(N, v, C) = 0.

In the statement of the coalitional null player, a null player gets nothing if the 
union she belongs to is a dummy player in quotient game. Otherwise, it is possible 
that a null player receives nonzero payoff. Hence, it is not necessarily the case that 
a zero payoff is given to all null players, which means the null player axiom (Owen 
1977) needs not hold. Actually, identifying which kind of players is supposed to get 
zero payoff or how to deal with the payoff of a null player is one of the key issues 
in axiomatizations with additivity. This pops up in quite a number of papers which 
apply variants of the null player axiom to characterize values or coalitional values. 
For example, the �-reducing player proposed by van den Brink and Funaki (2015), 
the p-null player proposed by Béal et al. (2017) for a class of solidarity values, two 
types of null players proposed by Borkotokey et  al. (2020) for a class of k-lateral 
Shapley values, the partial A-null player introduced by Hu and Li (2018) for the 
Shapley-solidarity value, and the �-indemnificatory null player introduced by Zou 
et al. (2020) for the �-egalitarian Owen value, just to name a few.

In line with these works, we introduce the coalitional A-null player axiom for coop-
erative games with coalition structure. It states that if a player is an A-null player in the 
subgame with a player set consisting of her union members, and the union she belongs 
to is a dummy player in the quotient game, then this player should obtain zero payoff.

Axiom 6  Coalitional A-null player (CANP). For each (N, v, C) ∈ CGN , each k ∈ M 
and i ∈ Ck , if i is an A-null player in (Ck, v|Ck

) , and k is a dummy player in (M, vC) , 
then �i(N, v, C) = 0.

With the aid of this axiom, we obtain an axiomatization of the two-step Shap-
ley-solidarity value. Before we give the formal axiomatization, some defini-
tions and lemmas are needed. For C ∈ CN , we firstly define a family of TU games 
{(N, ũT )}T∈2N⧵� with respect to C as follows.

Given C = {C1,C2,… ,Cm} , for any T ⊆ Ck , k ∈ M,

and if T ⊈ Ck , ∀k ∈ M,

Note that (N, ũT ) is an ordinary unanimity game when T ⊈ Ck . Next, we show that 
the family of {(N, ũT )}T∈2N⧵� forms a basis of GN.

ũT (S) =

⎧
⎪⎨⎪⎩

�
s

t

�−1

⋅

� �Ck�
t

�
, T ⊆ S ⊆ Ck;

1, T ⊆ S ⊈ Ck;

0, T ⊈ S,

ũT (S) =

{
1, T ⊆ S;

0, T ⊈ S.
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Lemma 4  For each C ∈ CN , the family of TU games {(N, ũT )}T∈2N⧵� is a basis of the 
linear space GN.

Proof  It is well-known that GN is a (2n − 1)-dimensional linear space. Similar to the 
spirit of the proof of Lemma 2.2 in Nowak and Radzik (1994), we just show that TU 
games {(N, ũT )}T∈2N⧵� consist of a set of 2n − 1 independent vectors in GN . To that 
end, let S1, S2,⋯ , S2n−1 be a fixed sequence containing all non-empty set of N such 
that n = |S1| ≥ |S2| ≥ ⋯ ≥ |S2n−1| . Moreover, define a (2n − 1) × (2n − 1) matrix 
A = [ai,j] whose entries are given by

Notice that A is a triangular matrix and its diagonal entries equal 
(

|Ck|

t

)

 if T ⊊ Ck 

(k ∈ M) and 1 otherwise. Hence, we see that det(A) =
m
∏

k=1

∏

∅≠T⫋Ck

(

|Ck|

t

)

≠ 0 . It follows 

that vectors {ũT}T∈2N⧵� are independent, and thus, {(N, ũT )}T∈2N⧵� forms a basis of 
G
N . This holds for all coalition structures C . 	�  ◻

Then, we have the following, main theorem.

Theorem 5  A coalitional value � on CGN satisfies efficiency, additivity, coalitional 
symmetry, internal equity, and coalitional A-null player if and only if �(N, v, C) is 
the two-step Shapley-solidarity value.

Proof  Existence. Firstly, we show that the two-step Shapley-solidarity value satisfies 
the above five axioms. Efficiency and additivity are trivial due to the definition of 
the two-step Shapley-solidarity value. Coalition symmetry and internal equity can 
be easily verified since both Shapley value and solidarity value satisfy symmetry. 
It also turns out to be true that the two-step Shapley-solidarity value satisfies coa-
litional A-null player axiom, because the solidarity value satisfies the A-null player 
axiom and the Shapley value assigns a dummy player his stand-alone worth.

Uniqueness. Let � be a coalitional value over CGN which satisfies the five axi-
oms. Lemma 4 immediately implies that, given C ∈ CN , for each (N, v) ∈ G

N , there 
exists {�T | �T ∈ ℝ,T ∈ 2N⧵�} such that v =

∑
T∈2N⧵� 𝜆T ũT . According to additiv-

ity, it is now sufficient to prove that, for each TU game (N, 𝜆T ũT , C) , 𝜓(N, 𝜆T ũT , C) 
is uniquely determined by efficiency, coalitional symmetry, internal equity and the 
coalitional A-null player axiom.

For C ∈ CN and each T ∈ 2N⧵� , denote D = {k ∈ M | Ck ∩ T ≠ �} . Note that the 
corresponding quotient game (M, (𝜆T ũT )

C) for (N, 𝜆T ũT , C) is equivalent to the una-
nimity game (M, �TuD) since, for each T ∈ 2N⧵� , there is

ai,j = ũSi(Sj), i, j = 1, 2,… , 2n − 1.

(𝜆T ũT )
C(Q) = 𝜆T ũT (∪k∈QCk) =

{
𝜆T , T ⊆ ∪k∈QCk;

0, otherwise ,
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for all Q ⊆ M . Hence, each k ∉ D is a null player in (M, (𝜆T ũT )
C) . Moreover, for 

each k ∉ D , the subgame (Ck, (𝜆T ũT )|Ck
) is a null game, namely (𝜆T ũT )|Ck

(S) = 0 for 
all S ⊆ Ck . By the coalitional A-null player axiom, we have 𝜓i(N, 𝜆T ũT , C) = 0 for 
each i ∈ Ck (k ∉ D) . For k ∈ D , there is 

∑
i∈Ck

𝜓i(N, 𝜆T ũT , C) =
𝜆T
d

 , which derives 
from efficiency and coalitional symmetry.

Now, let us focus on the internal distribution of the payoff that one union obtains 
from their collective bargaining. For each T ∈ 2N⧵� , there is the corresponding D, 
and we consider the following two cases. 

(i)	� d = 1 . Let D = {k} , notice that each player i ∈ Ck⧵T  is an A-null player in 
(Ck, (𝜆T ũT )|Ck

) since, for each coalition S ⊆ Ck satisfying T ⊆ S and i ∈ S , 

 Besides, k is a dummy player in the quotient game (M, (𝜆T ũT )
C) . By the coalitional 

A-null player axiom, we have 𝜓i(N, 𝜆T ũT , C) = 0 for each i ∈ Ck ⧵ T  . Furthermore, 
the symmetry of any two players i, j ∈ T  in subgame (Ck, (𝜆T ũT )|Ck

) immediately 
implies 𝜓i(N, 𝜆T ũT , C) =

𝜆T
t
.

(ii)	� d ≥ 2 . For each Ck (k ∈ D) and {i, j} ⊆ Ck , we have 
(𝜆T ũT )|Ck

(S ∪ i) = (𝜆T ũT )|Ck
(S ∪ j) for each S ⊆ Ck ⧵ {i, j} . Thus, by internal 

equity, there is 𝜓i(N, 𝜆T ũT , C) =
𝜆T

d⋅|Ck| for each i ∈ Ck (k ∈ D).

Hence, it is clear that 𝜓(N, 𝜆T ũT , C) is unique, which completes the proof. 	�  ◻

5.2 � Quasi‑balanced contributions for grand coalition

This section provides two other axiomatizations which are related to the principle 
of balanced contributions. The balanced contributions property was firstly proposed 
by Myerson (1980) to characterize the Shapley value. It requires that any two play-
ers must have the same impacts on mutual payoff when one of them departs from 
the game. Subsequently, Xu et al. (2016) introduce quasi-balanced contributions to 
verify that the solidarity value is the unique efficient value satisfying this property.

Axiom 7  Quasi-balanced contributions (QBC). For each (N, v) ∈ G
N and {i, j} ⊆ N,

(𝜆T ũT )|Ck
(S) = 𝜆T

(
s

t

)−1

⋅

( |Ck|
t

)

= 𝜆T
t!(s − t)!

s!
⋅

|Ck|!
t!(|Ck| − t)!

= 𝜆T
1

s
⋅ (s − t) ⋅

t!(s − t − 1)!

(s − 1)!

|Ck|!
t!(|Ck| − t)!

=
1

s

∑
j∈S

(𝜆T ũT )|Ck
(S ⧵ j).
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Moreover, there are counterparts for the coalitional structure setting to describe 
the mutual influence of two unions and two players within the same union, namely 
coalitional balanced contributions and intracoalitional balanced contributions as 
introduced by Calvo et al. (1996).

Axiom 8  Intracoalitional balanced contributions (IBC). For each (N, v, C) ∈ CGN , 
and i, j ∈ Ch ∈ C with i ≠ j,

Axiom 9  Coalitional balanced contributions (CBC). For each (N, v, C) ∈ CGN , and 
each Ch,Cr ∈ C with r ≠ h,

Intracoalitional balanced contributions means that given two players in the same 
union, the amounts that both players gain or lose when the other leaves the game 
should be equal. Correspondingly, from the perspective of unions, there is the coa-
litional balanced contributions property. These two axioms together with efficiency 
give rise to the Owen value (Calvo et  al. 1996). Calvo and Gutiérrez (2010) also 
prove that the two-step Shapley value can be characterized with the CBC axiom, in 
which there are two other axioms being involved, called population solidarity within 
unions and coherence.

Axiom 10  Population solidarity within unions (PSU). For each (N, v, C) ∈ CGN , each 
Ch,Cr ∈ C with r ≠ h , and each {i, j, k} ⊆ N with {i, j} ⊆ Ch and k ∈ Cr,

Axiom 11  Coherence (C). For each (N, v) ∈ G
N , �(N, v, CN) = �(N, v, Cn).

Population solidarity within unions states that players in the same union follow 
the solidarity principle in such a way that all members in the union experience 
the same gains or losses when the game changes due to addition or deletion of 
players outside the union. Coherence means that it is indistinguishable between 
games in which all players belong to one union and when all of them act as sin-
gletons. The following theorem is due to Calvo and Gutiérrez (2010).

Theorem 6  (Calvo and Gutiérrez 2010) The two-step Shapley value is the only value 
that satisfies efficiency, coalitional balanced contributions, population solidarity 
within unions and coherence.

�i(N, v) − �i(N ⧵ j, v) +
1

n
v(N ⧵ j) = �j(N, v) − �j(N ⧵ i, v) +

1

n
v(N ⧵ i).

�i(N, v, C) − �i(N ⧵ j, v|N⧵j, C|N⧵j) = �j(N, v, C) − �j(N ⧵ i, v|N⧵i, C|N⧵i).

∑
i∈Ch

�i(N, v, C) −
∑
i∈Ch

�i(N ⧵ Cr, v|N⧵Cr
, C|N⧵Cr

)

=
∑
i∈Cr

�i(N, v, C) −
∑
i∈Cr

�i(N ⧵ Ch, v|N⧵Ch
, C|N⧵Ch

).

�i(N, v, C) − �i(N ⧵ k, v|N⧵k, C|N⧵k) = �j(N, v, C) − �j(N ⧵ k, v|N⧵k, C|N⧵k).
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Besides, they also introduce the axiom of null coalition which requires null 
coalitions should get nothing.

Axiom 12  Null coalition (NC). For each (N, v, C) ∈ CGN , and k ∈ M , if k is a null 
coalition, then 

∑
i∈Ck

�i(N, v, C) = 0.

Then the following theorem holds.

Theorem  7  (Calvo and Gutiérrez 2010) A coalitional value � satisfies efficiency, 
additivity, coalitional symmetry, null coalitional axiom, population solidarity within 
unions and coherence if and only if �(N, v, C) = TSh(N, v, C).

Both Theorems 6 and 7 invoke the coherence axiom which is violated by the 
two-step Shapley-solidarity value. Next, we will show if we replace the coherence 
in the above two theorems with a coalitional version of the quasi-balanced contri-
butions for TU games with coalition structures, called the quasi-balanced contri-
butions for the grand coalition, we can get corresponding axiomatizations of the 
two-step Shapley-solidarity value. First, we formulate the mentioned axiom.

Axiom 13  Quasi-balanced contributions for the grand coalition (QCGC​). For each 
(N, v, C) ∈ CGN with |C| = 1 , and i, j ∈ Ck ∈ C,

Note that this axiom has exactly the same requirement as the condition for 
the solidarity value. As we know, the solidarity value can be characterized by 
quasi-balanced contributions and efficiency. Hence, quasi-balanced contributions 
for the grand coalition is the corresponding feature for TU games with coalition 
structure in which the coalition structure is just one union.

Theorem 8  A coalitional value � satisfies efficiency, additivity, coalitional symme-
try, null coalitional axiom, population solidarity within unions and quasi-balanced 
contributions for the grand coalition if and only if �(N, v, C) = TSS(N, v, C).

Proof  The proof follows the same spirit as the proof of Theorem  4 in Calvo and 
Gutiérrez (2010) (Theorem 7 above). For clarity, we here restate it in order to high-
light the difference.

Existence. It is straightforward to verify that the two-step Shapley-solidarity value 
satisfies efficiency, additivity, coalitional symmetry, null coalition axiom and the 
population solidarity within unions. As for the quasi-balanced contributions for the 
grand coalition, if C = {C1} = {N} , then M = {1} and Sh1(M, vC) = v(N) , and there 
is TSSi(N, v, C) = Soli(N, v) for each i ∈ N . Hence, the two-step Shapley-solidarity 

�i(N, v, C) − �i(N ⧵ j, v|N⧵j, C|N⧵j) +
1

n
v(N ⧵ j)

= �j(N, v, C) − �j(N ⧵ i, v|N⧵i, C|N⧵i) +
1

n
v(N ⧵ i).
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value satisfies the quasi-balanced contributions for the grand coalition because the 
solidarity value satisfies the quasi-balanced contributions.

Uniqueness. Let � be a coalitional value satisfying the above six axioms. 
Given (N, v, C) ∈ CGN , define value � on GM by, for each k ∈ M , �

k
(M, vC)

=
∑

i∈Ck

�
i
(N, v, C).

It turns out that the value � is well-defined by efficiency, additivity, coalitional 
symmetry and null coalition axiom, and there is �k(M, vC) = Shk(M, vC) . Thus, 
when C = C

n , �i(N, v, C
n) = �i(M, vC

n

) = Shi(N, v) = TSSi(N, v, C
n) . On the other 

hand, when C = C
N , because � satisfies efficiency and quasi-balanced contribu-

tions for the grand coalition, then by Theorem 4.2 in Xu et al. (2016), we can obtain 
�i(N, v, C

N) = Soli(N, v) = TSSi(N, v, C
N).

Now we focus on the cases when the coalition structure is not trivial. 
Assume that |C| ≥ 2 , for each {h, r} ⊆ M , each i ∈ Ch and k ∈ Cr , accord-
ing to population solidarity within unions, there exists �h ∈ ℝ such that 
�i(N, v, C) − �i(N⧵k, v|N⧵k, C|N⧵k) = �h , and hence, for each i ∈ Ch,

Using the population solidarity within unions repeatedly until only Ch is in the game, 
we obtain

for each i ∈ Ch ∈ C . Hence, there is �(N, v, C) = TSS(N, v, C) for each 
(N, v, C) ∈ CGN , which completes the proof. 	� ◻

Theorem 9  A coalitional value � satisfies efficiency, coalitional balanced contribu-
tions, population solidarity within unions and quasi-balanced contributions for the 
grand coalition if and only if �(N, v, C) = TSS(N, v, C).

Proof  Existence. It is left to show the two-step Shapley-solidarity value satisfies the 
coalitional balanced contribution. By definition, for each (N, v, C) ∈ CGN and each 
Ch,Cr ∈ C with r ≠ h , 

∑
i∈Ch

TSSi(N, v, C) = Shh(M, vC) and 
∑

i∈Cr

TSS
i
(N, v, C)

= Sh
r
(M, vC) . Hence, the coalitional balanced contributions of the two-step Shapley-

solidarity value immediately follows from the balanced contributions of the Shapley 
value (Myerson 1980).

Uniqueness. Let � be a coalitional value satisfying the above four axioms. We 
show �(N, v, C) = TSS(N, v, C) for all (N, v, C) ∈ CGN by induction on |C|.

Let |C| = 1 . This means that the coalition structure is trivial and C = C
N . Given 

a TU game with coalition structure (N, v, CN) ∈ CGN , quasi-balanced contributions 

�i(N, v, C) = �i(N ⧵ k, v|N⧵k, C|N⧵k) +
1

|Ch| [Shh(M, vC) − Shh(M, vC|N⧵k )].

�i(N, v, C) = �i(Ch, v|Ch
, C|Ch

) +
1

|Ch| [Shh(M, vC) − Shh({h}, v
C|Ch )]

= Soli(Ch, v|Ch
) +

1

|Ch| [Shh(M, vC) − v(Ch)]

= TSSi(N, v, C)
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for the grand coalition together with efficiency implies �i(N, v, C
N) = Soli(N, v) for 

all i ∈ N . Hence, we have �(N, v, C) = TSS(N, v, C) for (N, v, C) ∈ CGN with |C| = 1.
Now, assume �(N, v, C) = TSS(N, v, C) holds for all TU games with coalition 

structure (N, v, C) ∈ CGN when |C| ≤ m , we prove �(N, v, C) = TSS(N, v, C) can also 
be established for (N, v, C) with |C| = m + 1.

Let (N, v, C) be a TU game with coalition structure where |C| = m + 1 . Since both 
� and TSS satisfy CBC, we have

and

Moreover, according to the induction hypothesis, we have

The above three equations yield

for all Ch,Cr ∈ C . Then, fixing h in the left part in the above equation and summing 
over r ∈ M of the right, we have

Combining with efficiency, we get

for all h ∈ M.

∑
i∈Ch

�i(N, v, C) −
∑
i∈Cr

�i(N, v, C)

=
∑
i∈Ch

�i(N ⧵ Cr, v|N⧵Cr
, C|N⧵Cr

) −
∑
i∈Cr

�i(N ⧵ Ch, v|N⧵Ch
, C|N⧵Ch

),

∑
i∈Ch

TSSi(N, v, C) −
∑
i∈Cr

TSSi(N, v, C)

=
∑
i∈Ch

TSSi(N ⧵ Cr, v|N⧵Cr
, C|N⧵Cr

) −
∑
i∈Cr

TSSi(N ⧵ Ch, v|N⧵Ch
, C|N⧵Ch

).

∑
i∈Ch

�i(N ⧵ Cr, v|N⧵Cr
, C|N⧵Cr

) −
∑
i∈Cr

�i(N ⧵ Ch, v|N⧵Ch
, C|N⧵Ch

)

=
∑
i∈Ch

TSSi(N ⧵ Cr, v|N⧵Cr
, C|N⧵Cr

) −
∑
i∈Cr

TSSi(N ⧵ Ch, v|N⧵Ch
, C|N⧵Ch

).

∑
i∈Ch

�i(N, v, C) −
∑
i∈Ch

TSSi(N, v, C) =
∑
i∈Cr

�i(N, v, C) −
∑
i∈Cr

TSSi(N, v, C),

|M|
(∑

i∈Ch

�i(N, v, C) −
∑
i∈Ch

TSSi(N, v, C)

)

=
∑
r∈M

∑
i∈Cr

�i(N, v, C) −
∑
r∈M

∑
i∈Cr

TSSi(N, v, C).

(5)
∑
i∈Ch

�i(N, v, C) =
∑
i∈Ch

TSSi(N, v, C),
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Then, it remains to show �i(N, v, C) = TSSi(N, v, C) for all i ∈ Ch ∈ C . This 
can be obtained by induction on |Ch| . Given Ch ∈ C with |Ch| = 1 , Eq.(5) yields 
�i(N, v, C) = TSSi(N, v, C) for {i} = Ch . We now assume |Ch| ≥ 2 . For each 
Ch,Cr ∈ C , and {i, j} ⊆ Ch , by repeatedly using PSU on � and TSS until the players 
within union Cr are ruled out, we have

and

Again, by induction hypothesis, we have

Hence, there is

Then, fixing i and summing over j ∈ Ch , we obtain

By Eq.(5), we conclude that �i(N, v, C) = TSSi(N, v, C) for all i ∈ Ch ∈ C , which 
completes the proof. 	�  ◻

6 � Conclusion

The two-step Shapley-solidarity value is in our opinion a conceptually simple value 
for cooperative games with coalition structure that captures the solidarity concept 
within unions. The given axiomatizations exactly pinpoint this and show similari-
ties and also the subtle difference when compared to the two-step Shapley value as 
defined by Kamijo (2009). The given Example 1 also highlights the difference to the 
two closest relatives, but of course, other examples can be constructed to show oppo-
site effects, too. It is an interesting question for further research to find subclasses of 
games to turn the “empirical” observations of Example 1 into a firm theorem. In this 
context, observe that for anonymous games where v(S) = |S| , and a specific class of 
simple games, namely when v(S) = 1 for all |S| ≥ 2 and v(S) = 0 otherwise, all three 
values that we defined in Table 1 are identical. Moreover, for additive games where 
v(S) =

∑
i∈S v(i) , the two-step Shapley value is given by the stand-alone worth of the 

players, so TShi(N, v) = v(i) , and the Shapley-solidarity value and two-step Shapley-
solidarity value are identical, but different from the former.

�i(N, v, C) − �j(N, v, C) = �i(N ⧵ Cr, v|N⧵Cr
, C|N⧵Cr

) − �j(N ⧵ Cr, v|N⧵Cr
, C|N⧵Cr

),

TSSi(N, v, C) − TSSj(N, v, C)

= TSSi(N ⧵ Cr, v|N⧵Cr
, C|N⧵Cr

) − TSSj(N ⧵ Cr, v|N⧵Cr
, C|N⧵Cr

).

�i(N ⧵ Cr, v|N⧵Cr
, C|N⧵Cr

) =TSSi(N ⧵ Cr, v|N⧵Cr
, C|N⧵Cr

),

�j(N ⧵ Cr, v|N⧵Cr
, C|N⧵Cr

) =TSSj(N ⧵ Cr, v|N⧵Cr
, C|N⧵Cr

).

�i(N, v, C) − TSSi(N, v, C) = �j(N, v, C) − TSSj(N, v, C).

|Ch|(�i(N, v, C) − TSSi(N, v, C)) =
∑
j∈Ch

(�j(N, v, C) − TSSj(N, v, C)).
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There is another coalitional value which is akin to our proposed value and the 
two-step Shapley value. It can be obtained by using the solidarity value for both, the 
induced internal game and the quotient game in Kamijo’s two step approach. Formally, 
it is given by, for each (N, v, C) ∈ CGN and i ∈ Ck ∈ C,

Let us call it the two-step solidarity value.
By definition, this value supports a higher degree of solidarity among unions com-

pared to the other two values, due to the fact that the revenue distribution among 
unions is by the solidarity value instead of the Shapley value. When applying the 
two-step solidarity value to the game in Example  1, one obtains the payoff vector 
TS(N, v, C) = (

L

12
,
L

12
,
L

12
+

1

4
,
3L

4
−

1

4
) . Although this value leads to the same difference 

within players of union CI as the two-step Shapley-solidarity value does, it has a smaller 
difference of L−1

2
 between the two unions, compared to the difference L − 1 in the two-

step Shapley-solidarity value.
This difference can be confirmed from the axiomatic perspective as well. With a 

modification of the axiom of CANP, we obtain an axiom based on A-dummy players. 
Here, a player i ∈ N is called an A-dummy player if 1

s

∑
j∈S(v(S) − v(S⧵j)) = v(i) for all 

S ⊆ N with i ∈ S.

Axiom 14  Coalitional A-dummy player (CADP). For each (N, v, C) ∈ CGN , each 
k ∈ M and i ∈ Ck , if i is an A-null player in (Ck, v|Ck

) , and k is an A-dummy player in 
(M, vC) , then �i(N, v, C) = 0 and 

∑
i∈Ck

�i(N, v, C) = v(Ck).

CADP replaces the condition for dummy players of CANP with A-dummy players, and 
requires the total payoff for a union which is an A-dummy player in the quotient game 
being equal to the union’s worth. Then, the two-step solidarity value can be axiomatized by 
E, A, CS, IE and CADP. The proof is similar to the proof of Theorem 5, except that we 
work with yet another basis for the set of TU games, namely {(N, w̃T )}T⊆2N⧵� , with respect 
to coalition structure C , where w̃T is defined by, for any T ⊆ Ck , k ∈ M,

and

TSi(N, v, C) = Soli(Ck, v|Ck
) +

Solk(M, vC) − v(Ck)

|Ck| .

w̃T (S) =

⎧
⎪⎪⎨⎪⎪⎩

�
s

t

�−1

⋅

� �Ck�
t

�
, T ⊆ S ⊆ Ck;

�C�S�+1
2

, T ⊆ S ⊈ Ck;

0, T ⊈ S,

w̃T (S) =

⎧⎪⎨⎪⎩

� �C�S�
�C�T �

�−1

, T ⊆ S;

0, T ⊈ S,
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for all T ⊈ Ck and all k ∈ M . Here, recall that C|S is the restriction of C on the player 
set S for all S ⊆ N , namely C|S = {Ch ∩ S |Ch ∈ C and Ch ∩ S ≠ �}.

Appendix A Proof of Theorem 3

We recall Theorem 3:
Theorem 3. For each TU game with coalition structure (N, v, C) ∈ CGN , the pro-

cedural outcome given by Eq.(4), �(N, v, C) coincides with the two-step Shapley-
solidarity value TSS(N, v, C).

Proof  For each (N, v, C) ∈ CGN , i ∈ Ck ∈ C , it follows from Eq.(3) and Eq.(4) that,

�i(N, v, C)

=
1

�ΠN,C�
�

�c∈ΠN,C

�
�c
i
(N, v, C)

=
1

�ΠN,C�

⎛
⎜⎜⎜⎜⎜⎜⎝

�
�c∈ΠN,C

M
�c
i
(Ck)

�p�c (Ck, i)� +
�

�c ∈ ΠN,C ∶

�c(i) ≠ �p�c (N,Ck)� + �Ck�

�
�c
i

+
�

�c ∈ ΠN,C ∶

�c(i) ≠ �p�c (N,Ck)� + 1

�
�c
i

+
�

�c ∈ ΠN,C ∶

�c(i) = �p�c (N,Ck)� + �Ck�

�
�c
i

⎞⎟⎟⎟⎟⎟⎟⎠

=
1

�ΠN,C�
�

�c∈ΠN,C

M
�c
i
(Ck)

�p�c (Ck, i)� +
�

�c ∈ ΠN,C ∶

�c(i) ≠ �p�c (N,Ck)� + �Ck�

1

�ΠN,C�
�p�c (N,Ck)�+�Ck ��

z=�c(i)+1

M
�c
�−1
c
(z)
(Ck)

�p�c (Ck,�
−1
c
(z))�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Part I

+
�

�c ∈ ΠN,C ∶

�c(i) ≠ �p�c (N,Ck)� + 1

1

�ΠN,C�
�c(i)−1�

r=�p�c (N,Ck)�+1

M
�c
�−1
c
(r)
(N) −M

�c
�−1
c
(r)
(Ck)

�p�c (N,Ck)� + �Ck� − r

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Part II(1)

+
�

�c ∈ ΠN,C ∶

�c(i) = �p�c (N,Ck)� + �Ck�

1

�ΠN,C� (M
�c
i
(N) −M

�c
i
(Ck) − v(p�c (N,Ck)))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Part II(2)
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Next, we will show the Part I is consistent with player i’s payoff which results 
from the internal bargaining according to the subgame (Ck, v|Ck

) , while Part II, i.e., 
the sum of Part II(1) and Part II(2), coincides with the surplus that player i can 
obtain due to the union’s collective bargaining.

Let us focus on Part I first. For every S ⊆ Ck such that j ∈ S , it is worth not-
ing that there are m!

∏
p≠k �Cp�!(s − 1)!(�Ck� − s)! consistent permutations for which 

player j is a successor of the players in S ⧵ j and the players in Ck ⧵ S are the succes-
sors of player j. Hence, it means that for each consistent permutation �c ∈ ΠN,C such 
that p�c(Ck, j) = S the player j’s marginal contribution with respect to the union Ck is 
given by v(S) − v(S ⧵ j).

Then, for Part II, we look at Part II(1) and Part II(2) separately.

Part I

=
1

�ΠN,C�
�

𝜋c∈ΠN,C

v(p𝜋c (Ck, i)) − v(p𝜋c (Ck, i) ⧵ i)

�p𝜋c(Ck, i)� +
�

𝜋c ∈ ΠN,C ∶

𝜋c(i) ≠ �p𝜋c(N,Ck)� + �Ck�

�
1

�ΠN,C�

�p𝜋c (N,Ck)�+�Ck��
z=𝜋c(i)+1

v(p𝜋c (Ck,𝜋
−1
c
(z))) − v(p𝜋c (Ck,𝜋

−1
c
(z)) ⧵ 𝜋−1

c
(z))

�p𝜋c(Ck,𝜋
−1
c
(z))�

�

=
(s − 1)!(�Ck� − s)!

�Ck�!

⎛⎜⎜⎜⎜⎜⎝

�
S⊆Ck∶i∈S

v(S) − v(S ⧵ i)

s
+

�
j∈Ck⧵i

�
S ⊆ Ck ∶

{i, j} ⊆ S

v(S) − v(S ⧵ j)

s

⎞⎟⎟⎟⎟⎟⎠

=
(s − 1)!(�Ck� − s)!

�Ck�!

⎛⎜⎜⎜⎜⎜⎝

�
S⊆Ck∶i∈S

v(S) − v(S ⧵ i)

s
+

�
S ⊆ Ck ∶

i ∈ S, s ≥ 2

�
j∈S⧵i

v(S) − v(S ⧵ j)

s

⎞⎟⎟⎟⎟⎟⎠
=

�
S⊆Ck∶i∈S

(s − 1)!(�Ck� − s)!

�Ck�!
�
j∈S

v(S) − v(S ⧵ j)

s

= Soli(Ck, v�Ck
)
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The second equality comes from the fact that, for any coalition ∪h∈QCh ∪ S where 
Q ⊆ M ⧵ k , and j ∈ S ⊆ Ck , there are q!(m − q − 1)!

∏
p≠k �Cp�!(s − 1)!(�Ck� − s)! 

permutations for which the predecessors of the union Ck consist of the players in 
∪h∈QCh , and player j ∈ S is both a successor of the players in S ⧵ j and a predecessor 
of the players in Ck ⧵ S . Hence, for each permutation such that p�c(N,Ck) = ∪h∈QCh , 
p�c(Ck, j) = S and �c(j) = | ∪h∈Q Ch| + s , the marginal contributions of player 
j ∈ S ⊆ Ck with respect to N and Ck are given by v(∪h∈QCh ∪ S) − (∪h∈QCh ∪ S⧵j) 
and v(S) − v(S⧵j) respectively. For Part II(2), observing that there are 
q!(m − q − 1)!

∏
p≠k �Cp�!(�Ck� − 1)! permutations where player i ∈ Ck is the last 

entrant among her union members and players in ∪h∈QCh are the predecessors of the 
union Ck , we have

Part II(1)

=
∑

𝜋c ∈ ΠN,C ∶

𝜋c(i) ≠ |p𝜋c (N,Ck)| + 1

1

|ΠN,C|
𝜋c(i)−1∑

r=|p𝜋c (N,Ck)|+1

(
v(p𝜋c (N,𝜋−1

c
(r))) − v(p𝜋c (N,𝜋−1

c
(r)) ⧵ 𝜋−1

c
(r))

|p𝜋c (N,Ck)| + |Ck| − r

−
v(p𝜋c (Ck,𝜋

−1
c

(r))) − v(p𝜋c (Ck,𝜋
−1
c

(r)) ⧵ 𝜋−1
c

(r))

|p𝜋c (N,Ck)| + |Ck| − r

)

=
∑

Q⊆M⧵k

∑
j∈Ck⧵i

∑

S ⊆ Ck ∶

i ∉ S, j ∈ S

q!(m − q − 1)!

m!
⋅

(s − 1)!(|Ck| − s)!

|Ck|! ⋅

(
v(∪h∈QCh ∪ S) − v(∪h∈QCh ∪ S ⧵ j)

|Ck| − s
−

(v(S) − v(S ⧵ j))

|Ck| − s

)

=
∑

Q⊆M⧵k

∑

S ⊆ Ck ∶

i ∉ S

q!(m − q − 1)!

m!
⋅

(s − 1)!(|Ck| − s − 1)!

|Ck|! ⋅ s ⋅ (v(∪h∈QCh ∪ S) − v(S))

−
∑

Q⊆M⧵k

∑

T ⊆ Ck ∶ i ∉ T ,

t < |Ck| − 1

∑

j ∈ Ck ⧵ i ∶

j ∉ T

q!(m − q − 1)!

m!
⋅

t!(|Ck| − t − 2)!

|Ck|! ⋅ (v(∪h∈QCh ∪ T) − v(T))

=
∑

Q⊆M⧵k

∑

S ⊆ Ck ∶

i ∉ S

q!(m − q − 1)!

m!
⋅

s!(|Ck| − s − 1)!

|Ck|! ⋅ (v(∪h∈QCh ∪ S) − v(S))

−
∑

Q⊆M⧵k

∑

T ⊆ Ck ∶

i ∉ T , t < |Ck| − 1

q!(m − q − 1)!

m!
⋅

t!(|Ck| − t − 1)!

|Ck|! ⋅ (v(∪h∈QCh ∪ T) − v(T))

=
∑

Q⊆M⧵k

q!(m − q − 1)!

m!
⋅

1

|Ck| ⋅ (v(∪h∈QCh ∪ Ck ⧵ i) − v(Ck ⧵ i)).
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Hence, we get

Putting all this together, itis immediate that

which completes the proof. 	�  ◻
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Part II(2)

=
∑

𝜋c ∈ ΠN,C ∶

𝜋c(i) = |p𝜋c (N,Ck)| + |Ck|

1

|ΠN,C|
(
(v(p𝜋c (N, i)) − v(p𝜋c (N, i) ⧵ i))

− (v(p𝜋c (Ck, i)) − v(p𝜋c (Ck, i) ⧵ i)) − v(p𝜋c (N,Ck))
)

=
∑

Q⊆M⧵k

q!(m − q − 1)!

m!
⋅

1

|Ck| ⋅
(
v(∪h∈QCh ∪ Ck) − v(∪h∈QCh ∪ Ck ⧵ i)

− (v(Ck) − v(Ck ⧵ i)) − v(∪h∈QCh)
)

Part II = Part II(1) + Part II(2)

=
∑

Q⊆M⧵k

q!(m − q − 1)!

m!
⋅

1

|Ck| ⋅
(
v(∪h∈QCh ∪ Ck) − v(∪h∈QCh) − v(Ck)

)

=
1

|Ck|

{ ∑
Q⊆M⧵k

q!(m − q − 1)!

m!
⋅

(
v(∪h∈QCh ∪ Ck) − v(∪h∈QCh)

)
− v(Ck)

}

=
1

|Ck|

{( ∑
Q⊆M⧵k

q!(m − q − 1)!

m!
⋅ (vC(Q ∪ k) − vC(Q))

)
− v(Ck)

}

=
Shk(M, vC) − v(Ck)

|Ck|

�i(N, v, C) = Soli(Ck, v|Ck
) +

Shk(M, vC) − v(Ck)

|Ck| = TSSi(N, v, C),

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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