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Abstract

We compare the performance of the linear regression model, which is the current
standard in science and practice for cross-sectional stock return forecasting, with
that of machine learning methods, i.e., penalized linear models, support vector
regression, random forests, gradient boosted trees and neural networks. Our analy-
sis is based on monthly data on nearly 12,000 individual stocks from 16 European
economies over almost 30 years from 1990 to 2019. We find that the prediction of
stock returns can be decisively improved through machine learning methods. The
outperformance of individual (combined) machine learning models over the bench-
mark model is approximately 0.6% (0.7%) per month for the full cross-section of
stocks. Furthermore, we find no model breakdowns, which suggests that investors
do not incur additional risk from using machine learning methods compared to the
traditional benchmark approach. Additionally, the superior performance of machine
learning models is not due to substantially higher portfolio turnover. Further analy-
ses suggest that machine learning models generate their added value particularly in
bear markets when the average investor tends to lose money. Our results indicate
that future research and practice should make more intensive use of machine learn-
ing techniques with respect to stock return prediction.
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1 Introduction

Recently, Gu et al. (2020) conducted a much noted comparative analysis of machine
learning methods for stock return prediction by synthesizing the body of empiri-
cal asset pricing literature within the field of machine learning. They provide evi-
dence for a clear rejection of the ordinary least squares (OLS) benchmark in favor
of machine learning methods in terms of statistical performance and investors’
economic performance. The OLS benchmark represents the typical approach in
one of two basic strands of the empirical literature on stock return prediction. Spe-
cifically, cross-sectional stock return predictability research (e.g., Fama and French
2008; Lewellen 2015; Gu et al. 2020) runs cross-sectional regressions of future
stock returns on a handful of lagged stock characteristics. The second strand of lit-
erature, i.e., time-series stock return predictability research, does not forecast the
cross-section but the time-series of returns. This literature typically tries to forecast
stock indices employing macroeconomic predictors.! Attributable to the under-
performance of the linear benchmark in their study, Gu et al. (2020) recommend
using machine learning techniques to overcome the severe limitations of commonly
applied methods.

The paper from Gu et al. (2020) is the first to comprehensively use ML meth-
ods in cross-sectional predictability research. Following this seminal paper, numer-
ous concurrent papers have emerged that contribute to the literature by investigating
the generality of the conclusions derived in Gu et al. (2020). This is achieved by
applying their research design to other stock markets (see, e.g., Tobek and Hronec
2021; Drobetz and Otto 2021; Leippold et al. 2022; Liu et al. 2022; Rubesam 2022;
Lalwani and Meshram 2022, for international applications and applications to indi-
vidual regions or countries) or other asset classes (see, e.g., Bianchi et al. 2021, for
applications to bond returns). Another strand of the literature (see, e.g., Leippold
et al. 2022, for a list of exemplary papers) is dedicated to numerous additional refine-
ments of the basic algorithms surveyed in Gu et al. (2020).? Our empirical analysis
contributes to the line of research featured in the aforementioned papers by deviating
from their research design in several key aspects to further investigate the generality
of the conclusion to reject the OLS benchmark in favor of machine learning methods
in cross-sectional predictability research. More specifically, we devote our attention
to three distinct issues: (1) overfitting and irrelevant predictors, (2) missing data, and
(3) a U.S. bias. In the following, we discuss these issues and how they can be over-
come. First, the aforementioned literature typically relies on large predictor sets. For
example, the predictor set in Gu et al. (2020) includes 94 firm characteristics and
interactions of each firm characteristic with eight macroeconomic time-series from

I See, among others, Rapach and Zhou (2013) for an overview.
2 The aforementioned papers represent just a selection of published papers. Many more working papers
also build on the seminal paper by Gu et al. (2020).
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Welch and Goyal (2008) and 74 industry sector dummy variables. This results in a
set of 900+ predictors. Following (Gu et al. 2020; Leippold et al. 2022) even extend
this predictor set (i.e., 1160 predictors) while relying on a smaller cross-section (i.e.,
3,900 stocks) and time-series (i.e., a study period from 2000 to 2020). Tobek and
Hronec (2021) and Bianchi et al. (2021) also use more than 100 predictors when
investigating stocks internationally and bonds, respectively. Such large predictor
sets and the enhanced flexibility of machine learning methods over more traditional
prediction techniques such as the OLS benchmark come at the risk of overfitting
the data, which may put machine learning methods at a disadvantage. However, one
can also argue that some machine learning methods can handle irrelevant predictors
while OLS cannot, which may put (some) machine learning methods at an advan-
tage. For a comparison at eye level, we provide the OLS benchmark and machine
learning methods with the same and a relatively sparse set of only relevant predictor
variables to prevent overfitting and avoid irrelevant predictors.® Our set of predictors
consists of beta (Sharpe 1964), market capitalization (Banz 1981), the book-to-mar-
ket-equity ratio (Rosenberg et al. 1985), momentum (Jegadeesh and Titman 1993),
investment (Titman et al. 2004) and operating profitability (Novy-Marx 2013), all
of which form the basis for well-known factor models such as the Fama and French
(1993) three-factor model, the Carhart (1997) four-factor model and the Fama and
French (2015) five-factor model. Second, the treatment of missing data is another
potential problem affecting the findings derived in the previous literature. More spe-
cifically, if a characteristic is missing, then it is typically replaced by the cross-sec-
tional mean or median, which is zero as stock characteristics are rank-transformed
and mapped into a [— 1,1] interval.* In this vein, Cismondi et al. (2013) argue that in
cases where missing data can range up to 50% or more, imputing the data is incor-
rect, as it might create unrealistic states of the process being modeled. Afifi and
Elashoff (1966) even argue that imputing the mean yields unbiased estimates if and
only if the data follow a multivariate normal distribution and the data are missing
at random. Given that this is likely not the case for financial market and accounting
data, imputing missing data has received much attention in recent research by Frey-
berger et al. (2021); Cahan et al. (2022); Bryzgalova et al. (2022); Beckmeyer and
Wiedemann (2022). To reduce the unintended impact of missing data, we select the
aforementioned predictors so that they are available over the entire period and there

3 As the OLS benchmark results reported in Gu et al. (2020) are based on just three predictors, the aston-
ishing outperformance of the machine learning methods might also be an artifact of the large set of pre-
dictors applied in the latter. In unreported results, we find that the OLS benchmark achieves a perfor-
mance similar to the best-performing machine learning method in Gu et al. (2020) (i.e., a neural network
with three hidden layers) when applied to a comparable set of predictors on the original data. We thank
the authors for providing their data.

4 For example, the analysis in Gu et al. (2020) begins in 1957, and with regard to the 94 firm characteris-
tics from the 900+ predictors, information for the full set of predictors is available from 1985 onward. As
an example, cash flow statements became mandatory in the U.S. only in the 1980s, as FAS95, after con-
siderable discussion, was finally issued in 1987. While earlier adoption was suggested, it certainly was
not the norm (Livnat and Zarowin 1990). Furthermore, even in 1985, 10% of the 94 firm characteristics
have more than 30% missing data points. This means that the findings in Gu et al. (2020) might critically
depend on replacing missing data with zeros.
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are no large deviations in missing data between the predictors in the cross-section.
Finally, another potential issue is related to the U.S. bias (and, therefore, lack of
external validity) in research in economics (e.g., Das et al. 2013) and finance (e.g.,
Karolyi 2016).> Specifically, Karolyi (2016) finds that only 16% (23%) of all empiri-
cal studies published in the top four (fourteen) finance journals examine non-U.S.
markets, a fraction that is well below the measures reflecting their economic impor-
tance. This is problematic in two respects. First, generalizing conclusions solely
from U.S. data can be dangerous, as research has shown that such conclusions do
not necessarily hold internationally (see, e.g., Goyal and Wahal 2015; Woodhouse
et al. 2017; Jacobs and Miiller 2020). Therefore, every replication makes a contri-
bution when extending existing studies out of sample (see, e.g., Harvey 2017; Hou
et al. 2018). Second, a disproportionately high use of U.S. data poses the danger of
widespread p-hacking, as argued by Harvey et al. (2016); Harvey (2017); Hou et al.
(2018). Harvey et al. (2016) outline three ways to deal with the bias introduced by
multiple testing: (1) using out-of-sample validation, (2) using a statistical framework
that allows for multiple testing®, and (3) looking across multiple asset classes. In this
paper, we choose the first approach and conduct the empirical analysis based on all
European countries that are part of the MSCI Developed Europe Index. More specif-
ically, we investigate nearly 12,000 individual stocks from 16 countries over almost
30 years from 1990 to 2019. To summarize, we contribute to the cross-sectional pre-
dictability research (e.g., Fama and French 2008; Lewellen 2015; Gu et al. 2020) by
investigating whether recently derived conclusions (see, e.g., Gu et al. 2020; Tobek
and Hronec 2021; Drobetz and Otto 2021; Leippold et al. 2022; Liu et al. 2022;
Rubesam 2022; Lalwani and Meshram 2022; Bianchi et al. 2021) hold when we
minimize or eliminate the influence of overfitting, irrelevant predictors, missing val-
ues, and U.S. bias.

We find confirmation for the results from the previous literature in the sense
that the use of machine learning methods appears promising. This is also true if
we exclude influences that could potentially distort the results, such as overfitting,
irrelevant predictors, missing values, and U.S. bias, and compare the methods on
an equal footing. Specifically, the outperformance of the best-performing individ-
ual machine learning method is approximately 0.6% per month based on the entire
cross-section. This figure is impressive, given that only six predictor variables are
considered. The outperformance shrinks to 0.1% per month when only the stocks
of the largest ten percent of firms are considered, revealing that the outperformance
of the machine learning methods is higher among stocks that are more difficult and
costlier to trade. Given that the information environment on these stocks is arguably
worse (e.g., in terms of media coverage or analyst following), our results are of great
importance to investors seeking guidance. Additionally, we find that the superior
performance of machine learning models is not due to substantially higher portfolio

5 Similar lines of reasoning can be found in recent research by, e.g., Tobek and Hronec (2021), Lalwani
and Meshram (2022) and Hanauer (2020).

6 Harvey et al. (2016) and Harvey (2017) raise the claim for a higher statistical threshold (t statistic of 3
instead of 2).
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turnover. The analysis of bull and bear markets suggests that machine learning mod-
els generate their added value particularly in bear markets when the average investor
tends to lose money. Lastly, we find that forecast combinations provide the most
robust forecasts, on average. More specifically, forecast combinations consisting of
only nonlinear methods consistently outperform forecast combinations that also con-
sider linear models. Thus, we find that investors and researchers alike should prior-
itize machine learning techniques over the commonly applied benchmark approach
when engaging in stock return predictions.

The remainder of the paper is organized as follows. Section 2 discusses the differ-
ences between time-series and cross-sectional stock return predictability. Section 3
formulates the OLS benchmark and the machine learning methods applied. Sec-
tion 4 describes the data and provides descriptive statistics on the predictor variables
and the dependent variable (stock returns) from the approximately 12,000 European
firms included in this study. Sections 5 and 6 report the main and additional results
of the performance comparisons based on statistical (model R?) and economic (eco-
nomic gains to investors from portfolio strategies) analyses. Section 7 concludes the

paper.

2 Related literature

In finance research, and even more so in non-finance research such as operations
research, the time-series approach dominates the cross-sectional approach when
it comes to forecasting asset returns. Against this background, in this section, we
aim to shed light on the differences between the two approaches discussed in recent
literature:

e Engelberg et al. (2022): “Financial researchers have examined the predictabil-
ity of stock returns for over a century (e.g., Gibson 1906) and a large literature
has documented evidence of predictability in the cross-section of stock returns.
A separate literature has examined the predictability of the equity risk-premium
using time-series predictive variables. To date, these two literatures have evolved
relatively independently.”

e Dong et al. (2022): “The first examines whether firm characteristics can predict
the cross-sectional dispersion in stock returns. These studies identify numer-
ous equity market anomalies (e.g., Fama and French 2015; Harvey et al. 2016;
McLean and Pontiff 2016; Hou et al. 2018). The second line of research inves-
tigates the time-series predictability of the aggregate market excess return based
on a variety of economic and financial variables, such as valuation ratios, interest
rates, and inflation (Nelson 1976; Campbell 1987; Fama and French 1988, 1989;
Pastor and Stambaugh 2009). Studies in this vein attempt to shed light on the
variables that affect the equity risk premium.”

e Gu et al. (2020): “The first strand models differences in expected returns across
stocks as a function of stock-level characteristics, and is exemplified by Fama and
French (2008) and Lewellen (2015). The typical approach in this literature runs
cross-sectional regressions of future stock returns on a few lagged stock charac-
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teristics. The second strand forecasts the time-series of returns and is surveyed by
Welch and Goyal (2008), Koijen and van Nieuwerburgh (2011), and Rapach and
Zhou (2013).”

In summary, prediction of the time-series of a single asset such as the aggre-
gate market returns is related to the time-series predictability research. The typi-
cal approach is to forecast a single time-series (e.g., a specific MSCI index) based
on other time-delayed time-series (e.g., economic and financial variables, such as
valuation ratios, interest rates, and inflation). Predicting the cross-sectional disper-
sion in stock returns is related to cross-sectional predictability. The main approach
is to forecast the returns of multiple assets at once and at one point in time (e.g.,
returns from all stocks in the US at time t) using other, time-delayed, cross-sectional
information (e.g., market equity, momentum, market beta from all stocks in the US
at time t-1). Following (Rapach and Zhou 2020) and based on a linear regression
model, one can also make a more formal distinction between the two approaches:

e The time-series predictability approach considers the following time-series mul-
tiple regression model for an individual asset

J

r=a+ 2 ﬁjxj,,_l + €, 1)

J=1

fort=1,...,T, where r is the return on a broad stock market index in excess of
the risk-free return, T is the number of time-series observations, Xj,_; are the
lagged predictor variables, and ¢, is a zero-mean disturbance term.

e The cross-sectional predictability approach considers the following cross-sec-
tional multiple regression model for a certain month

7
ri=a+zﬁjzi,/‘+€i’ 2)
=1

]

fori=1,...,N, where z; J is the jth lagged characteristic of firm i and N is the

number of available firms.’
In this paper, we are interested in predicting the cross-sectional dispersion in stock
returns. However, in terms of cross-sectional predictability, Gu et al. (2020) is the
first paper to comprehensively use ML methods and compare them against the stand-
ard OLS benchmark in this line of research (e.g., Fama and French 2008; Lewellen
2015; Gu et al. 2020). Against this background, we also rely on OLS as our “natu-
ral” benchmark.

7 To ensure parameter stability, cross-sectional predictability typically relies on multiple cross-sections
or pooled data.
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3 Methodology

In our empirical study, we are dealing with a panel of stocks, where months are
indexed as r = 1, ..., T and stocks are indexed as i = 1, ..., N. Accordingly, the future
stock return r of asset i at month ¢ + 1 can be defined in general terms as:®

Titel = Ez(ri,t+1) + €115 3)

with

Et(”i,z+1) = 8(951',:)’ @)

where current expectations about future returns are expressed as a function g(-) of a
vector of predictor variables x;, (i.e., firm characteristics). Specifically, the predic-
tor variables are defined as a P-dimensional vector x;, = (xml, s Xy P). Hence, the
aim of the following methods is to provide an estimate g(-) of g(-).

3.1 Simple and penalized linear regression

Throughout the recent decades of cross-sectional asset pricing research, the common
strand in the literature on stock return predictability has been to model conditional
expectations about future returns g(-) as a linear function of stock-level characteris-
tics and a parameter vector f = (/31, e ﬂp) (e.g., Fama and French 2008; Lewellen
2015; Green et al. 2017):

8(x;38) = X p. )

The parameter vector f can be obtained by (pooled) OLS, minimizing the /, objec-
tive function:

-1

. 1 2
min L(f) = ———— Fie1 —8(XiB)) s (6)

p N(T - 1) & & (iaer = 8(xif))
where N is the number of stocks in the cross-section and 7 is the number of months
in the estimation period. We refer to this approach as the OLS benchmark. To reduce

the impact of overfitting, we also add a penalty term to the objective function:
min L(0:) = L(B) + $(f). o

Regularization techniques, such as penalty terms, are most commonly used in the
context of large feature spaces. Although the problem of overfitting is only of minor
importance for the linear model given the small feature set, it can still occur and
affect performance. For the sake of completeness, we follow prior literature and
append the linear model by the popular elastic net penalty, which takes the form:

8 For ease of notation, we assume a balanced panel.

@ Springer



296 C. Fieberg et al.

P P
DB =40 = Y [5,]+ 300 X 52 ®)
p=1 p=1

The two nonnegative hyperparameters of the elastic net penalty, A and p, nest some
special cases. A controls the penalty strength; hence, for 4 = 0, the model reduces to
the standard OLS. The parameter p controls the ratio of lasso versus ridge penalty,
where the cases p = 0 and p = 1 correspond to lasso and ridge regression, respec-
tively. Lasso imposes sparsity in the coefficients and may lead to some coefficients
being exactly zero. Ridge regression is a dense modeling technique that prevents
coefficients from becoming unduly large in magnitude by shrinking them closer to
zero without imposing a weight of exactly zero. In addition to lasso (p = 0) and
ridge regressions (p = 1), we consider elastic net (p = 0.5), which represents a com-
promise between the two.

In our empirical application, we determine the parameter A using grid search (see
Table 11 in appendix for the ranges) on the validation data.

3.2 Support vector machine

Support vector regression (SVR) is an extension of the basic principle underlying
support vector machines developed by Vapnik (1995), originally designed for classi-
fication. SVR generally estimates a linear regression function of the following form:

g(x, W, b) = xl{,tw + b, 9)

where w is a vector of weights and b is a constant. The objective of SVR is to esti-
mate a function that provides a good balance between model complexity and good-
ness of fit by introducing an error margin (e-insensitive tube) to which the cost
function is insensitive in approximating the returns. This may be interpreted as the
tolerance for minuscule deviations up to €. The e-insensitive loss is defined as (cf.
Vapnik 1995):

if|"i,t+l - g(xi,z)‘ <e

10
— ¢ otherwise. (10)

0
E(”i,z+1»§(xi,z)) = { |r g(x )
i+l T it

By introducing two slack variables &;,,, and &’ o for positive and negative devia-
tions from the e-insensitive loss function, respectlvely, the objective function can be
written in primal form as:

N T-1
mmﬁ(wb) C22(51t+1+§”+1)+ Zw
i=1 t=1
St rg — (W, —b)< €+ & (11)

(Wxi, +b) —rip<e+&

5i,l+l ’ 51*[_'.12 0

it+1°
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] — g0)

--- €~ insensitive Tube
O Support vectors.

® S ®© « Data

®
o}
)
[}
o}

(a) Linear SVR (b) Nonlinear SVR

Fig.1 This figure visualizes an exemplary SVR with a linear and a nonlinear kernel in (a) and (b),
respectively. £ and £* denote errors with magnitude greater than the |e| threshold

where the optimization problem is defined as the sum of aggregate errors exceed-
ing the e-boundary plus [, regularization that encourages a simple model to prevent
overfitting of the data. The nonnegative constant C controls how strong deviations
from e should be penalized.” Note that C can be interpreted as an inverse regulariza-
tion parameter, as it controls the tradeoff between error tolerance and complexity.
Two notable cases are C = 0, for which SVR approximates a constant function, and
C — o, € =0, for which SVR essentially estimates an /,-regression.

By means of Lagrangian theory, the above minimization problem can be repre-
sented in dual form as:

min La.a) =3 N (o=, ) (s =)o

(i,HESV (j.k)ESV

—€ 2 <ai,t - 0‘;) + Z yi,z(“i,t - a;j,) (12)
(.nESV (.)ESV
s.t. Z (ai!,— ) 0, 0<a.a;,<C,
(LHESV

where a;, and a}, are nonnegative Lagrangian multipliers for each observation x;,.
SV are the 1ndlces of nonzero Lagrangian multipliers, where the corresponding x;,
are the support vectors. Accordingly, the first line of equation (12) considers pair-
wise combinations of panel observations if they are in the set of support vectors.
Support vectors are observations that correspond to nonzero Lagrangian multipliers,
ie., either a;, or &, is nonzero.

The dual form enables the introduction of nonlinearity by replacing the inner
product xl’.,l X s i.e., a linear mapping, with a kernel function K(xi,,,xj,k), which

° By convention, the SVR formulation typlcally uses an (mverse) regularlzatlon parameter. The objective
may also be formulated as Z, . ZI_ St + &, “3 +ak 3 Zp=1 wp. The relation between A and C is

C_/l
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char2
0 0.6 1
charl < 0.7 1
true false Rz Rs

0.7
—
-
char2 < 0.6 =
G}

tr% \ﬂse R
0
(a) Regression tree (b) Partitioned data

Fig.2 This figure shows the structure of an example regression tree (a) with two characteristics (charl
and char2) and its equivalent representation as sliced partitions of the predictor space (b)

performs a nonlinear mapping of the inputs. Figure 1 illustrates a SVR with a linear
(a) and a nonlinear (b) kernel. Conveniently, the introduction of a kernel function
allows all calculations to be performed in the original feature space. We apply the
most popular radial basis function (RBF), which takes the form Lu et al. (2009),
Rasekhschaffe and Jones (2019):

K(x;.x;0) = exp(=y llx;, — x;,[17). (13)

This kernel function measures the similarity of firm characteristics between firm-
observations and, consequently, how they affect the regression function. Here, y is
a bandwidth parameter that controls the influence of observations. In our empirical
application, we determine parameters €, A and y using grid search (see Table 11 in
appendix for the ranges) on the validation data.

3.3 Tree-based methods: random forest and gradient boosted regression trees

Regression trees are fully nonparametric and based on recursive binary splits, which
enables them to account for high-level interactions. With respect to our application,
regression trees group observations based on firm characteristics such that observa-
tions within a group are similar in terms of future returns. A tree ‘grows’ by per-
forming a series of binary splits based on cutoffs of the firm characteristics at each
branching point. Consequently, each split adds an additional layer of depth capable
of incorporating more complex interaction effects. Starting with all observations, the
tree successively divides the feature space into two rectangular partitions. The firm
characteristic and its cutoff value are chosen to provide the best fit in terms of fore-
casting error. The resulting rectangular regions in the predictor space approximate
the unknown function g(-) as the mean of the respective partition. The splitting pro-
cedure continues on one or both regions, resulting in increasingly smaller rectangles
until a stopping criterion is met, e.g., depth of the tree (J) or no improvement by
additional splits.

@ Springer



Machine learning techniques for cross-sectional equity... 299

Figure 2 illustrates a regression tree of depth J = 2 based on exemplary firm char-
acteristics charl and char2.'® Figure 2a presents the tree architecture, and Fig. 2b
shows the representation in the rectangular feature space. Initially, all observations
are divided based on the firm characteristic charl with a cutoff value of 0.7. Firm-
month observations with a value below that threshold are assigned to the left branch,
while all other observations are assigned to the right branch. The left node is not
split up any further, resulting in R,, which is also called the “leaf node”. The right
node represents another decision node, where the remaining firm-month observa-
tions are additionally divided on firm characteristic char2 with a threshold value
of 0.6, resulting in R, and R;. Thus, the observations are divided into regions R,
R, and R;, as shown in Fig. 2b. The prediction of a tree is the simple average of the
response within a leaf node.

Formally, the unknown function g(-) is approximated by a regression tree as:

M
gtree (xi,t;M) = Z le(x,‘,t (S Rm)’ (14)

m=1

where R,, is one of the M leaf nodes, / is an indicator function of the firm character-
istics identifying observations that belong to a particular region and c,, is the associ-
ated average response. At each decision node, the algorithm aims to find the firm
characteristic and its respective value that minimize the forecasting error. Finding
a global optimal solution is generally computationally infeasible (cf. Hastie et al.
2017). Therefore, we follow (Breiman et al. 1984) and proceed with a greedy algo-
rithm, in which the optimization is only performed locally at each individual deci-
sion node, i.e., solving the following optimization problem:

min Z (ri,t+1_cl(j’s))2+ Z ("i,t+1_cr(j’s))2’ 5)

A . .
X1 €R(>5) x;,€R,(j.5)
with

i, 8) = ave(r; 1 |x;, € Ry, )
and c,(j, s) = ave(r; ,,|x;; € R,(j,5)).

where ¢, and c, are the average responses of the left and right partitions, which are
conditional on variable j and its value s subject to the minimization. Put differently,
at each decision node, the split variable j and its associated split value s are to be
found with the aim of locally minimizing the forecasting error on each split.
Regression trees are widely adopted in the ML literature because (as visual-
ized in Fig. 2) the sequence of binary decision rules allows a very simple and
intuitive interpretation. Additionally, the inherent structure is ideal for represent-
ing multiway interaction effects and nonlinearities. However, regression trees are
rarely used individually, as they are unstable with respect to changes in the input

10 Depth, split variable and split value are chosen for illustrative purposes.
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(a) Neural Network (b) Neuron

Fig. 3 This figure provides a graphical representation of the general architecture of a feedforward neural
network (a) and the information processing within a hidden neuron (b)

data and subject to severe overfitting problems. Unlike OLS, a regression tree can
heavily overfit even with few variables, and with sufficient depth, a perfect fit can
be achieved. In the limiting case, each leaf node contains only one observation.
To alleviate the drawbacks of individual regression trees, we consider popular
ensemble algorithms, i.e., random forests and gradient boosting, each of which
combines many individually weak trees.

Random forest (RF) is based on the concept of bootstrap aggregation, in which
the variance of an estimator is reduced by averaging over multiple independent
and identically distributed (i.i.d.) bootstrapped samples. Thus, in the random for-
est, several B trees are trained independently on bootstrapped samples. In addi-
tion, at each decision node of a tree, only a random subset of p < P predictors is
considered, reducing both the correlation and variance of the estimator (cf. Brei-
man 2001). The output of a random forest is provided by:

B

A 1 ~lree

B(xi B M) = 2 3 &ye(xi M), (16)
b=1

While trees are fit independently in the random forest algorithm, gradient boosted
regression trees (GBRT) are estimated in an adaptive manner to reduce the bias.
Therefore, B trees are estimated sequentially and combined additively to form an
ensemble prediction. At each iteration b, a new tree g;;“ is fit on the residuals from
the previous iteration and added to the ensemble. However, the contribution of each
individual tree is controlled by the learning rate 0 < v < 1 (shrinkage) to prevent
overfitting of the residuals. Finally, the estimation function of GBRT is given by:

B
&(x,3B. M, v) = Y g (x,;M). a7
h=1

In our empirical application, we determine parameters (J, p) and (J, v, B) for RF and
GBRT, respectively using grid search (see Table 11 in the appendix for the ranges)
on the validation data.
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3.4 Neural networks

Neural networks are successfully applied in numerous scientific and practical
applications. Their flexibility draws from the concept to derive features from lin-
ear combinations of the input space and to model the response as a (nonlinear)
function of these features (cf. Hastie et al. 2017). We focus on traditional feed-
forward neural networks, which generally consist of an input layer, one or more
hidden layers, and an output layer. Each layer is represented by (computational)
units called neurons. Figure 3a gives a graphical representation of a general feed-
forward neural network. Starting with the input layer, which represents the firm
characteristics, the information is carried through the hidden layers via intercon-
nected neurons and finally aggregated to form an estimate of the future returns
(represented by the output layer). Each of the neurons performs very simple
operations individually, i.e., combining information from the previous layer and
applying an (nonlinear) activation function to the aggregate signal (see Fig. 3b).

More generally, the output of an L-layer neural network (including the output
layer) with K’ V1 <[ < L neurons per layer can be thought of as a chain of func-
tions (cf. Goodfellow et al. 2016), which recursively calculates the activations.
Accordingly, the I-th layer’s activations &, which is a vector of length equal to
the number of nodes, are given by:

d =f(a"") =f(Wa"" +b!), VI<I<L, (18)

where W'is a K x K~V matrix of weights transmitting the outputs from layer (I — 1)
to layer /, where they then aggregate to form the activation a. Accordingly, [ = O cor-
responds to the input layer with a® being the raw vector of firm characteristics, Xt
and f', ..., f" are univariate transformations of the weighted signal from the previ-
ous layer plus a bias. W = {W', ..., Wt} and b = {b', ..., b"} are parameter sets of
weight matrices and bias vectors, respectively, determined in the model calibration.

In a regression task, the output layer L performs a linear combination, yielding
the final output:

2(x,W.b) =L (a W ) = Wha™D 4 . (19)

There are numerous architectural design options when structuring a neural network,
e.g., number of neurons, number of layers, and activation functions. Zhang et al.
(1998, p. 42) state that /... ] the design of an ANN is more of an art than a science”.
However, there is no clear guidance on how to determine an appropriate network
architecture. Therefore, we take a pragmatic approach by choosing a single hidden
layer and the hyperbolic tangent as an activation function:
! ef—e™*
J)=——" VIL<IL<L-1

f'O=5 (20)
Hornik et al. (1989) and Cybenko (1989) proved universal approximator proper-
ties for single hidden layer feedforward neural networks with sigmoid activations.
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Fig.4 This figure illustrates the rolling estimation scheme employed in this study

The number of hidden neurons is chosen based on a rule-of-thumb for single hid-
den layer neural networks derived by Wong (1991), i.e., twice the number of input
nodes.

As stated before, in a neural network, W and b are the parameters of interest.
Their estimates, however, are solutions of a nonconvex optimization problem. One
of the most widely used algorithms for training neural networks are variants of sto-
chastic gradient descent (SGD). SGD iteratively approaches the (local) minimum
of the /, objective function by approximating its gradient on random subsets of the
training data and adapting the parameters accordingly. We use the popular Adaptive
Moment estimation (Adam) by Kingma and Ba (2014). A critical tuning parameter
in the learning algorithm is the learning rate Ir, which controls the step size of each
parameter update. First, to mitigate the risk of overfitting, we impose an /, penalty
(weight decay), which shrinks the weights between neurons toward zero without
imposing exact zero. Second, we stop the training of our network early if the error
on the validation set does not improve for ten consecutive iterations. Third, we build
ensembles of size ten and average their outcome, as the parameter initialization and
stochastic training introduce sources of randomness. Hansen and Salamon (1990)
provide evidence that ensembles not only stabilize results but also improve generali-
zation. In our empirical application, we determine the learning rate [r and [, penalty
strength A using grid search (see Table 11 in the appendix for the ranges) on the
validation data.

3.5 Estimation, tuning and testing

We provide all models with the same data, i.e., a ten-year rolling period of monthly
data, and predict returns for the months of the subsequent year for every firm. Stated
differently, we use only past information to predict future (out-of-sample) returns.
Unlike the OLS model, the performance of most machine learning algorithms
depends heavily on the choice of hyperparameters. A commonly used strategy is to
divide the in-sample data into disjoint subsets (training and validation) to mimic a
pseudo out-of-sample setting. The hyperparameters are then chosen to maximize the
performance on the validation set. Therefore, we split each in-sample window into
seven years of training and three years of validation and perform a grid search to
find an appropriate set of hyperparameters.'!

! By retaining the temporal ordering of the data, we mimic a realistic prediction scenario.
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Figure 4 illustrates our sample splitting scheme. More precisely, we estimate
the respective model with a set of hyperparameters from the parameter grid (see
Table 11) on the training set. Then, we generate predictions for the validation set
and evaluate the performance. After determining the best set of hyperparameters, we
re-estimate the model on the full ten-year period of training and validation data to
incorporate the most recent information. However, data for actual forecasting never
enter the model during the estimation procedure.

To assess the predictive performance of our models, we evaluate them in three
ways. We first deploy a statistical analysis to quantify the models’ predictive accu-
racy, i.e., how well predicted returns reflect realized returns. A common metric to do
so is the out-of-sample (pseudo) R?, which is defined as:

~ \2
z(i,l)EOOS(ri,t - ri,z)

R =1 —,
YineoosTis = Tip)

2n

where 7;, denotes the model’s prediction and 7;, denotes the historical average for
asset i at time . This definition measures the proportional reduction in forecasting
errors of the predictive model relative to the historical average. Thus, R*> > 0 indi-
cates that the predictive model is more accurate than the historical average in terms
of forecasting errors. Note that unlike the conventional RZ, this formulation can also
be negative. While the historical average is appropriate in terms of a time-series
analysis, it leads to an inflated R? in the case of a panel of stock returns. Therefore,
we set 7 to zero, which yields a stricter threshold for proper forecasting models, and
we follow this suggestion.'”

R? represents a measure that provides information about the quality of forecasts
from a predictive model compared to that from a constant model. However, if we
want to compare among different models, then examining R? alone does not allow
us to infer whether one model is significantly superior to another. Therefore, we
perform the popular (Diebold and Mariano 1995) (DM) test, which is designed to
compare the predictive accuracy of two models. More precisely, it tests for the null
of equal prediction errors H : E[d,] = 0, where d, is the loss differential between
two forecasts at time z. The DM test is applicable in the case of serial correlation.
However, stock returns are prone to be strongly correlated in the cross-section while
only being weakly correlated across time. To alleviate this issue, we average loss
differential d, across assets, thus resulting in a time-series with weak serial correla-
tion. The test statistic is defined as follows:

12 We also consider other definitions of R2; however, the relative order between the models remains
unchanged. To remain consistent with the literature, we adopt this definition.
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dy, .
DM = — ~ N(0,1), with
6

d
1 T
a12 - T a12[’
T
N (22)
N 1 R R
dip, = N Z(e%zz _egzt)’ and
i=1
N thTl(at_d)
0q
T

Second, we analyze our forecasts in terms of economic gains. Leitch and Tanner
(1991) argue that traditional statistical metrics are only loosely related to a forecast’s
achievable profit. Thus, we consider forecast-based portfolio sorts to assess the eco-
nomic performance of our models. At the end of each month in the testing period
(January 2001 to December 2019), we assign all available stocks with equal weight
to ten portfolios using cross-sectional decile breakpoints based on the return predic-
tion for the next month. In addition, we construct a long-short portfolio reflecting a
zero-net investment by buying the top decile portfolio and selling the bottom decile
portfolio to capture the aggregate effect.

Third, we use the entire cross-section of stocks to estimate our models. Stocks
of small firms, however, follow different dynamics in terms of their covariances,
liquidity, and expected returns (cf. Kelly et al. 2019). More specifically, Hou et al.
(2018) show that much of the predictability detected in the previous literature
is found in the smallest stocks. While microcaps represent only approximately
3% of the total market capitalization of the NYSE/Amex/NASDAQ universe,
they account for approximately 60% of the number of stocks. Due to high costs
in trading these stocks (e.g., Israel and Moskowitz 2013), predictability (in terms
of economic performance) in small stocks is more apparent than it is real. To
investigate the degree to which the performance depends on firm size, we succes-
sively remove stocks below the respective deciles of the cross-sectional market
capitalization.

4 Data

Previous studies have documented the existence of a U.S. bias in research in eco-
nomics (e.g., Das et al. 2013) and finance (e.g., Karolyi 2016). In this regard,
recent literature (e.g., Harvey et al. 2016) argues for a higher statistical thresh-
old (t-statistic of 3 rather than 2) in empirical studies on the U.S. stock market
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Table 1 Descriptive statistics and characteristics of quantile portfolios formed from monthly sorts of
stocks on predictor variables

Panel: A Panel: B
Avg Std N 1 2 3 4 5 5-1 pVal (5-1)
ret 0.0088 0.0886 1755

mom 0.1324 0.3685 1755 027 0.69 090 1.18 1.63 1.37 0.00
beta 0.5609 0.4154 1755 1.02 108 1.06 0.87 064 -037 1824
size 5.8364 1.9083 1755 091 093 09 096 092 0.01 95.61
be2me  0.7408 0.6483 1755 068 0.85 088 1.04 124 0.56 0.16
op 0.0002 0.0003 1755 050 094 105 1.10 1.09 0.59 0.00
inv 18.7620  47.0595 1755 1.02 1.08 1.07 096 056 —0.46 0.07

Panel A reports time-series averages of the cross-sectional mean (Avg), standard deviation (Std), and
sample size (N) for all stocks from the countries in the MSCI Developed Markets Europe on Data-
stream and Worldscope from January 1990 to December 2019. The sample includes all stocks with valid
monthly values for return (ret), the characteristics from the Fama and French (1993) three-factor model,
the Carhart (1997) four-factor model and the Fama and French (2015) five-factor model: beta (beta), log
market capitalization (size, in millions ), book-to-market equity (be2me), momentum (mom) operat-
ing profitability (op), and investment (inv). Panel B reports returns of quintile portfolios formed from
monthly sorts of stocks on predictor variables. The five portfolios are defined as follows: For each month
from 1990 to 2019, we assign all stocks from the countries in the MSCI Developed Markets Europe
to five portfolios using quintile breakpoints from the cross-section of the end-of-month predictor vari-
able values and calculate the equal-weighted monthly percent returns for the next month. To analyze the
aggregate effect of a predictor variable on stock returns, we take a long position in portfolio 5 and a short
position in portfolio 1. The numbers in columns 1 to 5 report the average of the equally weighted returns.
pVal(5-1) reports the p-value (in percent) from a t-test of the null hypothesis of zero average

as well as a stronger focus on other asset classes and stock markets. We follow
this demand by investigating the European stock market. More specifically, we
use all stocks (approximately 12,000) from the countries in the MSCI Devel-
oped Markets Europe Index'®. We retrieve monthly data from January 1990 to
December 2019 from Datastream and Worldscope. The data retrieval starts with
the identification of common equity stocks using Datastream’s constituent lists
(research lists, Worldscope lists and dead lists). Specifically, for every country in
the MSCI Developed Europe Index, we use its constituent lists and eliminate any
duplicates. As a result, we obtain one remaining list for every country. To each
of these lists, we apply generic as well as country-specific screens to eliminate
noncommon equity stocks. Moreover, to all stocks remaining from this screen-
ing procedure, we then apply dynamic screens to account for data errors. The
procedure described above is established in the academic literature and described
extensively (e.g., in Ince and Porter 2006; Campbell et al. 2010; Griffin et al.
2010, 2011; Karolyi et al. 2012; Annaert et al. 2013; Fong et al. 2017).

Our predictors are beta, market capitalization, the book-to-market equity ratio,
momentum, investment, and operating profitability. These predictors are calculated

13 These are Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway,
Portugal, Spain, Sweden, Switzerland, and the United Kingdom.
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from the Datastream and Worldscope variables (datatype in brackets) total return
index (RI), market equity (MV), book equity (WCO03501), total asset growth
(WC08621) and operating income (WC01250). We assume that accounting data
are available to the public six months after the fiscal year ends to avoid look-ahead
bias. Beta (beta) is the exposure of a stock to the market factor as derived from the
capital asset pricing model (CAPM). According to the CAPM, stock returns are
expected to increase as the stock’s beta increases. For each month, we estimate the
beta of a stock based on the daily stock returns from the previous 12 months to avoid
any look-ahead bias. Following the established literature, returns are expected to
exhibit an inverse relationship with firms’ market capitalization (size) (Banz 1981)
and a positive association with the book-to-market-equity ratio (be2me) (Rosen-
berg et al. 1985). Momentum (mmom) is defined as the total return over the prior 12
months, excluding the last month. Prior literature finds evidence of a positive rela-
tion between momentum and stock returns (Jegadeesh and Titman 1993; Carhart
1997). Investment (inv) is growth in total assets, and operating profitability (op)
is operating income scaled by the book value of equity. Following (Titman et al.
2004) and (Novy-Marx 2013), stock returns are expected to increase as investment
decreases and operating profitability increases, respectively. In addition to exposure
to the market factor (beta), market capitalization and the book-to-market-equity ratio
are proxies for sensitivities to common unobservable risk factors in the Fama and
French (1993) three-factor model. Furthermore, momentum is a surrogate for the
sensitivity to a common unobservable risk factor in the Carhart (1997) four-factor
model. Lastly, investment and operating profitability proxy for sensitivities to com-
mon unobservable risk factors in the Fama and French (2015) five-factor model.

We report time-series averages of cross-sectional statistics, specifically, the mean,
standard deviation, and number of observations, of the monthly predictor variables
and stock returns in Panel A of Table 1. For comparability, we include only firm-
month observations with nonmissing returns in our analysis, resulting in an aver-
age sample size of 1,755 firms per month. We find that the average monthly stock
return is 0.88% and the average cross-sectional standard deviation in monthly stock
returns is 8.86%. To investigate the predictive ability of an individual variable, we
further assign all stocks to five portfolios for each month from 1990 to 2019 using
quintile breakpoints from the cross-section of monthly predictor variable values and
calculate the equal-weighted monthly percent returns for the next month. Panel B
of Table 1 reports the average monthly returns of the five portfolios. To analyze the
aggregate effect of the predictor variable on stock returns, we take a long position
in portfolio 5 and a short position in portfolio 1. Column “pVal (5-1)” reports the
p-value (as a percentage) from a t-test against the null hypothesis of zero average
return of the “5-1” portfolio. As expected, we find a positive relation between stock
returns and momentum, the book-to-market-equity ratio and operating profitability
and a negative relation between stock returns and investment for the European stock
market. Contradicting the CAPM, we find a negative relation between stock returns
and beta, which is consistent with empirical evidence provided by previous studies
(e.g., Frazzini and Pedersen 2014). Similarly, we find no relationship between firm
size and stock returns, which is also consistent with recent empirical findings (e.g.,
van Dijk 2011).
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Table 2 This table reports monthly predictive panel R? as a percent

Size > q OLS Lasso Ridge Enet SVR RF GBRT NN
0.00 0.43 0.40 0.42 0.37 0.14 0.58 0.60 0.67
0.10 0.36 0.33 0.34 0.28 0.15 0.36 0.44 0.63
0.20 0.36 0.32 0.34 0.27 0.19 0.36 0.45 0.66
0.30 0.36 0.30 0.34 0.27 0.20 0.35 0.46 0.68
0.40 0.35 0.29 0.33 0.26 0.20 0.34 0.47 0.70
0.50 0.31 0.24 0.30 0.23 0.17 0.27 0.46 0.70
0.60 0.26 0.18 0.25 0.19 0.12 0.20 0.45 0.67
0.70 0.17 0.08 0.17 0.11 -0.01 0.09 0.43 0.63
0.80 —-0.03 —-0.10 -0.01 —-0.06 -0.26 -0.17 0.32 0.50
0.90 -032 -0.39 -0.29 -0.35 -0.58 - 045 0.14 0.24

Monthly predictions are formed for our testing sample from January 2000 to December 2019 for different
models and levels of market liquidity in terms of market capitalization. Columns correspond to the mod-
els. Rows correspond to different levels of market liquidity, which we establish by removing stocks with
market capitalization (Size) less than the cross-sectional quantile q

In our empirical study, we further account for missing values, different scales and
extreme observations. To address missing values and maintain the number of return
observations, we replace missing characteristics with their cross-sectional median
if the respective returns are available. However, in contrast to much of the current
cross-sectional predictability literature, we have observations on each characteristic
in every month of our sample and do not fill entire cross-sections with values of
zero. Different scales and extreme observations are dealt with by cross-sectionally
rank normalizing firm characteristics.

5 Results
5.1 Predictive accuracy

Table 2 presents monthly out-of-sample R? for the employed methods and different
levels of market liquidity. Column 1 displays the levels of market liquidity estab-
lished by removing stocks with the prior month’s market values below the cross-sec-
tional decile breakpoints corresponding to g. Columns 2 to 9 correspond to the R?
values as a percentage achieved by each individual model. Positive values indicate
better predictive accuracy compared to a naive constant zero forecast.

For the full cross-section of stocks (first row), OLS generates an R? of 0.43%.
After dropping firms with market values below cross-sectional thresholds in incre-
ments of ten percent, the predictive power gradually decreases to — 0.32% for the
largest stocks. Penalized linear methods, i.e., Lasso, Ridge and Enet, perform on
a very similar, yet slightly worse, level than OLS. This result is not surprising, as
we are using only a small set of well-established, and essentially uncorrelated firm
characteristics. The predictive accuracy of SVR is consistently below that of OLS.
A potential source of this underperformance is that distance-based algorithms such
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Table 3 This table reports p values of pairwise Diebold-Mariano (DM) tests comparing stock-level
return forecasts of various models against the null hypothesis of equal predictive accuracy

OLS Lasso Ridge Enet SVR RF GBRT NN

Panel A: Full sample

OLS -

Lasso 0.84 -

Ridge 0.58 0.19 -

Enet 0.95 0.92 1.00 -

SVR 0.98 0.96 0.96 0.93 -

RF 0.00 0.00 0.01 0.00 0.00 -

GBRT 0.02 0.02 0.02 0.01 0.01 0.41 -

NN 0.02 0.01 0.01 0.00 0.01 0.24 0.17 -
Panel B: Size > q90

OLS -

Lasso 0.65 -

Ridge 0.27 0.20 -

Enet 0.49 0.27 0.66 -

SVR 0.85 0.77 0.95 0.90 -

RF 0.73 0.60 0.90 0.78 0.22 -

GBRT 0.04 0.04 0.03 0.03 0.00 0.01 -

NN 0.06 0.05 0.05 0.04 0.01 0.02 0.25 -

Panel A shows test results comparing predictions for the full cross-section of stocks, and Panel B uses
only predictions for the largest 10% of stocks. A p value of less than 0.1 (bold figures) indicates inferior
performance of the column model against the row model

as kernel SVR are particularly fragile in the presence of low-impact predictors.
Panel B of Table 1 indicates that this may be the case for size, as the return differ-
ences across portfolios are only of minuscule amplitude. Additionally, SVRs are
highly sensitive to the choice of hyperparameters, as Probst et al. (2019) identify a
much higher tunability of SVR compared to that of RF or GBRT. RF, GBRT and
NN, however, exhibit a remarkable improvement over OLS for the broad market
(0.58%, 0.60% and 0.67%, respectively). With respect to persistence, they exhibit
a diminishing pattern in predictability toward larger stocks similar to that of OLS.
This pattern is in line with Hou et al. (2018) showing that much of the predictabil-
ity detected in the previous literature is attributable to the smallest stocks. GBRT
and NN, however, are able to achieve both (1) consistently greater R? than OLS and
(2) consistently positive values for R?. The differences range between 0.46 and 0.56
percentage points for GBRT and NN, respectively, indicating that the predictive
accuracy can be improved by (choosing the appropriate) machine learning methods.
Table 3 presents the p values for the DM test on the full sample of stocks (Panel A)
and for the top decile of market capitalization (Panel B). We display the lower trian-
gle only, in which row models correspond to forecast errors €, in equation (22); thus,
significant p-values indicate that the row model outperforms the column model.'*

14 The upper triangle is one minus the lower triangle.
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Fig.5 This figure shows cumu-
lative logarithmic returns of
prediction-based portfolios for
different models and the market
(Mkt). The strategy is imple-
mented as follows: In every
month of our testing sample
from January 2000 to December
2019, we sort all stocks by their
expected return for the next
month and take a long position
in stocks corresponding to the
top decile of expected returns

Long Portfolio Returns

1 ‘ : :
2000 2005 2010 2015

The DM test provides support for the empirical results derived from the R? values
presented in Table 2. The first conclusion from Panel A of Table 3 is that predic-
tions from penalized linear methods and SVR do not provide statistically significant
improvements over OLS. More specifically, SVR and Enet even exhibit a signifi-
cantly inferior predictive ability at the 5% level. Tree-based methods and NN pro-
duce statistically significant improvements over linear methods and SVR at least at
the 5% level. For any pairwise comparison among tree-based methods and NN, the
null of equal predictive accuracy cannot be rejected. For Panel B of Table 3, we
find that the p-values of penalized linear methods and SVR generally decrease com-
pared to OLS, indicating that they experience relative improvement when predict-
ing returns of large cap stocks. Conversely, the superiority of RF over linear models
and SVR disappears, indicating that its predictive performance is driven by pick-
ing up small-scale inefficiencies present in microcap dynamics. For GBRT and NN,
the null hypothesis against not only OLS but also against all other models can still
be rejected, indicating that their outperformance is present throughout all market
segments.

5.2 Economic gains

From an investor’s perspective, statistical performance is only of subordinate impor-
tance. In addition, Leitch and Tanner (1991) argue that statistical metrics are only
loosely related to a forecast’s achievable profit. Next, we assess the economic per-
formance of our models by portfolio sorts. At the end of each month, we generate
return forecasts for the next month with each model. After that, we assign stocks to
one of ten portfolios based on decile breakpoints of the forecasts. Finally, to capture
the aggregate effect, we construct a zero-net-investment portfolio that simultane-
ously buys (sells) the stocks with the highest (lowest) expected returns, i.e., decile
10 and 1, respectively. Table 4 depicts the results using the full sample. Note that
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Table 5 This table reports the
return of a prediction-based

zero-investment strategy formed ) ) 174 179 173 178 177 238 233 183

from different models
0.10 1.79 1.89 179 184 195 179 1.83 1.87
0.20 1.84 192 184 189 200 185 1.84 1.93
0.30 176 181 177 182 193 176 179 187
0.40 167 170 166 173 180 166 170 1.78
0.50 151 153 148 151 164 146 153  1.65
0.60 132 132 131 132 144 133 140 151
0.70 113 110 115 115 127 110 L19 124
0.80 0.77 074 076 075 093 0.67 091 091
0.90 053 048 055 058 0.73 046 059  0.70

Size >q OLS Lasso Ridge Enet SVR RF GBRT NN

The strategy is implemented as follows: At every month in our test-
ing sample from January 2000 to December 2019, we sort all stocks
bytheir expected return for the next month and take a long position
in stocks corresponding to the top decile and a short position in
stocks corresponding to the bottom decile of predictions. We repeat
this procedure for several levels of liquidity by removing stocks with
market capitalization (Size) less than the cross-sectional quantile g.
Columns 2-9 then show realized returns of a zero-investment strat-
egy based on predictions formed by the model shown in the column
header

all models share a monotonically increasing relationship in realized returns (column
‘Avg’) and in the Sharpe ratio (column ‘Shp’), which is statistically significant at the
1% level after testing for monotonicity between portfolios 1 to 10 using the Patton
and Timmermann (2010) test (row ‘pVal(MR)’). From an investor’s perspective, this
property is highly desirable, as higher returns are, thus, relatively cheaper in terms
of risk than low returns. Moreover, we see significantly positive spreads (row ‘H-L’)
at the 1% significance level for all models, indicating that, generally, all models are
effective in capturing the cross-sectional dispersion of returns (row ‘pVal(H-L)’).
Upon examining the return spreads, we find penalized linear methods and SVR to
be on eye-level with OLS, with Lasso, Enet and SVR resulting in slightly larger
spreads. NN and tree-based methods outperform OLS by a quite substantial mar-
gin, with a surplus in return spreads of up to 64 basis points for RF. The zero-net-
investment strategy for the predictions of RF yields an extraordinary return of 2.38%
per month (32.61% annualized), while GBRTs provide the best risk-return-tradeoff
with a Sharpe ratio of 0.56 per month (1.94 annualized). Even if SVR exhibits a
negligible improvement in terms of return spread, it has a unique characteristic from
a risk perspective, as it is the only model with a significantly monotonic increasing
relationship in returns while having a significantly monotonic decreasing relation-
ship with risk, i.e., higher returns are associated with lower risk, which is extremely
compelling from an investor’s perspective. Figure 5 presents cumulative perfor-
mance plots corresponding to the long portfolios (portfolio ‘H’) of Table 4 along
with the cumulative market return. The market return for Europe is retrieved from
Kenneth French’s website.'®> Note that all models outperform the market index and

15 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
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Table 6 This table reports
average monthly percentage

changes in holdings, i.e., 0.00 125 124 124 125 133 154 144 132
turnover, for different models

Size >q OLS Lasso Ridge Enet SVR RF GBRT NN

and Tevels of market liquidity in ~ 0-10 125 125 126 126 131 152 143 131
terms of market capitalization 0.20 124 126 123 126 131 152 141 133
(Size) 0.30 125 126 124 125 131 153 140 131
0.40 124 126 124 124 129 154 140 133
0.50 125 128 125 126 129 151 140 133
0.60 127 129 128 129 127 150 141 131
0.70 128 129 128 129 127 147 140 127
0.80 127 129 128 129 127 144 138 127
0.90 126 129 127 130 129 142 140 127

that tree-based methods dominate all other models by a large margin. Consistent
with Leitch and Tanner (1991), we find that the statistical performance reported in
the previous subsection does not necessarily translate into economic performance.

Table 5 presents return spreads analogous to row ‘H-L’ in Table 4 for the dif-
ferent levels of market capitalization. In Table 2, the predictive accuracy gradually
decreases for larger stocks. For the return spreads we generally find a similar pat-
tern; however, most models exhibit a peak (economic) performance after cutting off
the smallest 20%. This level of market liquidity is often considered free of micro-
caps (e.g., Lewellen 2015). A possible interpretation might be that the dynamics of
those stocks are neither very persistent nor predictable. Tree-based methods, on the
other hand, experience a sharp drop in economic performance after cutting off the
bottom decile of market capitalization, again indicating that their outperformance,
to a large extent, relies on capturing microcap dynamics. Further increasing lev-
els of market capitalization are accompanied by decreasing return spreads, a pat-
tern consistent with the concept of market efficiency, assuming that the information
environment for large firms is richer and more efficient than that for small firms.
Penalized linear methods are again close to OLS. The outperformance of tree-based
methods is mostly present when considering the full sample. While outperformance
vanishes for RF afterward, GBRTs maintain a slight surplus over OLS toward reduc-
ing the sample to the largest stocks. NN and SVR consistently achieve higher return
spreads than OLS across all market segments. While the results for NN are in line
with the previous findings, the results for SVR come as quite of a surprise given its
low predictive accuracy (cf. Table 2). Specifically, after cutting off the bottom decile
of market capitalization, it exhibits the highest returns for the zero-net-investment
strategy overall with remarkable stability. The evaluation thus far provides evidence
that machine learning can lead to better results than the traditional OLS model, not
only statistically but also economically.
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Table 7 This table reports monthly predictive panel R? as a percent

Size > q OLS Lasso Ridge Enet SVR RF GBRT NN

Panel A: Bull

0.00 1.22 1.18 1.22 1.16 0.74 1.33 1.19 1.29
0.10 1.29 1.24 1.29 1.22 0.83 1.23 1.12 1.37
0.20 1.35 1.29 1.35 1.27 091 1.28 1.19 1.44
0.30 1.38 1.31 1.38 1.29 0.97 1.30 1.22 1.46
0.40 1.42 1.35 1.42 1.35 1.05 1.37 1.29 1.52
0.50 1.45 1.37 1.46 1.38 1.13 1.39 1.32 1.55
0.60 1.44 1.37 1.45 1.38 1.21 1.40 1.34 1.50
0.70 1.40 1.32 1.42 1.35 1.22 1.36 1.36 1.48
0.80 1.22 1.18 1.26 1.21 1.15 1.21 1.35 1.36
0.90 0.99 0.95 1.06 1.00 1.10 1.18 1.36 1.23
Panel B: Bear

0.00 —0.40 - 041 —-0.42 - 046 - 048 —0.20 —0.01 0.03
0.10 - 0.54 —0.55 -0.57 - 0.61 -0.51 -047 -0.21 —0.08
0.20 -0.57 —0.60 —0.61 —0.66 —0.49 —-0.51 —-0.24 -0.08
0.30 —0.58 —0.63 —0.62 —0.68 -0.52 -0.53 —-0.24 —0.04
0.40 - 0.60 —0.65 - 0.64 -0.70 —0.55 —0.58 -0.25 —0.01
0.50 -0.67 —-0.73 -0.70 -0.75 —0.66 - 0.69 -0.28 -0.02
0.60 -0.73 —0.81 -0.75 —0.81 - 0.80 —0.81 -0.29 -0.02
0.70 -0.87 -0.97 —0.89 -094 -1.03 -0.99 —-0.35 -0.10
0.80 - 1.03 - 1.13 - 1.02 - 1.07 - 1.38 -1.27 —0.50 —0.18
0.90 -1.27 - 1.37 - 1.27 -1.33 - 1.80 —-1.63 —-0.75 —-0.48

Monthly predictions are formed for our testing sample from January 2000 to December 2019 for different
models and levels of market liquidity in terms of market capitalization. Columns correspond to the mod-
els. Rows correspond to different levels of market liquidity, which we establish by removing stocks with
market capitalization (Size) less than the cross-sectional quantile q. The results are presented separately
for bull and bear markets, i.e., when the trailing cumulative 12-month excess return on the market portfo-
lio in months t-12 to t-1 is positive and negative, respectively

6 Additional results
6.1 Transaction costs

Transaction costs impair the profitability of any investment. Higher turnover rates
of investment strategies can easily nullify their overperformance in terms of raw
returns. Therefore, we aim to examine whether the stronger performance of machine
learning models compared to OLS is driven by substantially higher turnovers. How-
ever, realistic transaction costs are not always available, cumbersome to use or
expensive to acquire (cf. Lesmond et al. 1999). Additionally, Collins and Fabozzi
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(1991) state that true transaction costs are inherently unobservable. Consequently,
any good-faith estimate of transaction costs would probably be wrong. We consider
the average monthly turnover of the spread portfolios (‘H-L’) calculated as:'®

T
1 Wi,t(l + ri,t+1)
Turnover = T ; (Z Wi — Z—) >, (23)

i Via(1F T
where w; , is the weight of stock i in the portfolio at time z.

Table 6 reports the average monthly turnover in percent for all models and
levels of market liquidity. In line with Gu et al. (2020), we find that turnover
rates for tree-based methods are generally approximately 20% higher than those
for OLS. As the outperformance of tree-based methods appeared to be meaning-
ful only when including microcaps, we conclude that their potential is limited by
the higher turnover since microcaps are inherently more difficult and costlier to
trade. Penalized linear methods, SVR and NN, on the other hand, have turnover
rates comparable to those of OLS. Especially on the largest stocks, where transac-
tion costs are generally smaller, SVR and NN still achieve a spread of up to 20
basis points above OLS. We conclude that the marginally higher turnovers are
unlikely to explain the pronounced outperformance or, to put it differently, out-
performance is unlikely to disappear in the light of transaction costs.

6.2 Performance within subperiods

Inspired by a number of studies suggesting that returns may differ across market
states (e.g., Cooper et al. 2004; Wang and Xu 2015), we evaluate the performance
of the models separately for bull and bear markets. Following (Zaremba et al. 2020),
we define these states as subperiods of positive (bull market) and negative (bear
market) total excess return on the market portfolio during the last 12 months. The
results for the predictive accuracy and economic gains from the individual models
are reported in Tables 7 and 8, respectively.

The first conclusion from Table 7 is that return predictability is generally higher
in bull markets (Panel A) than in bear markets (Panel B). While we encounter
decreasing predictability with firm size in the full panel (cf. Table 2), we find that in
bull markets, the predictability in terms of R? is greater when excluding very small
stocks. For bear markets, the R? values are generally negative and monotonically
decreasing in firm size. Among the machine learning methods, NN produces the
highest R? and shows the highest outperformance compared to OLS in both bull and
bear markets.

With regard to the economic gains reported in Table 8, we find that differences are
visible, although not dramatic, during times of a general upward trend (Panel A). In

16 The turnover of a zero-net-investment portfolio falls between 0% (no turnover at all) and 200% (a full
reallocation of both the high and low portfolios). To put it in perspective, a strategy based only on mom
generates a turnover of approximately 160% over the sample period.
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bear markets, however, the differences become more apparent. In particular, SVR and
NN exhibit consistently higher returns compared to OLS. Even for the 10% largest
stocks, the difference of approximately 40 basis points is quite staggering. The results
presented here suggest that machine learning does not add exceptional value over OLS
during periods of a general upward trend. However, in downward markets—which is
when investors usually lose money—these models generate considerable value.

6.3 Forecast combinations

Lastly, we consider forecast combinations. In general, forecast combination acts as a
tool for risk diversification across individual models while, in many cases, simulta-
neously improving performance (Timmermann 2006). Some of the models presented
herein (i.e., RF, GBRT, and NN) utilize the benefits of building ensembles as an inte-
gral part of the model definition itself. Several studies have highlighted the benefits of
forecast combinations and proposed different methods with respect to choosing opti-
mal model weights (e.g., Bates and Granger 1969; Winkler and Makridakis 1983).
However, here, we use the forecast combinations as a simple proxy to test whether
linear methods contain information complementary to that of the machine learning
models. To do this, we form combinations from 1) all models and 2) only nonlinear
methods (SVR, RF, GBRT, NN). If there is additional value, we would expect 1), i.e.,
the combination of all models, to provide superior predictions. Therefore, we restrict
ourselves to simple combination schemes that often show better results than more
sophisticated methods involving additional parameter estimates (Timmermann 2006).
The forecast combination takes the general form:

H

~COMB _ h~h

ri,t+1 - Z w, ri,z+1’ (24)
h=1

with

|-

Equal-weighted (EW)

I/MSE]_ MSE-weighted (IMSE)
wh=9 3 e nverse -weighte 25)
Z:Ml /1:,/ = Inverse MSE rank-weighted (IRANK),
m=1 t

where wﬁ’ is the weight of model / at time ¢ and H is the total number of models.
MSE refers to the in-sample mean-squared error, and R refers to the ranking of MSE
(ascending order) among all models.

Table 9 reports results on the predictive accuracy of forecast combinations.
The left-hand panel considers all models in the combination, while the right-hand
panel excludes linear methods. We find that the predictive accuracy is consist-
ently higher when relying only on nonlinear methods, irrespective of the concrete
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Table 8 This table reports the return of a prediction-based zero-investment strategy from the models

Size > q OLS Lasso Ridge Enet SVM RF GBRT NN

Panel A: Bull

0.00 1.77 1.73 1.75 1.68 1.41 2.33 221 1.76
0.10 1.84 1.80 1.82 1.73 1.60 1.85 1.83 1.84
0.20 1.85 1.80 1.83 1.74 1.66 1.91 1.84 1.90
0.30 1.74 1.72 1.78 1.73 1.67 1.76 1.77 1.82
0.40 1.66 1.60 1.65 1.65 1.53 1.75 1.74 1.75
0.50 1.56 1.53 1.54 1.52 1.47 1.59 1.59 1.70
0.60 1.31 1.33 1.36 1.37 1.33 1.46 1.42 1.45
0.70 1.12 1.04 1.18 1.12 1.16 1.09 1.14 1.17
0.80 0.77 0.72 0.78 0.78 0.90 0.74 0.93 0.91
0.90 0.66 0.57 0.66 0.72 0.69 0.47 0.66 0.68
Panel B: Bear

0.00 1.69 1.86 1.71 1.89 2.23 243 2.48 1.91
0.10 1.74 2.01 1.74 1.96 2.40 1.71 1.83 1.91
0.20 1.81 2.07 1.86 2.05 242 1.76 1.83 1.97
0.30 1.78 1.93 1.76 1.93 2.26 1.75 1.81 1.93
0.40 1.68 1.84 1.67 1.82 2.14 1.55 1.66 1.83
0.50 1.44 1.54 1.40 1.49 1.86 1.29 1.45 1.58
0.60 1.32 1.30 1.24 1.27 1.59 1.15 1.37 1.59
0.70 1.14 1.17 1.11 1.19 1.41 1.11 1.26 1.32
0.80 0.77 0.76 0.72 0.71 0.97 0.58 0.88 0.92
0.90 0.37 0.37 0.40 043 0.77 0.44 0.51 0.73

The strategy is implemented as follows: At every month in our testing sample from January 2000 to
December 2019, we sort all stocks by their expected return for the next month and take a long position in
stocks corresponding to the top decile and a short position in stocks corresponding to the bottom decile
of predictions. We repeat this procedure for several levels of liquidity by removing stocks with market
capitalization (Size) less than the cross-sectional quantile q. Columns 2-9 then show the realized returns
of a zero-investment strategy based on predictions formed by the model shown in the column header. The
results are presented separately for bull and bear markets, i.e., when the trailing cumulative 12-month
excess return on the market portfolio in months t-12 to t-1 is positive and negative, respectively

combination scheme used. With respect to the weighting-schemes, inverse rank-
weighting appears to provide slightly worse results, while the other two are on
equal footing. Most importantly, we exhibit two key take-aways: First, all com-
binations outperform the single use of OLS. Second, and in contrast, none of the
combinations is superior to the strongest machine learning model, NN. However,
the best model may not be known ex ante; thus, the combination of various mod-
els might still reduce model selection risk.

Table 10 reports return spreads based on the forecast combinations. The results
generally support the statistical findings. However, we find that the economic perfor-
mance improves over the best individual model, SVR, up to Size > 0.7. Overall, the
performance of the conventional OLS approach can be improved when combined
with models from the machine learning literature. Moreover, our results raise the
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Table9 This table reports
monthly predictive panel R* as
a percent

Table 10 This table reports
the return of a prediction-
based zero-investment strategy
formed from different forecast
combination schemes, i.e.,
simple averaging (‘EW”),
inverse rank-weighting
(‘IRANK”) and inverse MSE-
weighting (‘IMSE’)

@ Springer

Size > q  Including linear methods Excluding linear methods

EW IRANK IMSE EW IRANK IMSE

0.00 0.55 0.60 0.55 0.64  0.67 0.64
0.10 0.45 0.47 0.45 0.51 0.51 0.51
0.20 046 048 0.46 0.53 0.52 0.53
0.30 046 047 0.46 0.54 052 0.54
0.40 0.45 0.47 0.45 0.54  0.53 0.54
0.50 042 043 0.42 052  0.49 0.52
0.60 0.37 0.37 0.37 0.47 0.44 0.47
0.70 029 028 0.29 039  0.36 0.39
0.80 0.11 0.08 0.11 0.21 0.16 0.21
0.90 -0.16  -0.19 -0.16  -0.05 -0.10 -0.05

Monthly predictions are formed for our testing sample from January
2000 to December 2019 for different models (columns) and levels
of market liquidity in terms of market capitalization (Size, rows).
Model predictions are then combined by simple averaging (‘EW”),
inverse rank-weighting (‘IRANK’) and inverse MSE-weighting
(‘IMSE’)

Size >q  Including linear methods Excluding linear methods

EW IRANK IMSE EW IRANK IMSE

0.00 227 232 2.27 246 247 2.46
0.10 1.97 194 1.98 205 202 2.05
0.20 202 197 2.02 2.09 2.05 2.09
0.30 1.94 185 1.94 199 193 2.00
0.40 1.87 1.78 1.87 190 1.83 1.90
0.50 1.67 1.63 1.67 1.74  1.68 1.74
0.60 1.48 141 1.48 1.51 1.46 1.51
0.70 124 121 1.24 133 123 1.34
0.80 083 0.78 0.83 0.89 0.81 0.89
0.90 0.62 0.61 0.62 0.67  0.66 0.66

The strategy is implemented as follows: At every month in our test-
ing sample from January 2000 to December 2019, we sort all stocks
by their expected return for the next month and take a long posi-
tion in stocks corresponding to the top decile and a short position in
stocks corresponding to the bottom decile of predictions. We repeat
this procedure for several levels of liquidity by removing stocks with
market capitalization less than the cross-sectional quantile g. Col-
umns 2—4 and 5-7 then show the realized returns of a zero-invest-
ment strategy based on predictions formed by the forecast combina-
tion shown in the header
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question of whether the commonly applied purely linear model is even necessary
for building expectations about future stock returns, as the combination of nonlinear
methods provides superior performance both statistically and economically while
individual model selection risk is reduced.

7 Conclusion

In this paper, we provide an eye-level comparison of the commonly applied linear
regression approach in stock return predictions (Lewellen 2015) and machine learning
methods, i.e., penalized linear methods, support vector regression, tree-based methods,
and neural networks. We find that the nonlinear machine learning methods in particular
can provide both statistically and economically meaningful performance gains over the
conventional OLS approach, thereby revealing that machine learning methods are not
more vulnerable than OLS to model breakdowns.!” In our analysis, GBRTSs exhibit the
highest outperformance, of approximately 0.6% per month, based on the entire cross-
section of European stocks, which decreases to 0.1% per month when only stocks of
the largest ten percent of firms are considered. Overall, we find that NN provides the
most reliable predictions in terms of both statistical and economic performance, as its
superior performance is robust over all market segments. In addition, we find that the
economic performance gains are not attributable to substantially higher turnover of
stocks. Analy