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Abstract
In this paper, we study a stochastic single-item, single-stage inventory system, in 
which orders from several production facilities are placed at one warehouse. An 
(R, Q) policy is applied to control the inventory at the warehouse, and orders arrive 
according to a Poisson process and include a due date such that some information 
about future demand is available. This advance demand information (ADI) can be 
used to adapt a time-based shipment consolidation policy applied to replenish stock 
at the production facilities. We develop a model to incorporate flexible deliveries, 
indicating that orders can be shipped before their due date if sufficient reserved 
transportation capacity is available. We derive analytical, approximate expressions 
for the expected inventory and shipment costs and therefore enable the evaluation of 
different inventory and shipment policies including outbound transportation capaci-
ties. We additionally show how to compute the optimal policy parameters and con-
duct a detailed numerical study. Our computational experiments indicate that our 
approximation works extremely well, with an average total cost deviation of 0.20%, 
and finds optimal policy parameters in more than 90% of our instances. In line with 
existing research, we can show that ADI leads to large cost reductions. However, 
the main cause of the cost reduction is the flexible delivery option. To be able to 
completely utilize this option, even larger safety stocks are obtained compared to 
systems without ADI, but savings due to a more efficient transportation policy far 
exceed the cost increase due to higher safety stocks.
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1 Introduction

It is well known that demand and supply uncertainties influence the stock levels 
in a supply chain because safety stock is needed to hedge against delivery delays 
and demand peaks and to prevent stock-outs. However, the large safety stocks 
required for high service levels are related to high inventory costs. Therefore, 
measures to reduce the inventory levels while maintaining the same service level 
are needed. One way to lower safety stocks without a reduction in high service 
levels is to improve forecasts or gather advance order (advance demand) informa-
tion (ADI) (Ahmadi et  al. 2019a). ADI is enabled by technological innovations 
and developments in recent years, allowing for the transmission and evaluation of 
an enormous amount of data rapidly and inexpensively.

In this paper, ADI is obtained through a preorder strategy, in which customers 
are motivated to order in advance, while financial incentives are provided depend-
ing on their willingness to wait Chen (2001). In the literature, these preorder 
strategies are often modeled by a so-called demand lead time, which represents 
the time between order placement and due date (Hariharan and Zipkin 1995). For 
example, the brand Star Labs sells Linux laptops in a variety of configurations. 
By offering a discount of 5% on the retail price, the company induces the cus-
tomer to order in advance, even if he or she must accept a lead time of several 
weeks. Due to this preorder strategy, information about future demand can also 
be accessible to the supplier of components such that he or she can reduce his or 
her inventory in the warehouse without decreasing the service level.

Additionally, ADI can also be used to reduce transportation costs because 
demand uncertainties require third-party logistics (3PL) service providers to charge 
high prices when warehouses cannot make reliable commitments to the 3PL regard-
ing the quantities to be dispatched. Commonly, companies enter into contracts for 
a fixed shipment volume at fixed times, but doing so can lead to low utilization of 
the reserved volume or many emergency deliveries if the period demand exceeds 
the reserved capacity. To react to this issue, we allow for satisfaction of facility 
orders before they are required, which is known as flexible delivery. Wang and Tok-
tay (2008) were the first to study the option of flexible deliveries for a single-stage 
inventory system when ADI is available. However, they investigated flexible deliver-
ies in a business-to-consumer (B2C) environment, whereas we focus on business-
to-business (B2B). While consumers in a B2C setting expect their orders to be sat-
isfied immediately, orders can be consolidated over time, as well as over several 
production facilities in the B2B setting, which is investigated in this article. Since 
each shipment causes fixed transportation costs, e.g., for salary, insurance cost, and 
fuel, it is reasonable to apply a time-based shipment consolidation (SCL) program 
in which small loads can be accumulated into one large load over a fixed interval. 
Including an aggregation of several production facilities has the advantage that indi-
vidual production facilities can be supplied with smaller shipments more frequently, 
while the utilization of the transportation mean remains high.

The research presented in this paper can be viewed as an extension of the model 
studied in Wang and Toktay (2008). Similar to their research, we investigate the 
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influences of ADI and flexible deliveries in a single-stage inventory system. In 
contrast to their work, in which demands are satisfied directly after each period, 
we investigate a flexible time-based SCL policy. The warehouse receives pro-
duction facility orders with due dates, which are consolidated and shipped to the 
facilities at regular points in time. As soon as the due date arrives, the orders are 
prioritized for shipment. If the reserved capacity is not fully utilized with pri-
oritized orders, the remaining capacity can be filled with nonprioritized orders, 
indicating that the facilities can obtain early deliveries and stock them prior to 
their actual demand. This SCL policy results in orders being dispatched after 
the due date and orders being dispatched before the due date is reached due to 
the flexible shipment policy. Delayed deliveries reduce the available stock at the 
production facilities, requiring a higher safety stock level to maintain the service 
level. Since orders have to wait until the next shipment date, waiting costs are 
incurred to compensate the facilities for additional stock-keeping. If an order is 
shipped before the due date, more stock is kept at the production facilities, which 
is reflected by early-delivery costs.

An outside supplier replenishes the inventory at the warehouse with a determin-
istic supply lead time according to an (R, Q) replenishment policy. Therefore, stock-
keeping costs are incurred, which consist of the costs for cycle stock and safety 
stock. Finally, costs for each reserved capacity unit at the 3PL are incurred, as well 
as additional costs if the available capacity is not sufficient to ship all goods and 
emergency shipments must be organized.

In contrast to the existing literature, we model the trade-off between inventory 
and transportation costs for a problem in which ADI is available, and transportation 
capacity limits the total consolidated load (TCL). We are the first to consider ADI in 
a B2B setting, in which it is reasonable to apply time-based SCL. Additionally, we 
answer the following research questions. First, what is the added value of a preor-
der strategy combined with a flexible time-based SCL policy? Second, what are the 
impacts of flexible deliveries, enabled due to ADI, on the expected total cost and the 
stock levels in a single-stage inventory system? And finally, how do flexible deliver-
ies influence the optimal outbound capacity reservation under time-based SCL? We 
present a mathematical model, derive expressions for evaluating different policies 
including transportation capacities and show how the optimal policy parameters can 
be computed. A numerical study is conducted to derive managerial insights and to 
answer the above-formulated research questions. We also show that, to fully exploit 
the benefit of ADI, it is necessary to adapt the shipment policy, and it might also be 
necessary to increase the safety stock at the warehouse to enable early shipments.

The organization of the remainder of the paper is as follows. First, we provide an 
overview of the related literature regarding ADI and SCL in section 2. Based on a 
detailed problem description in section 3, we develop the mathematical expressions 
for the expected total cost function in section 4. In section 5, we show how to opti-
mize the reorder level, the length of the SCL cycle and the outbound transportation 
capacity, helping us to derive managerial insights in section 6. In the final section, 
we outline the main results and present directions for future research.
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2  Related literature

Our paper is related to two large streams of literature: articles related to ADI for 
inventory management and articles about the coordination of SCL and inventory 
management.

We start our discussion with contributions, in which ADI is perfect and repre-
sented by a demand lead time in inventory systems. If perfect ADI is assumed, an 
order cannot be changed or canceled after order placement. Hariharan and Zipkin 
(1995) were the first to investigate a single-echelon continuous review inventory 
system with Poisson demand and a demand lead time. They concluded that ADI 
in the form of a demand lead time reduces the effective supply lead time (sup-
ply lead time - demand lead time) and, consequently, the safety stock. Thus, if 
the demand lead time exceeds the supply lead time, a make-to-order situation is 
reflected. Ahmadi et  al. (2019a) extended this model by a cost component for 
commitment. These commitment costs represent a bonus for companies which 
accept a preorder strategy. Under linear commitment cost, they found the optimal 
commitment lead time is either zero or equal to the replenishment lead time. Fur-
ther, Ahmadi et al. (2019b) and Ahmadi et al. (2020) studied commitment costs 
for assemble-to-order systems and for inventory systems with time-based service 
constraints, respectively, and received similar results. Other continuous review 
models with a positive demand lead time were presented in Lu et al. (2003), who 
investigated an assemble-to-order system with stochastic lead time and ADI. A 
divergent inventory system with nonidentical demand lead times for different cus-
tomers was studied by Marklund (2006), who compared different reservation pol-
icies. He showed that the last-minute reservation policy (reserving at the moment 
when the due date is reached) avoids potential wrong prioritization of customers 
in cases of nonidentical demand lead times. Du and Larsen (2017) investigated a 
single-stage model with ADI and different customer classes and applied different 
reservation policies.

In addition to continuous-time models, discrete-time models are discussed in 
the literature. Gallego and Özer (2001) were the first to study a single-echelon 
model with periodic review and heterogeneous ADI using a modified inventory 
position, indicating that the inventory position is reduced by the known future 
demand. The conclusion is that using the modified inventory position outper-
forms the regular inventory position for state-dependent (s, S) ordering policies. 
Dellaert and Melo (2003) investigated a similar situation and modeled it using a 
Markov decision process.

Based on this research, there have been several extensions; for example, Gal-
lego and Özer (2003) and Özer (2003) considered a serial inventory system and 
divergent inventory system, respectively. There have also been other extensions, 
such as Özer and Wei (2004), Angelus and Özer (2016) and Wang and Toktay 
(2008). The latter investigated flexible deliveries (i.e., orders can be fulfilled 
before the due date is reached) for a single-echelon inventory system without 
SCL with the result that the expected cost could be reduced with flexible delivery 
and ADI. Additionally, Bourland et  al. (1996) showed the benefits of ADI in a 
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periodic two-stage inventory system, and DeCroix and Mookerjee (1997) showed 
the benefits in a setting in which actual demand information can be purchased.

The influence of ADI has also been considered in the context of production-
inventory systems with limited capacity under a make-to-stock policy. Buzacott and 
Shanthikumar (1994) investigated the relationship between safety stock and safety 
lead time for an M|M|1 queue, whereas Karaesmen et al. (2002) studied the discrete-
time version. Karaesmen et al. (2004) investigated, among other things, early deliv-
eries for M|M|1 queues and determined that manufacturers can observe significant 
cost savings if early deliveries are allowed. Further, Liberopoulos (2008) showed 
the relationship between inventory and demand lead time for different settings when 
considering a make-to-stock queue.

There also exists literature regarding imperfect ADI, indicating that the due date 
or the order quantity is not certain, e.g., Bourland et  al. (1996); Tan et  al. (2007, 
2009) and Topan et  al. (2018). In Thonemann (2002), customers are divided into 
two classes that provide different information to the manufacturer. Other ways to 
model ADI can be found in Heath and Jackson (1994) and Graves et  al. (1998); 
Güllü (1996, 1997); Toktay and Wein (2001); Schoenmeyr and Graves (2009); 
Bernstein and DeCroix (2015) and Papier (2016), in which ADI is developed by 
dynamic forecast updates.

All of the contributions discussed above have in common that each order is 
related to a single shipment or a single production order, and no consolidation 
occurs. In contrast, in our paper, we investigate how ADI can be used to adapt a 
time-based shipment policy to replenish inventories.

This approach leads us to the discussion of the second stream of literature rel-
evant to our research: contributions devoted to SCL. Higginson and Bookbinder 
(1995) considered different SCL programs in stochastic single-stage inventory sys-
tems and analyzed them using simulation. Çetinkaya and Lee (2000) studied an 
(s, S) ordering policy for a single-stage system with time-based SCL to a group of 
retailers under private carriage and derived expressions for the approximate long-run 
average cost to obtain optimal inventory and shipment policy parameters, whereas 
Axsäter (2001) presented an exact optimization approach for the same model. Çetin-
kaya et al. (2006) focused on the same setting with quantity-based SCL and found 
out that a quantity-based dispatch policy outperforms the time-based dispatch policy 
in terms of expected total cost. However, with the time-based consolidation the cus-
tomers have an upper bound on the maximum waiting time. In contrast, Chen et al. 
(2005) focused on the (R,  Q) policy for the single-stage problem and evolved an 
optimization method with bounded enumeration to find optimal policy parameters 
again for both dispatch policies under private carriage. Çetinkaya and Bookbinder 
(2003) investigated both quantity-based and time-based SCL for private and com-
mon carriage and derived formulas for a near-optimal dispatch quantity and SCL 
cycle length similar to the EOQ formula. Ülkü (2012) integrated carbon emissions 
in a time-based dispatch model with private carriage and showed that an increase 
of utilization of the transportation capacity decreases the environmental damage. A 
price- and time-sensitive demand under time-based SCL is investigated in Ülkü and 
Bookbinder (2012a) and Ülkü and Bookbinder (2012b) when private and common 
carriage is applied, respectively.
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Additionally, several papers have faced divergent two-echelon inventory systems 
with time-based shipment policies. Marklund (2011) considered one warehouse 
with an (R, Q) policy and N retailers with base-stock policies and a time-based ship-
ment policy. He developed a fast recursive procedure to obtain the expected total 
cost of the system and presented a method to find an optimal reorder level, as well 
as optimal base-stock levels and optimal length of the SCL cycles under Poisson 
demand. This basic model has been extended in several directions: Howard and 
Marklund (2011) studied different reservation policies according to a myopic allo-
cation policy with a single retailer group, whereas Stenius et  al. (2018) included 
a limited transportation capacity, where a reserved transportation capacity can be 
extended by expensive and spontaneous deliveries (primary and alternative trans-
portation option). Stenius et al. (2016) extended the research and allowed compound 
Poisson processes to model customer demand. They presented an exact approach 
that requires large computation times; therefore, Johansson et  al. (2020) derived 
approximations for the same model. In contrast to these papers, Kiesmüller and de 
Kok (2005) investigated a quantity-based shipment policy in a divergent system with 
(R, Q) policies at all locations and compound renewal demand.

Based on our literature study, we can conclude that ADI and SCL programs have 
already been discussed separately in detail. However, how ADI can be integrated 
into a SCL program to increase the utilization of transportation capacity has not 
been the subject of earlier studies. In this paper, we combine both topics and study 
an inventory system in which ADI enables flexible deliveries in the context of a SCL 
program. We show how to compute the optimal length of the SCL cycle, the optimal 
reserved transportation capacity and the optimal reorder points in this setting.

3  Problem formulation

We consider a single-item continuous review inventory system composed of one 
warehouse and N production facilities, which belong to the same company. The 
warehouse supplies these production facilities, which order according to Poisson 
processes with rate �n . Consequently, the order process at the warehouse is also 
Poisson with rate � =

∑N

n=1
�n . The inventory at the warehouse is replenished from 

an outside supplier with sufficient capacity and constant supply lead time Ls accord-
ing to an (R, Q) policy, indicating that a replenishment order of Q units is placed if 
the modified inventory position (inventory level - backorders + outstanding replen-
ishment orders - observed orders) reaches the reorder level R. The decision maker 
has to determine the value of R, and we assume that Q is fixed due to a contract with 
the outside supplier. As an approximation, Q can also be predetermined applying 
the EOQ formula, which has been shown to be close to optimal in previous research 
(Axsäter 2015). Therefore, Q is not a decision variable in our model.

The company uses a preorder strategy, and therefore the production facilities are 
forced to place each order Ld time units before the actual demand occurs, indicating 
that each order is combined with a due date. The time between order placement and 
due date is known as the demand lead time Ld . For clarity, we call orders that have 
not reached the due date orders and orders that have reached the due date demands. 
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At the moment when the due date is reached, the warehouse is obligated to satisfy 
this demand with the next delivery if sufficient stock on hand is available. Compa-
nies accept such a preorder strategy when they receive a bonus, e.g., in the form of 
lower unit costs. Since the warehouse and the facilities belong to the same company, 
we do not include the bonus in our model. This also makes it possible to determine 
the pure value of inserting ADI. We further assume constant and identical demand 
lead times for all production facilities, such that it is not necessary to consider the 
issue of stock allocation. Moreover, we focus on perfect order information, meaning 
that the order quantity and due date are certain and cannot be changed after order 
placement. Order cancelations may occur, but due to the associated high cancelation 
costs, we assume that this happens very seldom, and we exclude imperfect ADI for 
the sake of simplicity. In this paper, we investigate the case in which Ld ≤ Ls (make-
to-stock) because otherwise there is no need to have stock at the warehouse (make-
to-order) (Fig. 1).

In contrast to other studies that consider ADI, the warehouse does not satisfy all 
demands immediately but applies a time-based SCL policy. Therefore, the N pro-
duction facilities are aggregated into a group to consolidate demands not only over 
time but also across several production facilities. After a fixed time period T, called 
SCL cycle length, a load with all accumulated demands of the considered group 
is dispatched from the warehouse to the production facilities. We assume a central 
control of the system where the decision maker has to determine the length of the 
consolidation cycle as well as the amount of safety stock needed at the warehouse. 
He or she can further determine in advance how much transportation capacity to 
reserve for a low price. In the case of stock-outs, demand is backordered on the ship-
ment day. When sufficient inventory is available again, backorders are satisfied with 
the next scheduled shipment. Time-based shipping strategies are popular in indus-
try because scheduling, administration and coordination of processes at production 
facilities are easy to manage.

Due to stochastic order processes, it is evident that the number of accumulated 
demands during a SCL cycle is also random. The warehouse does not have its own 
fleet of trucks and therefore engages a 3PL for the transportation from the warehouse 
to the group of production facilities (including local deliveries). Although 3PL can 
react quickly to requests, this flexible strategy is quite costly. To reduce costs, compa-
nies negotiate contracts in which a fixed transportation capacity is reserved for a lower 

Fig. 1  Flow of information and goods in the considered inventory system
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price. Thus, we consider a primary option and an alternative transportation option. 
The primary transportation option reflects the capacity reserved at the 3PL for peri-
odic shipments from the warehouse to the production facilities, which are limited to 
a self-chosen capacity reservation Cap and can be extended by the alternative option, 
which has ample capacity but is more expensive. The alternative option can only be 
used on scheduled shipment days and if the reserved capacity is exhausted. For the 
primary option, fixed costs �(Cap) per shipment occur, which depend on the chosen 
reserved transportation capacity. The fixed transportation costs represent nothing more 
than variable transportation costs that have to be paid for each reserved transportation 
capacity unit ( c1 ⋅ Cap) . However, these costs are charged independently of the realized 
TCL. If the realized TCL exceeds the reserved capacity of the primary transportation 
option, the warehouse has to pay variable costs c2 for each unit shipped by the alterna-
tive option. Note that c2 > c1 to reflect that the alternative transportation is more expen-
sive than a capacity reservation per unit. Dispatching, sorting and consolidating costs 
are included in the before mentioned transportation costs paid to the 3PL. As we focus 
on the inventory and transportation decisions at the warehouse, and all demand has to 
be satisfied, the transportation lead time from the warehouse to the production facilities 
is not relevant for the decision and therefore is not included in the model.

Considering that production facilities order in advance, the question arises regard-
ing how to include information about future demand in the transportation schedule. It 
is allowed that orders can be satisfied before their due date is reached, known as flexi-
ble delivery. In our approach, all demands must be shipped to the production facilities 
on the upcoming shipment day, if necessary, by the alternative option. In contrast, 
orders can only be dispatched if there is remaining capacity at the primary transpor-
tation option. However, it is only allowed to ship an order one shipment date ahead 
because the production facilities cannot keep a large amount of additional stock. The 
application of this approach results in increased utilization of the reserved capacity. 
At the same time, the usage of the expensive emergency option can be reduced if the 
reserved capacity is not fully exhausted on average. At the warehouse, orders and 
demands are allocated according to the first-come-first-served principle.

In addition to the shipment costs, three other types of costs occur and influence 
decision making. First, stock-keeping costs h are charged for each unit on stock per 
time unit. Second, waiting costs w arise for each unit that waits due to the SCL pol-
icy per time unit. These costs are related to a discount for the production facilities 
since they must hold more safety stock to reach the same service level. Backorder 
costs at the warehouse are included in the waiting costs because backorders lead to 
a longer waiting time. Third, costs for early deliveries are considered, compensat-
ing the facilities that require more space to store units shipped prior to the due date. 
Early-delivery costs e are charged for each early shipped unit per time unit. In the 
following, we use the term inventory cost for the sum of these three types of costs, 
which are assumed to be linear.

Thus, the system’s expected total cost per time unit TC(R,  T,  Cap) is com-
posed of the expected inventory cost TIC(R, T, Cap) and expected shipment costs 
TSC(R, T, Cap):

(1)TC(R,T ,Cap) = TIC(R,T ,Cap) + TSC(R,T ,Cap).
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A low stock level at the warehouse leads to high waiting and shipment costs because 
orders can hardly ever be shipped in advance; thus, the flexible delivery option can-
not be used at all. However, a high stock level would cause high stock-keeping and 
early-delivery costs at the warehouse since there is always sufficient stock to dis-
patch orders before the due date. Conversely, a small SCL cycle length results in 
low waiting and early-delivery costs but leads to high transportation costs. The right 
balance between these types of costs must be found; therefore, the following optimi-
zation problem is formulated:

To determine the optimal policy parameters (R∗, T∗,Cap∗) , it is necessary to be able 
to evaluate a policy; therefore, mathematical expressions for the expected total cost 
must be derived, which are the focus of the next section. The notation used is sum-
marized in Table 1.

4  Analysis

In this section, we derive expressions for the expected shipment costs TSC(R, T, Cap) 
per time unit and the expected inventory cost TIC(R,  T,  Cap) per time unit. Our 
analysis of the latter relies on the unit tracking methodology introduced by Axsäter 

(2)min TC(R,T ,Cap) R ∈ ℤ, T ∈ ℕ,Cap ∈ ℕ0.

Table 1  Notation

Decision variables

R Reorder level
T Length of the SCL cycle
Cap Reserved capacity at the primary transportation option

Input data

� Order arrival rate at the warehouse
h Stock-keeping costs per unit and per time unit at warehouse
w Waiting costs per unit and per time unit at warehouse
e Early-delivery costs per unit and per time unit at the warehouse
Ld Demand lead time
Ls Supply lead time from supplier to warehouse
Q Replenishment quantity
�(Cap) Fixed costs for each scheduled shipment by the primary transportation option
c1 Variable costs per unit reserved at the primary transportation option
c2 Variable costs per unit shipped by the alternative transportation option

General notations

x+ max(0, x) and analogously, x− = max(0,−x)

⌊x⌉ ⌊x + 0.5⌋
mod
R,Q

(x) x + kQ where k ∈ ℕ0 such that R < x + kQ ≤ R + Q
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(1990), where each unit going through the system is observed separately, which ena-
bles us to calculate the related expected costs for each unit. However, we must adapt 
this methodology for a situation with ADI, limited transportation capacity and flex-
ible deliveries.

4.1  Expected shipment costs

First, we focus on the expected shipment costs per time unit, where fixed costs 
�(Cap) occur for each shipment to reflect the reservation costs at the 3PL. If the 
capacity of the primary transportation option is exceeded on the shipment day, vari-
able costs c2 arise for (m − Cap)+ demanded units shipped by the alternative option, 
where m denotes the realized TCL. Note that m = 0 also causes fixed costs (reserva-
tion at the logistic provider); thus, we assume that fixed costs for the primary option 
are charged for m ∈ ℕ0 , yielding the following expression for the expected shipment 
costs per time unit:

where M is defined as a random variable representing the TCL from the warehouse 
to the production facilities on the day of shipment. Hence, P(M = m) represents the 
probability mass function (pmf) of the TCL on a shipment day.

Obviously, for the computation of TSC(R, T, Cap), the pmf of M is needed first. 
For the case without a preorder strategy ( Ld = 0 ), we refer to Stenius et al. (2018), 
whereas Ld > 0 and the extension with early deliveries is studied in this paper. As 
already mentioned, units that have reached their due date before the shipment date 
(which are demanded) must be shipped, and units that have not reached the due date 
(which are ordered) can be shipped in case of available capacity on the primary 
transportation option, provided that the warehouse has sufficient stock. To describe 
this shipment policy mathematically, we introduce the following variables: 

M(t)  TCL from the warehouse to the production facilities by time t
K(t)  remaining units that cannot be shipped by time t due to a lack of stock at 

the warehouse or limited transportation capacity
D(t1, t2)  orders at the warehouse during the time interval (t1, t2] , t1 < t2
IL(t)  inventory level by time t
IP(t)  inventory position by time t.

In the following, we show how the pmf of the TCL can be approximately com-
puted. For this analysis, we distinguish between different cases, which can be sepa-
rated depending on the length of Ld, Ls and T, and they are shown in Table  2. A 
detailed explanation of all different situations will be provided during the analysis.

(3)

TSC(R,T ,Cap) =
1

T

∞∑

m=0

P(M = m)(�(Cap) + c2(m − Cap)+)

=
1

T

∞∑

m=0

P(M = m)(c1 ⋅ Cap + c2(m − Cap)+),
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4.1.1  The cases Ld ≤ T

We start our discussion with the first case in which Ld ≤ T  and Ls ≤ T  , also illus-
trated in Fig. 2, where tn (tn = nT , n ∈ ℕ) represents the nth shipment day.

The TCL M(tn) is composed of the following parts. First, the remaining units 
K(tn−1) of the previous shipment day are included in the TCL. These units were back-
ordered due to a lack of stock at the warehouse or ordered units when the due date was 
not reached, and there was not sufficient capacity available to ship them earlier. Since 
Ls ≤ T , all backordered units at time tn−1 can be shipped at tn , and all ordered units 
before tn−1 must at the latest be shipped by tn . Second, all orders and demands during 
the interval (tn−1, tn] can be shipped at tn if there is sufficient stock and shipment capac-
ity available. Otherwise, backordered or ordered units will be left behind, indicating 
that we must subtract K(tn) . These considerations lead to the following expression for 
the TCL at tn

This expression reveals that we must characterize the stochastic process describing 
the remaining units at each shipment point K(tn) . As mentioned above, there are 
two reasons why units cannot be shipped. First, if there is a lack of stock at the 
warehouse, then even demanded units cannot be shipped, and IL(tn)− units are back-
ordered. Second, all units that are ordered but not demanded must wait until the sub-
sequent shipment dispatches if there is not enough reserved capacity at tn available. 
The total number of units, which exceeds the capacity of the primary transportation 

(4)M(tn) = D(tn−1, tn) + K(tn−1) − K(tn).

Table 2  Ranges for different 
calculation of remaining units

Case Range of Ld Range of Ls

1 Ld ≤ T Ls ≤ T

2 Ld ≤ T T < Ls ≤ T + Ld

3 Ld ≤ T T + Ld < Ls ≤ 2T

4 Ld ≤ T Ls > 2T

5 T < Ld ≤ 2T T < Ls ≤ 2T

6 T < Ld ≤ 2T 2T < Ls ≤ T + Ld

7 T < Ld ≤ 2T Ls > T + Ld

8 2T < Ld ≤ 3T 2T < Ls ≤ T + Ld

9 2T < Ld ≤ 3T Ls > T + Ld

10 Ld > 3T 3T < Ls ≤ T + Ld

11 Ld > 3T Ls > T + Ld

Fig. 2  Shipment cycle when 
L
d
< T  and L

s
≤ T
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option, is given as (Cap − D(tn−1, tn) − K(tn−1))
− , but since all demanded units 

must be shipped by the alternative transportation option, at maximum, all orders 
D(tn − Ld, tn) remain at the warehouse and must wait until the next shipment. Doing 
so yields

It is easy to see that the following limit holds,

which shows that, in the case of high capacity, the shipment policy strives to ship all 
units earlier because only in the case of a lack of stock at the warehouse backorders 
must wait until the next dispatch time. In contrast, no early deliveries will occur in 
the case of small available capacity, as seen in (7).

For the remaining analysis, we split the time interval (tn−1, tn] into several subin-
tervals, and we express the number of backorders at time tn based on the inventory 
position at time tn − Ls because tn − Ls is the last time when a replenishment order 
can be placed that arrives before or at tn . Reformulating (5) leads to

Although the distributions of the demand and the inventory position are known and 
independent, the conditional distribution P(K(tn) = j ∣ K(tn−1) = i) has to be con-
sidered; therefore, the pmf of K(tn) cannot be computed directly by applying (8). 
When computing K(tn−1) , the number of backorders is obtained based on the inven-
tory position at tn−1 − Ls , which is why we must also include information about the 
demand and the inventory position before time tn−1 , and we replace IP(tn − Ls) with

We obtain

(5)K(tn) =max

(
IL(tn)

−, min(D(tn − Ld, tn), (Cap − D(tn−1, tn) − K(tn−1))
−)

)
.

(6)K∞(tn) ∶= lim
Cap→∞

K(tn) = IL(tn)
−

(7)K0(tn) ∶= lim
Cap→0

K(tn) = max(IL(tn)
−,D(tn − Ld, tn))

(8)

K(tn) = max

(
(IP(tn − Ls) − D(tn − Ls, tn − Ld) − D(tn − Ld, tn))

−,

min(D(tn − Ld, tn), (Cap − D(tn−1, tn − Ls) − D(tn − Ls, tn − Ld)

− D(tn − Ld, tn) − K(tn−1))
−)

)
.

(9)IP(tn − Ls) = mod
R,Q

(IP(tn−1 − Ls) − D(tn−1 − Ls, tn − Ls)).

(10)

K(tn) = max

((
mod
R,Q

(IP(tn−1 − Ls) − D(tn−1 − Ls, tn−1 − Ld)

− D(tn−1 − Ld, tn−1) − D(tn−1, tn − Ls)) − D(tn − Ls, tn − Ld)

− D(tn − Ld, tn)
)−

, min(D(tn − Ld, tn), (Cap − D(tn−1, tn − Ls)

− D(tn − Ls, tn − Ld) − D(tn − Ld, tn) − K(tn−1))
−)

)
.
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To obtain K(tn) , we first have to compute K(tn−1) , which can be specified as

This expression means that the number of remaining units K(tn) depends on the 
number of remaining units of all previous SCL cycles. We assume that the impact 
of these quantities decreases the further we look back into the past; therefore, we 
only include the information of the previous two SCL cycles to determine K(tn) . 
However, we have to deal with K(tn−2) . We suggest replacing it with a constant 
value and providing more information about this approximation at the end of this 
section.

Hence, the TCL given in (4) can be modified, and we replace in (12) the expres-
sions for K(tn) and K(tn−1) with (10) and (11) to compute the probability distribution 
for the TCL:

As the demand follows a Poisson process, the demand during a specific time 
interval is Poisson distributed. Further, IP(tn−1 − Ls) is uniformly distributed 
between R + 1 and R + Q (Axsäter 2015). Since all random variables are inde-
pendently distributed, convolutions can be used to calculate the pmf of M. For the 
determination of K(tn−2) , we rely on an approximation presented at the end of this 
subsection, and we perform convolutions to obtain the probability mass function 
of the TCL M(tn) . Due to our simplifying assumptions, the obtained distribution 
is an approximation, the performance of which is tested in a numerical study in 
section 6.

We obtain three additional cases when Ld ≤ T  and Ls > T  based on the length of 
Ls , as shown in Table 2. In the second case, the supply lead time is in the range of 
T < Ls ≤ T + Ld , which is why the time tn−1 − Ld is before tn − Ls , as illustrated in 
Fig. 3. The sequence of the latter time points changes if T + Ld < Ls ≤ 2T  , which 
legitimates the third case. The fourth case occurs if Ls > 2T  because tn − Ls is before 
tn−2 . The main difference from the first case is that the time tn − Ls of the last ware-
house replenishment order, which will arrive at the latest by tn , is before the previ-
ous shipment day at tn−1 , which is why we cannot assure that all backorders at an 
arbitrary shipment date can be satisfied by the following shipment day. This change 
in sequences leads to different time intervals during tn−1 − Ls and tn and therefore to 
different formulas of K(tn) and K(tn−1) , which are shown in Appendix.

(11)

K(tn−1) =max

(
(IP(tn−1 − Ls) − D(tn−1 − Ls, tn−1 − Ld)

− D(tn−1 − Ld, tn−1))
−, min(D(tn−1 − Ld, tn−1), (Cap

− D(tn−2, tn−1 − Ls) − D(tn−1 − Ls, tn−1 − Ld)

− D(tn−1 − Ld, tn−1) − K(tn−2))
−)

)
.

(12)
M(tn) = D(tn−1, tn − Ls) + D(tn − Ls, tn − Ld)

+ D(tn − Ld, tn) + K(tn−1) − K(tn).
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4.1.2  The cases Ld > T

Now, the focus is on all seven cases in which Ld > T  . To express the dif-
ferences between Ld ≤ T  and Ld > T  , we investigate the fifth case with 
T < Ld ≤ 2T , T < Ls ≤ 2T  , as illustrated in Fig.  4 in more detail. The other situ-
ations can be handled similarly. The shipment policy only allows for shipping 
an ordered unit one shipment date earlier to the production facilities. As long as 
Ld ≤ T  , this assumption is fulfilled automatically. However, it is not true for Ld > T  . 
Orders during (tn+1 − Ld, tn) cannot be shipped at tn because their official shipment 
date is at tn+2 . The earliest shipment date for these orders is tn+1 . Therefore, the 
demand during tn+1 − Ld and tn is directly added to the number of remaining units at 
tn , which can be obtained by

This property can also be applied for determining K(tn−1) , where the orders 
D(tn − Ld, tn−1) will be considered on the shipment day at tn . Doing so yields

(13)

K(tn) = D(tn+1 − Ld, tn) +max

((
mod
R,Q

(IP(tn−1 − Ls)

− D(tn−1 − Ls, tn−1 − Ld) − D(tn−1 − Ld, tn−2) − D(tn−2, tn − Ls))

− D(tn − Ls, tn − Ld) − D(tn − Ld, tn−1) − D(tn−1, tn+1 − Ld)
)−

,

min(D(tn − Ld, tn−1) + D(tn−1, tn+1 − Ld), (Cap − D(tn−1, tn+1 − Ld)

− K(tn−1))
−)

)
.

(14)

K(tn−1) = D(tn − Ld, tn−1) +max

(
(IP(tn−1 − Ls) − D(tn−1 − Ls, tn−1 − Ld)

− D(tn−1 − Ld, tn−2) − D(tn−2, tn − Ls) − D(tn − Ls, tn − Ld))
−,

min(D(tn−1 − Ld, tn−2) + D(tn−2, tn − Ls) + D(tn − Ls, tn − Ld),

(Cap − K(tn−2))
−
)
.

Fig. 3  Shipment cycle when 
L
d
≤ T ,T < L

s
≤ T + L

d

Fig. 4  Shipment cycle when T < L
d
≤ 2T ,T < L

s
≤ 2T
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The TCL is the sum of demands during the considered SCL cycle plus K(tn−1) minus 
K(tn) , as given in (4).

When we still consider the range T < Ld ≤ 2T  for the demand lead time, the 
sequence of time points changes depending on the length of Ls , which is why 
the sixth and seventh cases arise. The time tn − Ls is between tn−1 − Ld and tn−2 if 
2T < Ls ≤ T + Ld and accordingly between tn−1 − Ls and tn−1 − Ld if T + Ld < Ls . 
Similarly, all ranges for the remaining cases can be obtained. All formulas for K(tn) 
and K(tn−1) are shown in Appendix.

4.1.3  Iterative procedure to determine K (tn−2)

While we have derived expressions for K(tn) and K(tn−1) , it remains to determine 
K(tn−2) to be able to compute the pmf of the TCL M(tn) . As mentioned before, we 
neglect the remaining units of prior shipment days before tn−2 and use a fixed value 
K for K(tn−2) , which is updated in an iterative procedure. The idea is to replace the 
number of remaining units with its expectation. Therefore, we start with a given 
value of K , determine the probability distribution of K(tn) and use it to compute the 
expectation of K(tn) . We also consider a factor that reflects the capacity utilization 
of the vehicle when we update the value for K . In general, the obtained value for K 
is not an integer, rendering the computation of the convolutions impossible. As a 
solution, we determine the pmf for the TCL and the remaining units at tn two times. 
First, we use the rounded-down value ⌊K⌋ and the second time the rounded-up value 
⌈ K ⌉ . Both results are merged as follows:

As a starting value for the iterative procedure, we have chosen (Cap − �T −
1

2
�Ld)

− , 
which is obtained by replacing the random demand in the expression with the total 
number of units, which exceeds the capacity of the primary transportation option, 
with its expectation. Furthermore, the remaining units K(tn−1) are replaced with 50% 
of the expected number of ordered units with a due date after the shipment time. In 
summary, we provide a sketch of the algorithm to compute the expected shipment 
costs. 

Step 1: Start with K = (Cap − �T −
1

2
�Ld)

−.
Step 2: Compute for 

⌈
K
⌉
 the pmf of K(tn) from (11) and (10) for case 1, or use the 

corresponding formulas for the other cases.
Step 3: Compute for 

⌊
K
⌋
 the pmf of K(tn) from (11) and (10) for case 1, or use the 

corresponding formulas for the other cases.
Step 4: Compute the pmf of K(tn) , similar to (16).

(15)
M(tn) = D(tn−1, tn+1 − Ld) + D(tn+1 − Ld, tn)

+ D(tn − Ld, tn) + K(tn−1) − K(tn)

(16)
P(M(tn) = k) = (

⌈
K
⌉
− K)) ⋅ P(M(tn) = k ∣

⌊
K
⌋
)

+ (K −
⌊
K
⌋
) ⋅ P(M(tn) = k ∣

⌈
K
⌉
).
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Step 5: Compute the expected number of remaining units at tn by 
K̄(tn) =

∑∞

j=0
jP(K(tn) = j).

Step 6: If |K − K̄(tn)
Cap

𝜆T
| < 0.1 , go to step 7; otherwise, set K =

⌊
K̄(tn)

Cap

𝜆T
⋅ 10

⌉
∶ 10 

and go to step 2.
Step 7: Compute the pmf of the TCL according to (16).
Step 8: Compute TSC(R, T, Cap) with current pmf of the TCL by (3).

4.2  Expected inventory cost at the warehouse

For the analysis of the expected inventory cost per time unit, we adapt the meth-
odology introduced in Marklund (2011), who studied an inventory system with 
time-based SCL without ADI and without flexible deliveries, reflecting the case of 
Ld = 0 . Therefore, we only discuss the case of Ld > 0 with flexible deliveries in this 
paper. We observe each unit going through the system separately, calculate the cost 
for each unit and then consider the expectation of this cost. In a first step, we show 
how the (R, Q) policy is connected to a base-stock policy with base-stock level S 
because we use this relationship in our further analysis.

Let us denote with tr the time where the warehouse just placed a replenishment 
order of size Q at the outside supplier, which arrives after a supply lead time Ls . 
The units of this order are then consumed in the defined order 1, 2,… ,Q . The first 
unit of this batch is needed for the (R + 1) th order at the warehouse after tr because, 
at tr , there are still R units on stock that are used first. The observation of the first 
unit represents the situation in which the warehouse uses an (S − 1, S) policy with 
base-stock level S = R + 1 . Similarly, we can relate a base-stock policy to each unit 
of the batch, for example, using a base-stock level of S = R + 2 for the second unit 
and finally S = R + Q for the final unit of the batch. Thus, one possibility for obtain-
ing the system’s expected total inventory cost is to replace the (R, Q) policy by Q 
base-stock policies with base-stock levels S = R + 1,R + 2,… ,R + Q . Therefore, 
the expected inventory cost for the system for an (R, Q) policy can be calculated as 
shown in (17), where TIC(S, T, Cap) represents the expected inventory cost for the 
system per time unit when using a base-stock policy with base-stock level S and a 
SCL cycle length T with a capacity reservation of Cap units.

In the case of S > 0 , the warehouse orders the considered unit at the outside sup-
plier before a facility orders it, whereas S ≤ 0 implies that the warehouse orders the 
considered unit at the outside supplier after or at the same time at which the facility 
orders it at the warehouse. These two situations have to be discussed separately, and 
we have to introduce some additional notation for further analysis: 

Ω(x)  length of the time interval between the replenishment moment at the ware-
house and the moment when the x th order from the production facilities 
arrives at the warehouse, random variable,

(17)TIC(R,T ,Cap) =
1

Q

R+Q∑

S=R+1

TIC(S, T ,Cap)
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V  shipment delay, defined as the length of the time interval between the time 
when a unit is demanded and available for a shipment, and the subsequent 
shipment day, random variable,

Gx(t)  cumulative distribution function of an Erlang ( x, � ) distribution,
gx(t)  density of an Erlang ( x, � ) distribution,
U(t)  cumulative distribution function of a uniform distributed random variable on 

the interval [0, T],
u(t)  density function of a uniform distributed random variable on the interval 

[0, T].

We call a unit prequalified if it is available and ordered because it can be shipped 
before it is actually demanded since we allow for early deliveries. A unit is denoted 
as qualified if it is available and demanded and thus has to be shipped with the pri-
mary or alternative transportation option on the subsequent shipment day.

4.2.1  The case of S > 0

Observing a specific unit on its way through the system, we recognize four essen-
tial points in time. First, a unit is available for satisfying a demand at the ware-
house exactly Ls time units after the replenishment order was placed, thus at time 
ta = tr + Ls . The following important event is the time when the facility order for 
this unit arrives at the warehouse, which is given as to = tr + Ω(S) , where Ω(S) 
represents the time until the S th facility order occurs. The third interesting time is 
when the status of the unit changes from an order to a demand, which occurs at 
td = tr + Ω(S) + Ld . Finally, there is the time ts when the unit is shipped to the pro-
duction facility, depending on the available reserved transportation capacity.

Which types of costs occur and to what extent depend on the sequence of the 
events. For the derivation of the formulas, we have to distinguish all possible situ-
ations, which are denoted with i ∈ {A,B,C,D,E,F,G} . Situation A is illustrated in 
Fig. 5, and we explain all of the cases in the following in more detail.

The first three situations (A,B,C) are related to a situation in which the unit is 
available when the order occurs, which means that ta < to . Otherwise, the unit is 
ordered while there is no available stock for the considered unit at the warehouse 
(D,E,F,G). We further differentiate between the situations in which prequalifica-
tion and qualification occur at different points in time (D,E,F) and at the same time 
(G), whereby the latter case only occurs if the unit is available after it is demanded. 
If the unit is available before demand occurs, then the unit is prequalified at time 
max(ta, to) and qualified at time td . In the following, tn ∈ ℕ denotes an arbitrary ship-
ment day. 

A ta < to, tn−1 < to < td < tn, ts = tn Since prequalification and qualification occur in 
the same SCL cycle, the unit must be shipped on the next shipment day ( ts = tn ), 
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indicating there are no early-delivery costs, and the unit must wait V time units. 
Stock-keeping costs are charged for a time interval with length Ω(S) − Ls + Ld + V.

B ta < to, to < tn−1 < td < tn, ts = tn−1 This situation can only occur if there is suffi-
cient reserved transportation capacity available at tn−1 to initiate an early delivery, 
which is then associated with early-delivery costs for T − V  time units. The unit 
is kept on stock for Ω(S) − T − Ls + Ld + V  time units.

C ta < to, to < tn−1 < td < tn, ts = tn There is not sufficient transportation capacity 
available to allow for early delivery of the considered unit in this situation. Then, 
waiting costs for V time units are due, and stock-keeping costs are incurred for 
Ω(S) − Ls + Ld + V  time units.

D to ≤ ta, tn−1 < ta < td < tn, ts = tn Similar to situation A, there are no early-delivery 
costs, and waiting costs are incurred for V time units. The unit is kept on stock 
for Ω(S) − Ls + Ld + V  time units, which is shorter than A because the unit is 
available after tn−1.

E to ≤ ta, ta < tn−1 < td < tn, ts = tn−1 This situation can only occur if there is suffi-
cient reserved transportation capacity available at tn−1 to initiate an early delivery, 
which is then associated with early-delivery costs for T − V  time units. The unit 
is kept on stock for Ω(S) − T − Ls + Ld + V  time units.

F to ≤ ta, ta < tn−1 < td < tn, ts = tn This situation is comparable to C such that 
waiting costs for V time units are, due and stock-keeping costs are incurred for 
Ω(S) − Ls + Ld + V  time units.

G to ≤ ta, to < td < ta < tn, ts = tn Since prequalification and qualification occur at 
the same moment in time, there are no early-delivery costs. Stock-keeping costs 
only occur for V time units, and waiting costs (including the backorder costs) are 
charged for V + Ls − Ld − Ω(S) time units.

In summary, we provide all of the cost expressions for situations 
i ∈ {A,B,C,D,E,F,G} in Table 3.

Obviously, for a given S, T and Cap, the inventory cost depends on the random vari-
ables Ω(S) and V and the available reserved transportation capacity at tn . However, we 
only know the pmf of the TCL at tn after all demands and orders of the considered SCL 
cycle occurred, which again is why we rely on an approximation. We denote the inven-
tory cost for case S > 0 in the following analysis with C(Ω(S),V ,M(tn)) . Denoting the 
joint density function of Ω(S) , V and M(tn) with f(x, y, z), we can obtain the expected 
inventory cost by

Fig. 5  Important moments in time in situation A
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which means that we can split the derivation into several parts, where each part cor-
responds to one of the aforementioned situations. For the following analysis, we 
neglect the dependency between M(tn) and the other random variables such that we 
obtain

Therefore, we can reformulate (19) as

(18)

E[C(Ω(S),V ,M(tn))] = ∫
∞

0
∫

T

0
∫

∞

0

C(x, y, z)f (x, y, z)dz dy dx

=
∑

i ∈ {A,B,C,

D,E,F,G}

∫
∞

0
∫

T

0
∫

∞

0

Ci(x, y, z)fi(x, y, z) dz dy dx,

(19)

E[C(Ω(S),V ,M(tn))] =
∑

i ∈ {A,B,C,

D,E,F,G}

∫
∞

0
∫

T

0
∫

∞

0

Ci(x, y, z)fi(x, y)f (z)dz dy dx.

(20)

E[C(Ω(S),V ,M(tn))] =
∑

i ∈ {A,B,C,

D,E,F,G}

�
∞

0
�

T

0
�

∞

0

Ci(x, y)fi(x, y)f (z)dz dy dx

=
∑

i∈{A,D,G}
�

∞

0
�

T

0

Ci(x, y)fi(x, y) dy dx

+ P(M(tn) < Cap)
∑

i∈{B,E}
�

∞

0
�

T

0

Ci(x, y)fi(x, y) dy dx

+ P(M(tn) ≥ Cap)
∑

i∈{C,F}
�

∞

0
�

T

0

Ci(x, y)fi(x, y) dy dx,

Table 3  Different cost expressions for the different situations

Situation i Stock-keeping costs Waiting costs Early-delivery costs

A h(Ω(S) − Ls + Ld + V) wV 0
B h(Ω(S) − T − Ls + Ld + V) 0 e(T − V)

C h(Ω(S) − Ls + Ld + V) wV 0
D h(Ω(S) − Ls + Ld + V) wV 0
E h(Ω(S) − T − Ls + Ld + V) 0 e(T − V)

F h(Ω(S) − Ls + Ld + V) wV 0
G hV w(V + Ls − Ld − Ω(S)) 0
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where Ci(x, y) and fi(x, y) with i ∈ {A,B,C,D,E,F,G} represent the inventory 
cost depending on Ω(S) and V and the joint distribution function of Ω(S) and V, 
respectively.

Since the cost expressions can easily be derived from Table 3, it remains to deter-
mine the functions fi(x, y), i ∈ {A,B,C,D,E,F,G} . It can be shown that the func-
tions fi(x, y) are positive on different domains (Table 4). Further, in the range where 
they are unequal to zero, the functions have the form gS(x)u(y) for all situations i, 
i ∈ {A,B,C,D,E,F,G} . In the following, we show the derivation for situation A, 
whereas the remaining derivations are given in Appendix.

Since T = V + Ld + tr + Ω(S) − tn−1 (Fig. 5), we obtain for x > Ls and y ≤ (T − Ld)
+

Since V is uniformly distributed between [0, T] (Tijms 2003), the upper bound of y 
cannot be smaller than 0. Thus, fA(x, y) is given as the partial derivative with respect 
to x and y

(21)

FA(x, y) = P(Ω(S) ≤ x,V ≤ y, ta < to, tn−1 < to < td < tn, ts = tn)

= P(Ω(S) ≤ x,V ≤ y, tr + Ls < tr + Ω(S),

tn−1 < tr + Ω(S) < tr + Ω(S) + Ld < tn)

= P(Ω(S) ≤ x,V ≤ y,Ls < Ω(S),

0 < tr + Ω(S) − tn−1 < tr + Ω(S) + Ld − tn−1 < tn − tn−1)

= P(Ω(S) ≤ x,V ≤ y,Ls < Ω(S),

0 < tr + Ω(S) − tn−1 < tr + Ω(S) + Ld − tn−1 < T)

(22)

FA(x, y) = P(Ls < Ω(S) ≤ x,V ≤ y,

0 < tr + Ω(S) − tn−1 < tr + Ω(S) + Ld − tn−1 < T)

= P(Ls < Ω(S) ≤ x,V ≤ y, 0 < T − V − Ld < T − V < T)

= P(Ls < Ω(S) ≤ x,V ≤ y,V < (T − Ld)
+)

= P(Ls < Ω(S) ≤ x,V ≤ y)

=

(
GS(x) − GS(Ls)

)
U(y).

(23)fA(x, y) =

{
gS(x)u(y) if Ls < x < ∞, 0 ≤ y ≤ (T − Ld)

+

0 otherwise.

Table 4  Range for x and y 
dependent on situation i, 
i ∈ {A,B,C,D,E,F,G}

Situation i x y

A Ls < x < ∞ 0 ≤ y ≤ (T − Ld)
+

B Ls < x < ∞ (T − Ld)
+
< y ≤ T

C Ls < x < ∞ (T − Ld)
+
< y ≤ T

D Ls − Ld < x ≤ Ls 0 ≤ y ≤ (T − Ld + Ls − x)+

E Ls − Ld < x ≤ Ls (T − Ld + Ls − x)+ < y ≤ T

F Ls − Ld < x ≤ Ls (T − Ld + Ls − x)+ < y ≤ T

G 0 ≤ x ≤ Ls − Ld 0 ≤ y ≤ T
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Since demand follows a Poisson process, Ω(S) is Erlang distributed with the param-
eters S and � and is independent of the shipment delay V (Tijms 2003). Therefore, 
the expectation of the inventory cost for each situation can be computed, and the 
results for

are given in Tables 5 and 6. Since the range for y depends on T and Ld , we must 
consider the cases Ld ≤ T  and Ld > T  separately. The derivation is again reported in 
Appendix.

4.2.2  The case of S ≤ 0

If S = 0 , then the considered unit is ordered by the production facility at the 
same time that the warehouse orders it at the outside supplier. Thus, no safety 
stock is kept at the warehouse. Focusing on S < 0 , the warehouse orders the 
considered unit at the outside supplier after the next |S| th facility orders occur. 
Due to Ld ≤ Ls , both cases imply that the considered unit is always demanded 
before it is available for shipment. Therefore, warehouse stock-keeping costs 
arise for the time interval V, whereas waiting costs occur for the time interval 
V + Ls − Ld + Ω(|S|) . As ta ≥ td , the flexible delivery option cannot be used. 
Therefore, inventory cost C̃(Ω(S),V) for case S ≤ 0 is independent of M(tn) , and 
the expectation of this cost can be obtained by

In summary, the expected inventory cost of the system is given by

5  Approximation method

This section shows how to minimize the expected total cost TC(R, T, Cap) per time 
unit when Ld ≥ 0 by determining the near-optimal reorder level R∗ , the near-optimal 
length of the SCL cycle T∗ as well as the near-optimal capacity reservation Cap∗.

Examples reveal that TC(R, T, Cap) is not jointly convex in R, T and Cap. How-
ever, during all of our numerical experiments, we could not find any example in 
which TC(R,  T,  Cap) was not convex in T for a fixed R and Cap (not convex in 
Cap for a fixed R and T). Using this property, we perform a bounded enumeration. 
In our numerical study, we focus on the optimization of R∗ and T∗ for a fixed Cap 

(24)

E[Ci(Ω(S),V)] = ∫
∞

0
∫

T

0

Ci(x, y)fi(x, y) dy dx ∀i ∈ {A,B,C,D,E,F,G}

(25)E[C̃(Ω(S),V)] = h
T

2
+ w

(
|S|
𝜆

+ Ls − Ld +
T

2

)
.

(26)TIC(S, T ,Cap) =

{
𝜆E

[
C(Ω(S),V ,M(tn))

]
, for S > 0

𝜆E
[
C̃(Ω(S),V)

]
, for S ≤ 0.
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and on the optimization of R∗ and Cap∗ for a fixed T, respectively. T and Cap are 
highly dependent on each other since a high utilization of the reserved transportation 
capacity mainly depends on the expected number of orders during a consolidation 
cycle, thus on �T  . In general, a modified given Cap changes the optimal T∗ , and 
inversely, a modified given T changes the optimal Cap∗ . To limit the computational 
time, we assume that either Cap or T is given. This is also sufficient to answer the 
research questions.

First, we define a lower and an upper bound on the decision variable R, denoted 
by RL and RU , respectively. A proven lower bound is RL = −Q (Axsäter 1998). 
When increasing R, there is a point at which another increase in R does not influence 
the waiting, early-delivery and shipment costs because the stock on hand remains 
sufficient to always satisfy all orders and demands; thus, the flexible delivery 
option is already used to some extent. The only effect then is an increase in stock-
keeping costs. The reorder level is high enough when the demand during the sup-
ply lead time never exceeds R, indicating that backorders do not occur. Therefore, 
RU = min(R ∶ P(D(0,Ls) > R) < 𝜖) , where � is a small number close to zero. Note 
that the bounds do not depend on T or on Cap.

5.1  Determination of R∗ and T∗ for a given Cap

Since the length of the SCL cycle can only take natural numbers, we define 
the lower bound for T as TL = 1 . The upper bound TU(R,Cap) can be 
found for each R and a given Cap individually, where we use the convex-
ity property. For a given R ∈ {RL,… ,RU} and Cap, we increase T by 1 until 
TC(R,T − 1,Cap) < TC(R,T ,Cap) . 

Step 1: Determine RU = min(R ∶ P(D(0,Ls) > R) < 𝜖) and RL = −Q , and fix Cap.
Step 2: For all given R = RL,RL + 1,… ,RU  , compute TC(R,  T,  Cap) with 

T = TL = 1.
Step 3: Increase T by 1 and compute TC(R, T, Cap) for all relevant R.
Step 4: If TC(R,T − 1,Cap) < TC(R,T ,Cap) for all R = RL,RL + 1,… ,RU , go to 

step 5; else continue with step 3.
Step 5: Find R∗ and T∗ , which minimize the expected total cost TC(R, T, Cap) for a 

fixed Cap.

5.2  Determination of R∗ and Cap∗ for a given T

Obviously, the transportation capacity reserved cannot be negative and has to be 
integer. Therefore, the lower bound for Cap is CapL = 0 , where only the alternative 
transportation option can be used why early deliveries are not allowed at all. The 
upper bound CapU(R,T) can be found for each R and a given T individually, where 
we use the convexity property. For a given R ∈ {RL,… ,RU} and T, we increase Cap 
by 1 until TC(R,T ,Cap − 1) < TC(R,T ,Cap) . 
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Step 1: Determine RU = min(R ∶ P(D(0, Ls) > R) < 𝜖) and RL = −Q , and fix T.
Step 2: For all given R = RL,RL + 1,… ,RU  , compute TC(R,  T,  Cap) with 

Cap = CapL = 0.
Step 3: Increase Cap by 1 and compute TC(R, T, Cap) for all relevant R.
Step 4: If TC(R,T ,Cap − 1) < TC(R,T ,Cap) for all R = RL,RL + 1,… ,RU , go to 

step 5; else continue with step 3.
Step 5: Find R∗ and Cap∗ , which minimize the expected total cost TC(R, T, Cap) for 

a fixed T.

6  Numerical study

In this section, we first present the results of a numerical study to investigate the 
performance of the applied approximation for the expected total cost TC(R, T, Cap). 
Second, we investigate the influences of ADI and the flexible SCL program on the 
expected total cost, as well as on the variables to be optimized.

In the numerical study, we focus on bulky and expensive items to show how a 
company can apply the presented model. We start with a definition of a base case, 
where the parameters related to the inventory system are in a similar range as in 
Marklund (2011) and other references. The order rate of the item at the warehouse 
is given as � = 2 . The stock-keeping costs parameter h at warehouse equals 1 per 
unit and time unit, whereas the waiting and early-delivery cost parameters at the 
warehouse are fixed to w = 2 and e = 2 per unit and time unit, respectively. Due 
to a time-based SCL program, production facilities must hold more safety stock, 
wherefore we consider waiting costs. Early-delivery costs represent stock-keeping 
costs at production facilities. Both reasons justify cost parameters w and e close to 
h. We rely on similar ranges for waiting costs as, e.g., in Çetinkaya et al. (2008). The 
replenishment quantity Q equals 10 to limit computational time, and the transporta-
tion capacity is fixed at Cap = 10 , which is reasonable for a bulky product. Ship-
ment costs depend on the fixed cost parameter �(Cap) for reserved transportation 
capacity and the variable parameter c2 in case the reserved capacity is exceeded. In 
our base case, we fix the variable reservation cost to c1 = 10 and obtain in the base 
case for Cap = 10 a value for the fixed transportation costs �(Cap) = 100 . Addition-
ally, variable shipment costs depend on c1 according to c2 = 2c1 . When the primary 
transportation capacity is fully utilized, a cost of c1 arises per unit shipped for the 
primary transportation option. We double the unit shipment costs for the alternative 
transportation option for the base case. A reasonable supply lead time from the out-
side supplier to the warehouse is Ls = 2 , whereas Ld = 1 time units.

6.1  Performance of the approximation

Before deriving managerial insights, we validate our approximation method with a 
simulation study. For this study, we focus on the optimization of R and T for a given 
Cap. Therefore, we define a mixed-level fractional factorial design, which relates 
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to the base case. For parameters � , Cap, w
h
 and e

h
 , the base case defines the medium 

level, which is extended by low and high levels. Since h, w and e represent inventory 
holding cost at the warehouse and indirectly at the production facilities, we only 
investigate a changed relation between h and w (between h and e). For parameters 
c2 , Ld and Ls , we define low and high levels as follows: c2 = xc1 with x ∈ {1.5, 2} , 
Ld ∈ {1, 2} and Ls ∈ {2, 4} . We do not vary c1 since the relation of cost for reserva-
tions and spontaneous shipments changes by modifying c2 . Additionally, we fix the 
replenishment quantity Q as mentioned in the base case, because the replenishment 
costs do not have an influence on the optimal decisions. This yields 34 ⋅ 23 = 648 
instances.

For these 648 instances, we determine the parameters R∗
app

 and T∗
app

 , solving the 
optimization problem (2), relying on the results of sections 4 and 5. We use a simu-
lation to evaluate the system’s expected cost of a policy and call this cost the exact 
expected cost to validate these results. The length of each simulation run is 52000 
days, while the last 50000 days are used for the cost computation. We use sequential 
sampling and stop if the half-width of the 95% confidence interval of the average 
total cost is smaller than 0.5% of the average total cost of the considered instance.

To determine the optimal policy parameters (R∗, T∗) , we combine the simulation 
with a neighborhood search and use R∗

app
 and T∗

app
 as initial values. The neighbor-

hood includes all points ( R∗
app

+ g, T∗
app

+ G ) with g,G ∈ {−1, 0, 1} . If the neigh-
borhood offers a better average total cost value than the initials, the neighborhood 
search is repeated for the best value in the neighborhood. This iterative procedure 
can be stopped if no better average total cost value can be found. The obtained pol-
icy parameters are locally optimal and define the optimal decision (R∗, T∗).

We are interested in the relative average total cost increase caused by not making 
the optimal decision with our approach. Therefore, we calculate the relative total 
cost difference between the average total cost of the optimal policy TCsim(R

∗, T∗) 
and the average total cost of the policy determined by our approach TCsim(R

∗
app

, T∗
app

) 
for all instances. TCsim(R,T) represents the average total cost computed by simula-
tion, which we assume to be the correct average total cost values. We define the rela-
tive cost difference as

and also compute aggregate values. In Table  7, the aggregated results of all 648 
examples are provided to investigate the impact of the input parameters on the per-
formance. The average (maximum) total cost deviation is 0.20% (10.54%). The 
worst case is observed in a situation in which the reserved transportation capacity 
is small compared to the average demand. In these situations, K(tn−2) has a more 
significant influence on the TCL at tn , explaining the decreasing performance. How-
ever, from an economic point of view, a small reserved capacity is only acceptable if 
the demand is comparatively low.

For 598 of 648 instances, we found the optimal policy parameters using our 
approximate approach. Only in 7.72% of the instances could we not find the optimal 
values; however, for 31 of these 50 examples, the optimal values were located in the 

(27)�TCsim =
TCsim(R

∗
app

, T∗
app

) − TCsim(R
∗, T∗)

TCsim(R
∗, T∗)

⋅ 100
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direct neighborhood ( R∗
app

+ g, T∗
app

+ G ) with g,G ∈ {−1, 0, 1} . For only 19 exam-
ples, larger deviations in the optimal policy parameters were observed. The maxi-
mum deviation between R∗

app
 and R∗ for all 648 examples is four, whereas the devia-

tion between T∗
app

 and T∗ is one at maximum.
Focusing only on the 50 examples in which we do not derive the optimal pol-

icy parameter, we observe an average (a maximum) total cost increase of 2.58% 
(10.54%). A more detailed look at the results also reveals that a nonoptimal SCL 
cycle length has a larger effect on the expected cost than a nonoptimal reorder level. 
Choosing a SCL cycle length that is one day shorter (longer) than the optimal cycle 
length means that more demands must be shipped by the alternative transporta-
tion option (the transportation capacity is less utilized on average), explaining this 
observation.

In summary, we conclude that our approximation has an excellent performance 
for the most relevant cases, and even in the other situations, it is acceptable. There-
fore, we can use our model to generate managerial insights.

6.2  Managerial insights

In this section, we quantify the added value of ADI under flexible SCL and inves-
tigate the impact of the length of the demand lead time on the optimal SCL cycle 
length and on the optimal capacity of the primary transportation option. Therefore, 
we use a different experimental design to reduce computational time without losing 
insights and reduce the level for the order rate ( � ∈ {1, 2} ), while we increase the 
levels for the demand lead time Ld ∈ {0, 2, 4, 6, 8} and fix Ls to 10. The other param-
eters are the same as in the base case and the former study.

6.2.1  Cost improvements by ADI and flexible deliveries

First, we focus on a given capacity and on the influence of an increasing demand lead 
time on the expected total cost. We compute the average marginal relative decrease 
in the expected total cost when the demand lead time Ld is stepwise increased by 
two time units, while the other parameters are fixed. The results are presented in 
Table 8 and indicate that large cost reductions can be achieved if customers are will-
ing to place orders in advance. In general, it can be seen that the longer the demand 
lead time, the greater the total cost reductions. The maximal marginal relative cost 
reduction when Ld is increased from 0 to 2 is 20.29%, whereas we can achieve a 
maximum decrease of the expected cost when Ld is increased from 0 to 8 of 35.57%. 
Further, it can be observed that an increase in the demand lead time of two time 
units can have a different effect depending on the starting point. For example, com-
ing from the situation where Ld = 0 to a situation where Ld = 2 , on average, the 
expected total cost per time unit can be decreased from 62.01 to 55.54 (10.43%), 
whereas the expected total cost per time unit can be reduced from 55.54 to 52.91 
(4.74%) when increasing the demand lead time from 2 to 4. Thus, the marginal value 
of the ADI decreases with an increasing amount of information.
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There are two possible sources for the cost reduction. First, as already observed 
in (Hariharan and Zipkin 1995), a longer demand lead time reduces the effec-
tive lead time (Ls − Ld) and therefore the safety stock. Second, due to the flex-
ible shipment policy, a longer demand lead time results in more orders available 
for earlier shipments. Thus, better utilization of the transportation capacity can 
be attained, and fewer emergency deliveries are necessary. Since early deliver-
ies are only allowed when enough free capacity is available, it is clear that the 
reserved capacity must have an impact on the benefit of ADI in our setting. It can 
be observed that the marginal relative cost reduction decreases drastically with 
increasing Ld for the situation Cap = 5 (Table 8). The mentioned effect is not so 
large for Cap = 20 . Although the marginal relative cost reduction also decreases 
as Ld increases, it decreases much less, and even when the demand lead time is 
increased from 2 to 4, 6.61% of the expected total cost can still be saved. In situ-
ations with a small reserved transportation capacity, the capacity is already fully 
utilized on many shipping days when Ld = 2 , so further information will not 
result in additional early deliveries in many cases. With a higher reserved capac-
ity, there is a higher probability of unused capacity for orders, even if information 
is already available. Since the reserved capacity seems to be an important vari-
able, we will later also determine the optimal reserved capacity.

To investigate the proportion of the average total cost decrease caused by 
reducing the safety stock at the warehouse and by early shipments, respectively, 

Table 7  Average and maximum 
of the relative cost deviation for 
all examples

Parameter Value Average relative Maximum relative
cost deviation cost deviation

w 1 0.1150 10.2782
2 0.1035 5.3411
5 0.3779 10.5391

e 1 0.2380 10.5391
2 0.2239 10.2782
5 0.1346 7.6342

c2 1.5c1 0.1775 10.5391
2c1 0.2201 10.2782

� 1 0.0043 0.4215
2 0.0345 1.3202
4 0.5576 10.5391

Ld 1 0.0000 0.0003
2 0.3976 10.5391

Ls 2 0.2715 10.5391
4 0.1261 10.3451

Cap 5 0.5802 10.5391
10 0.0119 0.9755
20 0.0043 0.3361

Total 0.1988 10.5391
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we computed the expected total cost for the same 540 examples when flexible 
deliveries are not allowed at all but ADI is still available.

Additionally, we are interested in the question of whether cost can be reduced 
even more if more early shipments are allowed. An evident and simple policy 
to investigate is to dispatch all orders regardless of the remaining transportation 
capacity. Thus, the primary transportation option may be already exhausted, but 
additional orders will also be shipped to the facilities by using the alternative 
option. Our analysis can be easily adapted to obtain formulas for the computation 
of the expected total cost because remaining units will only occur when the ware-
house is running out of stock.

In Fig. 6, we depict the average total cost for all three policies as a function 
of Ld . It can be seen that a shipment policy without flexible deliveries performs 
worst. For such a policy, we observe an almost linear cost decrease with increas-
ing demand lead time of approximately 0.7% due to a reduction in the effective 
supply lead time, resulting in less stock at the warehouse.

Significant cost savings can be obtained with the introduction of flexible deliver-
ies. However, shipping all orders one shipment day ahead and neglecting the avail-
able capacity can further be improved by our shipment policy where the reserved 
capacity is taken into account when deciding about the TCL. Then, an increase in 
the demand lead time from 0 to 2 results in a decrease of the average total cost by 
more than 10%, indicating that a reduction of approximately 9.5 percentage points is 
caused by adapting the time-based SCL policy and allowing for flexible deliveries. 
We can conclude that the more significant part of the cost reduction is induced by 
the flexible delivery option and not by reducing the safety stock.

With increasing Ld , this effect is reduced until we reach a point at which addi-
tional ADI will only decrease the stock because the flexible delivery option is 
used to its extent. This is shown in Fig. 7, where we illustrate the marginal rela-
tive cost reduction of all three policies.

We can also observe that with increasing demand lead, the cost difference of the 
two flexible delivery concepts is increasing. The marginal relative total cost reduc-
tion for the simple policy is even lower than for the shipment policy without flexible 
deliveries, because for large demand lead times the alternative transportation option 
has to be used too often, which prevents further cost reductions.

6.2.2  Optimal length of the SCL cycle

Moreover, to enable early deliveries, even more safety stock is kept at the warehouse 
compared to a situation without flexible deliveries. This situation is illustrated in 
Table 9, where the optimal policy parameters R∗ and T∗ are presented for different 
values of the reserved transportation capacity, demand lead time and order rate. The 
remaining parameters are fixed at h = 1,w = 2, e = 2, c1 = 20, c2 = 2

�

Cap
, and 

Ls = 10 . While the demand lead time Ld has a significant impact on the numerical 
value of the reorder level, the influence on the optimal length of the SCL cycle is 
much less. This condition holds for both situations, with and without flexible deliv-
eries. The optimal SCL cycle length is influenced by the shipment costs, as well as 
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by the relationship between the average demand and the capacity. An increasing 
order rate raises the reorder level and reduces the SCL cycle length to utilize the 
reserved transportation capacity and to avoid expensive additional shipments.

6.2.3  Optimal transportation capacity

We are further interested in the influence of flexible deliveries on the optimal 
capacity of the primary transportation option for a given length of the SCL cycle. 
In Table  10, it can be seen that flexible deliveries lead to equal or larger reorder 
levels for a fixed and given SCL cycle length. This means that more safety stock 
is required to enable flexible deliveries. Additionally, more reserved transportation 
capacity Cap∗ is needed in situations with large values of T to exploit the benefit of 
flexible deliveries fully. However, the influence of the flexible deliveries on the opti-
mal capacity to be reserved is negligible.

6.3  Impact of the policy assumption

When we defined the flexible shipment consolidation policy, we only allowed orders 
to be shipped one shipment day ahead. They have to be shipped if enough stock and 
remaining reserved transportation capacity is available. This assumption could be 
limiting in situations where Ld is much larger than T because orders could potentially 
be shipped several shipment days in advance. We want to investigate the impact of 

Table 8  Marginal relative cost reduction enabled by ADI and flexible deliveries

Parameter Value Marginal 
relative cost 
difference

Marginal 
relative cost 
difference

Marginal 
relative cost 
difference

Marginal 
relative cost 
difference

Relative cost dif-
ference

L
d
= 0 → L

d
= 2 L

d
= 2 → L

d
= 4 L

d
= 4 → L

d
= 6 L

d
= 6 → L

d
= 8 L

d
= 0 → L

d
= 8

w 1 6.1140 2.2723 0.7054 0.3227 9.1885
2 8.4178 3.8752 1.5760 0.6367 13.9058
5 15.0111 7.3582 3.5730 1.6296 25.3152

e 1 11.1651 6.0846 3.2606 1.6605 20.6308
2 10.7273 5.1953 2.3103 0.9814 18.1320
5 9.3987 2.9626 0.6694 0.1328 12.7873

c2 1.5c1 9.9334 4.7338 2.0145 0.9201 16.6990
2c1 10.9141 4.7391 2.0976 0.8890 17.6548

� 1 9.5306 5.8501 3.1113 1.5726 18.7710
2 11.0043 4.0146 1.3856 0.4869 16.1709

Cap 5 11.3573 2.6547 0.9616 0.3394 14.8303
10 10.9027 4.3526 1.2452 0.4499 16.2206
20 9.3313 6.6097 3.5824 1.7425 19.7802

Total 10.4304 4.7365 2.0564 0.9044 17.1834
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this assumption on the optimal decision and expected total cost. Therefore, we com-
pare our policy with a policy where early shipments are always allowed if stock and 
capacity are available. That means orders are shipped as early as possible. For a fair 
comparison, we have to determine the optimal reorder level and the optimal length 
of the SCL cycle, which is done by a simulation-based approach.

We concentrate on a large demand lead time ( Ld = 8 ) and a large demand rate 
( � = 4 ), because in these situations it is more likely that the optimal SCL cycle 
length is smaller than Ld . Ls is fixed to 10 to reflect make-to-stock situations and dif-
ferent reserved capacities are considered.

We expect a larger impact if waiting and early-delivery costs are large and there-
fore select the following cost parameters to test our conjecture: w ∈ {2, 10, 100} and 
e ∈ {2, 10, 100} . The remaining parameters correspond to the base case.

Table 11 columns two and three show the optimal decisions with and without the 
shipment assumption, while the last column presents the relative total cost deviation 
according to

(28)�TCasm =
TCsim(R

∗
asm

, T∗
asm

) − TCsim(R
∗, T∗)

TCsim(R
∗, T∗)

⋅ 100,

Fig. 6  Average total cost per 
time unit

Fig. 7  Marginal relative total 
cost reduction
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where TCsim(R
∗, T∗) represents the minimal total cost without the shipment assump-

tion and TCsim(R
∗
asm

, T∗
asm

) the minimal total cost with shipment assumption both 
determined by simulation.

Our numerical experiments reveal that the shipment assumption impacts the opti-
mal reorder level. If early shipments are allowed only one shipment day ahead, then 
more safety stock is needed at the warehouse to enable flexible deliveries in many 
situations. On the other hand, if early shipments are not restricted, then the early-
delivery costs are controlled by a reduction of the optimal reorder level, making 
early deliveries less likely, as stock-outs occur more frequently.

A contrary effect can be observed if the waiting costs parameter is very high 
( w = 100 ) and the early-delivery costs parameter is very low ( e = 2 ). In such a situ-
ation, early deliveries are preferred to avoid waiting times, which results in larger 
safety stocks under an “as early as possible" shipment policy.

Our numerical results also show that the optimal length of the SCL cycle is 
relatively robust against the shipment assumption. Thus, total cost differences are 
induced by the different safety stock quantities at the warehouse. Although the reor-
der level can control the number of early deliveries, the opportunities are limited. 
This explains the lower minimal total cost if early deliveries are only allowed one 
shipment day ahead. Only in situations where early deliveries are much cheaper than 
the waiting costs it is more beneficial to allow shipments as early as possible. How-
ever, it is improbable that such large differences occur in reality since early-delivery 
and waiting costs are related to stock-keeping costs and, therefore, pretty much the 
same.

Based on our numerical study, we can conclude that, in line with the existing 
literature, ADI can lead to large cost reductions in inventory management. However, 
to fully exploit the benefit of ADI, the shipment policy should also be adapted, and 
flexible deliveries should be integrated into SCL programs. Doing so could entail 
larger inventories, but the savings due to a more efficient transportation policy far 
exceed the cost increases due to larger safety stocks.

Table 9  Optimal reorder level and optimal SCL cycle length

Cap � (R∗,T∗) shipment policy  (R∗,T∗) without flexible deliveries

Ld = 0 Ld = 2 Ld = 4 Ld = 6 Ld = 8 Ld = 0 Ld = 2 Ld = 4 Ld = 6 Ld = 8

5 1 (8,5) (7,5) (5,5) (4,5) (2,5) (8,5) (6,5) (4,5) (2,5) (0,5)
2 (20,3) (16,3) (12,3) (7,3) (3,3) (20,3) (15,3) (11,3) (6,3) (2,3)
4 (41,2) (37,1) (29,1) (20,1) (11,1) (41,2) (32,2) (23,2) (14,2) (8,1)

10 1 (6,9) (6,8) (5,8) (3,9) (2,9) (6,9) (4,8) (2,8) (0,8) (-2,8)
2 (16,5) (14,5) (11,5) (8,5) (4,5) (16,5) (12,5) (8,5) (4,5) (0,5)
4 (37,3) (30,3) (22,3) (14,3) (6,3) (37,3) (29,3) (20,3) (12,3) (4,3)

20 1 (6,15) (5,15) (5,15) (4,15) (3,15) (6,15) (4,15) (2,15) (0,15) (-2,15)
2 (17,9) (15,9) (14,9) (11,9) (7,9) (17,9) (12,9) (8,9) (4,9) (0,9)
4 (37,5) (34,5) (26,5) (17,5) (12,4) (37,5) (29,5) (20,5) (12,5) (4,5)
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7  Summary and outlook

In this paper, we have investigated a one-stage inventory model with ADI and 
a flexible time-based SCL program with a reserved transportation capacity. We 
derive approximate mathematical expressions to compute shipment and inventory 
costs at the warehouse and thus are able to determine the warehouse reorder level 
and the SCL cycle length for the given situation. We have shown in a simula-
tion study that our approximations have excellent performance and can be used 
to determine near-optimal policy parameters because the optimal decisions are 
found in more than 90% of our instances, and the average total cost deviation is 
0.1988%.

The main finding is that companies can benefit greatly from ADI in the con-
text of inventory management. However, they will miss opportunities if they 
only focus on the reduction of safety stocks and on a single logistic process. 
Cost reductions can be increased even more if connected logistic processes are 
adapted, such as the SCL policy with flexible deliveries. In the investigated set-
ting, the largest part of the cost reduction is induced by the flexible delivery 
option. Thus, the full potential of ADI can only be exploited if whole logistic 
processes are adapted.

Although we have not studied it in detail in this paper, we believe that our 
integrated logistic approach does not only reduce cost, but also has environmen-
tal benefits by increasing the utilization of the reserved transportation capacity. 
Further research can elaborate on these environmental aspects in more detail. It 
would be very interesting to understand how the optimal policy parameters and 
the optimal reserved transportation capacity behave if, besides the minimization 
of cost, also the minimization of carbon emissions is an aim.

We have assumed perfect ADI and homogeneous demand lead times in our 
model. A logical next step is to replace the limiting assumptions and allow imper-
fect ADI as well as heterogeneous demand lead times. This will increase the 

Table 10  Optimal reorder level and optimal capacity of the primary transportation option

T � (R∗,Cap∗) with flexible deliveries (R∗,Cap∗) without flexible deliveries

Ld = 0 Ld = 2 Ld = 4 Ld = 6 Ld = 8 Ld = 0 Ld = 2 Ld = 4 Ld = 6 Ld = 8

3 1 (9,3) (8,3) (7,3) (4,3) (2,3) (9,3) (7,3) (5,3) (2,3) (0,3)
2 (20,6) (19,6) (15,6) (11,6) (7,6) (20,6) (15,6) (11,6) (6,6) (2,6)
4 (38,11) (38,12) (25,12) (20,12) (10,12) (38,11) (30,11) (22,12) (14,12) (6,12)

5 1 (8,5) (7,5) (6,5) (4,5) (2,5) (8,5) (6,5) (4,5) (2,5) (0,5)
2 (16,10) (17,10) (15,10) (11,10) (6,10) (16,10) (12,10) (8,10) (4,10) (0,10)
4 (37,20) (37,21) (23,20) (20,20) (21,21) (37,20) (29,20) (20,20) (12,20) (4,20)

10 1 (6,10) (6,10) (6,11) (5,11) (4,11) (6,10) (4,10) (2,10) (0,10) (-2,10)
2 (16,20) (17,21) (16,22) (16,22) (14,22) (16,20) (12,20) (8,20) (4,20) (0,20)
4 (37,40) (36,42) (36,43) (37,43) (40,42) (37,40) (29,40) (20,40) (12,40) (4,40)
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complexity of the model and requires complete new analysis and therefore, it was 
not possible to investigate these aspects within the scope of this work.

Another direction for future research is an extension of the inventory system. 
Instead of only studying one warehouse, a divergent inventory system can be the 
object of future research. Another extension can be a more general demand model 
such as a compound Poisson process.

However, we are convinced that these extensions will not change the main 
finding of our paper, that ADI should not only be used to reduce stock levels but 
also to adapt related logistic processes. We expect that all extensions come with 
more complexity and will require a heuristic solution approach.
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