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Abstract
We apply a dynamic stochastic control (DSC) approach based on an open-loop linear 
feedback policy to a classical asset-liability management problem as the one faced 
by a defined-benefit pension fund (PF) manager. We assume a PF manager seeking 
an optimal investment policy under random market returns and liability costs as well 
as stochastic PF members’ survival rates. The objective function is formulated as a 
risk-reward trade-off function resulting in a quadratic programming problem. The 
proposed methodology combines a stochastic control approach, due to Primbs and 
Sung (IEEE Trans Autom Control 54(2):221–230, 2009), with a chance constraint 
on the PF funding ratio (FR) and it is applied for the first time to this class of long-
term financial planning problems characterized by stochastic asset and liabilities. 
Thanks to the DSC formulation, we preserve the underlying risk factors continu-
ous distributions and avoid any state space discretization as is typically the case in 
multistage stochastic programs (MSP). By distinguishing between a long-term PF 
liability projection horizon and a shorter investment horizon for the FR control, we 
avoid the curse-of-dimensionality, in-sample instability and approximation errors 
that typically characterize MSP formulations. Through an extended computational 
study, we present in- and out-of-sample results which allows us to validate the pro-
posed methodology. The collected evidences confirm the potential of this approach 
when applied to a stylized but sufficiently realistic long-term PF problem.
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1 Introduction

We consider an asset-liability management (ALM) model for a defined benefit 
(DB) open pension fund (PF) in which we assume a PF manager seeking an opti-
mal dynamic investment strategy under a set of asset and liability constraints. This 
class of Institutional ALM problems is well known and it has been studied under 
several modeling approaches. We are here primarily interested on the assumptions 
governing the problem underlying probability space and the associated optimiza-
tion approaches: in particular in presence of a discrete probability space, a long-
term ALM problem finds a natural formulation as a multistage stochastic pro-
gram (MSP), see Abdelaziz et al. (2007), Consigli and Dempster (1998), Geyer 
and Ziemba (2008), Mulvey and Ziemba (1998), Pflug and Świetanowski (1999), 
and Ziemba (2007). Alternatively, without a precise specification of underlying 
stochastic factors, robust optimization (RO) approaches allow for the introduc-
tion of uncertainty sets in which the problems’ random parameters are assumed 
to vary, see (Ben-Tal et al. 2000) and more recently (Gülpinar and Pachamanova 
2013). Distributionally robust optimization (DRO) methods have been proposed 
in recent years, where the uncertainty model doesn’t require the specification of 
a probability measure, as further clarified below in this introduction. Finally, pre-
serving an assumption of a continuous probability space, different formulations 
of a dynamic stochastic control (DSC) problem are possible.

In this article we assume a continuous probability distribution and consider 
an open-loop predictive control approach to solve the problem through a semi-
definite programming formulation which is extended to accommodate a chance 
constraint on the PF funding ratio. The chance-constrained DSC method we con-
sider finds its rationale in the context of an ALM problem formulation, as we try 
to make clear in what follows.

As for existing approaches, in the presence of realistic PF ALM problem 
instances, MSP formulations are able to accommodate a rich set of assumptions 
and market details, see Consigli et al. (2017), Duarte et al. (2017) and Moriggia 
et al. (2019), and they have also been formulated with probabilistic constraints, 
starting with (Haneveld et  al. 2010) where integrated chance constraints (ICC) 
were introduced and then by Toukourou and Dufresne (2018). This problem 
formulation, due to the discrete scenario tree representation, is known to face a 
possible curse of dimensionality, the problem’s in-sample instability (Kaut and 
Wallace 2007) and approximation errors (Maggioni and Pflug 2016, 2019). The 
first two represent a non trivial trade-off with significant numerical implications. 
Furthermore in presence of specific modeling and statistical assumptions for sce-
nario tree generation, MSP approaches carry a significant model risk that may 
lead to inefficient decision processes. Within a discrete multistage model, ICC 
have proven effective in terms of accuracy and flexibility (Duarte et al. 2017).

An alternative is represented by RO methods, in which uncertain problem coef-
ficients are constrained to be inside deterministic uncertainty sets. This approach 
was recently applied to a dynamic ALM problem by Gülpinar and Pachamanova 
(2013) and specifically to a PF problem by Pachamanova et al. (2016) and Iyengar 
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and Ma (2016). In Pachamanova et al. (2016) a comparison with an MSP formu-
lation and solution method was also presented. Following (Pachamanova et  al. 
2016), the PF problem can be reformulated in a convex way and efficiently solved 
with interior-point methods. In Iyengar and Ma (2016) the authors, noticeably in 
this context, extend the approach to propose a chance constrained robust model. 
Chance constraints are here approximated by a Bonferroni inequality leading, as 
common in RO problems, to a second-order conic programming (SOCP) formu-
lation. A possible drawback of RO models has emerged however due to the diffi-
culty to accommodate long-term market dynamics in a consistent uncertainty set 
specification, often leading to very conservative portfolio policies with poor out-
of-sample performance (Consigli et al. 2016a). In this article, we approximate a 
chance constraint on the FR through a Čebyšëv inequality.

The drawbacks of the previous two approaches may in principle be overcome 
through distributionally robust optimization (DRO) methods pioneered in Zácková 
(1966). The DRO approach can be regarded as a generalization of MSP and RO, 
accounting for both the decision maker’s attitude to risk and ambiguity. A grow-
ing literature in this direction both from theoretical and applied point of view can 
be found in Chang et al. (2017), Consigli et al. (2016b) and Liu et al. (2018), also 
specifically for financial management problems but mostly limited to the solution 
of static, one-period, problems (Pflug and Wozabal 2007; Delage and Ye 2010; 
Paç and Pınar 2014; Zhu and Fukushima 2009). To date dynamic DRO approaches 
have typically considered adaptive decisions in the form of so-called decision rules 
(Georghiou et al. 2015; Kuhn et al. 2011). Unfortunately the decision rules approxi-
mation is not suitable for a PF ALM problem formulation characterized by uncertain 
return coefficients multiplying adaptive decisions.

Going back to the risk factors’ continuous probability space assumption, sto-
chastic control approaches provide a viable methodology for purely asset alloca-
tion problems but have not been previously applied to ALM PF problems, primarily 
because of the unrealistic limits they impose on the decision space. Yet, following 
(Herzog et  al. 2006) where a model predictive control was applied to a dynamic 
asset allocation problem with Value-at-Risk (VaR) constraints, this approach, even if 
very occasionally, has been applied to financial decision problems. An optimal con-
trol formulation based on a specific affine parametrization of the recourse policy, for 
instance, has been considered in Calafiore (2008) for a multi-period financial asset 
allocation problem but yet with no liabilities involved, a short term planning horizon 
and no chance constraints.

In this article, along this line of research, we apply a linear plus open-loop 
recursive control approach to a constrained linear system with a chance constraint 
on the PF’s FR, rather than on the VaR, and show that this methodology is suit-
able to solve a sufficiently realistic and operational PF problem. We follow pretty 
closely the approach proposed in Primbs and Sung (2009) which, however, is 
extended to consider a probabilistic constraint on the PF solvency condition. As 
mentioned, the chance constraint is here approximated by a Čebyšëv inequality: 
this is a choice primarily motivated by the possibility to accommodate alternative 
distributional assumptions on assets’ return processes fixing only their mean and 
variance-covariance matrix, and also by the evidence that such approximation 
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may turn out to be conservative (Peng et  al. 2021), a positive feature in pres-
ence of a risk control problem. We present a set of evidences in a case-study on 
this very point. Alternative formulations of probabilistic constraints may employ 
either other types of inequality (Iyengar and Ma 2016; Peng et al. 2021) or imple-
ment directly some form of cardinality constraints (Curtis et al. 2018).

The chance constraint on the FR is further motivated by the evidence that none 
of previous modelling efforts tackled in a sufficiently effective and realistic way 
the regulatory constraints that in practice affect any operational PF problem: the 
sector’s social implications indeed over the years (EIOPA 2018; OECD 2011) 
have led in most advanced pension systems to the introduction of minimal PF 
funding levels.

To the best of our knowledge, the approach developed in this article, has never 
been applied to a PF ALM problem, despite the centrality of the PF solvency con-
straints and the need to combine the very long maturity of open PF liabilities with 
a tight short-term control of the PF solvency. The main motivations of the proposed 
approach, specifically related to this class of Institutional ALM problems can be 
summarized:

• Its long-term nature: the PF liabilities span several decades and uncertainty over 
future cash-flows increases greatly as the planning horizon increases.

• The employed roll-over online optimization approach helps combining long-
term liability evaluation with an effective control of short-term funding condi-
tions, under an assumption of continuous uncertainty.

• Indeed, to limit the associated model risk, the presented methodology relies on 
the specification of a white noise process including several possible parametric 
representations.

• The resulting optimal strategies aim at stabilizing and preserving the PF long-
term solvency. In the short and medium term we approximate the ambiguous 
chance constraints (Erdoğan and Iyengar 2006) on the fund’s solvency condition 
by Čebyšëv inequalities. Notice that the formulation of the funding constraint in 
probabilistic form has strong operational and practical motivations and it is fully 
justified by the market authorities’ monitoring process (OECD 2008).

Our contributions to the state-of-the-art in this application domain may be summa-
rized. From a methodological viewpoint: (1) we extend (Calafiore 2008; Primbs and 
Sung 2009) to account for chance constraints on the funding level and (2) we tackle 
through an on-line approach a realistic dynamic PF ALM problem with continuous 
uncertainty. From an application viewpoint, the adoption of a generic random white 
noise process as generator of the underlying uncertainty helps analysing the ex-post 
implications of alternative market conditions on the optimal policy, and at the PF 
funding level. The presented approach, thus (3), allows the estimation of the optimal 
policy sensitivity to a relaxation of the FR constraint under different PF manager 
risk attitude assumptions. In the section devoted to the computational results, we 
analyze a set of in-sample evidences to validate the approach and then benchmark 
out-of-sample, the resulting optimal policies against a set of commonly adopted 
portfolio strategies in the pension market.
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The paper is organized as follows: Sect. 2 describes the defined benefit pension 
fund problem, Sect. 3 proposes the optimal control model with chance-constraints 
for the asset-liability management problem. Numerical results are presented in 
Sect. 4. Conclusions follow. Several subsections are introduced to frame the analysis 
more accurately and ease the model and methodology descriptions.

1.1  Notation

In what follows, ℝn denotes the space of real n-dimensional vectors, ℝn×n the space 
of n × n real matrices and ℝn×n

s
 the space of real n × n symmetric matrices. ℝ+ is the 

set of nonnegative real numbers. For A ∈ ℝ
n×n
s

 , A ≻ 0 ( A ≽ 0 ) means that A is posi-
tive definite (positive semi-definite) and Tr(⋅) denotes the trace operator. The identity 
matrix of order n is denoted with �

(n×n)
 and �

(n×n)
 denotes the matrix with all elements 

equal to 1. Let �j,j be a matrix of all 0’s, but the (j, j)-th element which is equal to 1, 
and Diag

(
a1,… , an

)
 a diagonal matrix with elements a1,… , an . Asterisks in a 

matrix denote symmetric elements.
Uncertainty is modeled by the probability space (ℝd,F,ℙ) , which consists 

of the sample space ℝd , the �−algebra F  and the probability measure ℙ . The ele-
ments of the sample space are denoted by � and are assumed to possess a tempo-
ral structure in that they are representable as � ∶=

(
�1,… , ��

)
 . The random vectors 

�t ∈ ℝ
dt , t ∈ T ∶= {1, 2,… , �} have marginal supports Ωt ∈ ℝ

dt where 
∑�

t=1
dt = d 

with constant dt ∶= d∕� . We define the history of the random vector up to time t 
as �t ∶=

(
�1,… , �t

)
 . Furthermore for each t, we introduce the information set Ft 

which corresponds to the �-algebra generated by �t (with Ft ⊆ F
t+1 ). We denote 

random variables by bold letters and the expectation operator by �[⋅] . Expectation 
conditional on the filtration Ft is denoted �

[
⋅|Ft

]
 . With P we denote a family of 

probability measures such that ℙ ∈ P which share some common properties. We 
distinguish between an investment horizon T  and a (more-extended) liability val-
uation horizon beyond � , i.e. 𝜏Λ ≫ 𝜏 , TΛ ∶=

{
1, 2,… , �Λ

}
 . This distinction helps 

separating the liability evaluation from the core optimal control problem investment 
horizon. The asset universe of the fund is assumed to include a cash account and a 
set I ∶= {1,… , I} of liquid assets (government and corporate bonds and stocks).

2  The defined benefit pension fund problem

Defined benefit (DB) pension plans are still characterizing the majority of the pen-
sion systems in advanced economies despite an ongoing prevalent transition to 
defined contribution (DC) schemes. In a DB plan the retirement income depends 
on the accumulation phase and on the length of the contribution history; however 
it does not depend on the market performance of the pension fund. Accordingly the 
PF manager of a DB scheme carries the risk of the portfolio under-performing the 
market, since the pensions to be delivered depend on a precise mathematical and 
actuarial salary fraction. Of primary importance to the portfolio manager will then 
be the dynamic evolution of the fund’s asset to liability ratio, or funding ratio (FR): 
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the (market) value of the investment portfolio, sometimes referred to as the plan 
portfolio, must be sufficient to cover the value of the fund liabilities. The PF man-
ager seeks an investment policy able, together with the active members contribu-
tions, to generate the liquidity needed to cover current and perspective retirement 
obligations. This is the primary constraint imposed on institutional portfolios by 
international regulatory bodies (Parliament 2009).

The PF model develops around the definition of the FR. Let �t ∶=
Xt

�t

 , where Xt 
denotes the portfolio market value and �t the Pension Fund liability, or Defined Ben-
efit Obligation (DBO) at time t ∈ T  . If �t is greater (lower) than 1, the pension 
fund’s current asset will be sufficient (insufficient) to cover the present value of the 
future pension obligations. The PF will accordingly be overfunded (underfunded). A 
FR close to 1 will characterize a fully funded PF. Notice that a FR below 1 would not 
necessarily imply a liquidity deficit exactly as an overfunding condition would not 
imply a liquidity surplus: the PF manager will have to monitor both the cash condi-
tion of the fund as its funding status. For occupational pension funds we consider in 
the model formulation, Solvency II-type of constraints that in case of excessive 
underfunding force the PF to recapitalize with a given time tolerance. Under these 
assumptions, rather than almost-sure constraints as in MSP formulations (Consigli 
et al. 2017), it is natural to consider a chance constraint on the funding condition. 
Consistently with DB conventions, we assume pension liabilities generated exoge-
nously and come back to their estimation later in Sect. 4.2 after discussing the core 
investment planning problem.

The pension fund liquidity in stage t is determined by the difference between ben-
efits (outflows) and contributions (inflows). We represent this uncertain stream of 
payments with the stochastic process l ∶=

{
lt

}
, t ∈ T  where lt is the net payment 

over the period between t and t + 1 , that we assume liquidated at time t + 1 . The 
process l is typically estimated by PF actuarial divisions and its evolution is influ-
enced by several random factors, such as mortality rates, inflation, interest rates, sal-
ary growth. Following (Lauria 2017) and as further clarified below, we define l as a 
random process driven by demographic and economic variables.

Following a simple regulatory approach, we assume a given, exogenous, FR 
threshold � and define ��

t
∶= ��t . An almost sure (a.s.) constraint, often adopted 

in PF models (Consigli et al. 2017), on the FR would read Xt ≥ ��

t
 a.s., for t ∈ T  . 

Given the time tolerance and the flexibility governing real-world recapitalization 
measures, however, as (Iyengar and Ma 2016; Duarte et al. 2017) we propose in this 
article a more realistic approach based on a chance constraint on the funding condi-
tion of the PF:

Through constraint (1) we introduce in the model a delicate trade-off between the 
funding level � and the tolerance � ∈ [0, 1] . Independently from the regulatory con-
straints on the FR, PF managers will in general select a target funding level and 
depending on the market phase relax through � the policy constraint. On the other 
hand, given � and � , at t = 1 the portfolio manager will typically make sure that 
such constraint will not be binding. See on this point the computational evidences 

(1)ℙ
[
(��

t
− Xt) ≤ 0

]
≥ 1 − �, t ∈ T.
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produced in Sect.  4. While the PF liability �t is determined exogenously, the invest-
ment portfolio Xt is endogenous to the optimal policy and includes all assets and the 
cash position.

2.1  Model of uncertainty

We focus briefly on the uncertainty model statistical assumptions over T  . The fol-
lowing random vector process � ∶=

{
�t
}
t∈T

 , with

will determine the uncertainty over the investment horizon, where the random pro-
cess rl,t ∶=

lt+1

lt

− 1 defines the relative change in net pension payments. We assume 
that � follows a process with given constant mean � ∶=

[
�0,�1,… ,�I ,�l

]
 and given 

variance-covariance matrix Σ , and to know only this information on the probability 
distribution. We introduce I + 2 uncorrelated white noise processes 

{
wj,t

}
t∈T

 , for 
j = 1,… , I + 2 , with unit variance, i.e. �

[
wj,t

]
= 0 , �

[
w
2
j,t

]
= 1 , �

[
wj,t,wi,t

]
= 0 for 

j ≠ i , ∀t ∈ T  and define � relying on Σ Cholesky decomposition. Let Γ ∶= [�i,j] be 
the lower-triangular matrix of the Cholesky decomposition Σ = Γ⊤Γ , then we write 
asset returns and relative liability changes, for t ∈ T  , as:

We make the following remarks: 

 (i) From (3) the net benefits relative increments evolve with a constant mean �l : 
this coefficient will be implied out from the benefits’ dynamic generated by an 
exogenous liability model. In an open fund the evolution of those cashflows 
is proportional to the evolution of the old-age dependency ratio DR for given 
average contribution and benefit rates. Net benefits are assumed uncorrelated 
with asset returns and driven by the PF liabilities. Their evolution over T  
will determine the PF cash requirements over the medium term � , while their 
dynamic over T� will determine the PF current DBO.

 (ii) Notice that the only distributional assumption made is that the random vari-
ables wj,t are independent and identically distributed (i.i.d.). Thus we only 
require that the process � belongs to the class of processes with given first and 
second central moments � and Σ . Both statistical models (2) and (3) assume a 
relatively standard set of random diffusion processes, whose market consist-
ency may be questioned in specific market phases (Kolm et al. 2014).

�t ∶=
[
r0,t, r1,t,… , rI,t, rl,t

]

(2)ri,t = �i +

i+1∑
j=1

�i+1,jwj,t i ∈ {0, 1,… , I},

(3)rl,t = �l +

I+2∑
j=1

�I+2,jwj,t
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 (iii) The coefficients of the asset return process (2) are estimated directly through 
sample statistics from market data with weekly frequency. The correlation 
matrix is also estimated directly from data. We present in Appendix A the 
asset returns mean and standard deviation estimates when employing maxi-
mum likelihood (ML) estimation. We also compare the correlation matrix with 
two matrices based on copula functions. The presented evidences support the 
adopted statistical characterization of the return process. In Sect. 2.2 here next, 
we clarify how the random processes for asset returns and liability costs do 
determine the asset and liability portfolio dynamics.

2.2  Asset and liability dynamics

The investment strategy is determined by the amounts xi,t invested in each asset 
i ∈ I  after rebalancing at t ∈ T  , plus cash x0,t . We suppose that the pension fund 
starts with an initial amount xi,1 invested in the i-th asset and an initial cash sur-
plus. The portfolio evolution is denoted with 

{
xt

}
t∈T

 where:

We assume a control process 
{
ut

}
t∈T

 adapted to the filtration 
{
F

t
}
t∈T

 defined by 
a sequence of trading (rebalancing) decisions, with buyings x+

i,t
 and sellings x−

i,t
 at 

times t:

When selecting the portfolio allocation, the portfolio manager knows the value of 
the PF obligation and we assume that she/he will look for an optimal portfolio pol-
icy able to preserve or recover a stable funding condition over the next few years. 
As time progresses, she/he will reformulate the problem relying on realized market 
values and PF members dynamics but always facing a residual uncertainty.

To quantify the random dynamics of the plan portfolio, consider the process 
r0 ∶=

{
r0,t

}
t∈T

 for the short interest rate on the cash account and ri ∶=
{
rit

}
t∈T

 
for the total return process of the i-th asset over t to t + 1 . The portfolio evolution 
over time is determined by market returns and rebalancing decisions:

At t = 1 the PF manager will sell from the initial portfolio or buy new assets to 
determine the initial optimal portfolio allocation.

The cash balance evolution depends on rebalancing decisions and net pension 
payments: at t = 1 a cash surplus is assumed (net of pensions and contributions). 
We also assume constant transaction costs �+

i
 and �−

i
 on buying and selling deci-

sions. Given an initial cash surplus x0,1 = x̄0,1 , the cash balance evolution is:

xt ∶=
[
x0,t, x1,t,… , xI,t

]⊤
, t ∈ T.

ut ∶=
[
x
+
1,t
,… , x+

I,t
, x−

1,t
,… , x−

I,t

]⊤
, t ∈ T.

(4)xi,t+1 =
(
1 + ri,t

)(
xi,t + x

+
i,t
− x

−
i,t

)
, t ∈ T ⧵ {�}, i ∈ I.
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The plan portfolio Xt ∶=
∑I

i=0
xi,t is evaluated at time t after rebalancing and it will 

drive the funding ratio FR, while (5) will determine the PF liquidity gap: in presence 
of excessive net benefit payments lt , the PF manager will start selling assets, in this 
way affecting the FR. Based on (2)-(3), we can write the inventory balance equa-
tions (4) and (5) as:

and

Finally, we add a new equation describing the evolution of 
{
lt

}
t∈T

:

We can now introduce the state variable vector �
t
∶=

[
x0,t,… , x

I,t, lt

]⊤
∈ ℝ

I+2, t ∈ T  
and define the assets evolution of the pension fund through the linear system:

where the matrices A,B,Cj and Dj are defined as follows:

(5)x0,t+1=
(
1+r0,t

)[
x0,t+

I∑
i=1

(
1−�−

i

)
x
−
i,t
−

I∑
i=1

(
1 + �+

i

)
x
+
i,t

]
− lt, t ∈ T ⧵ {�}.

(6)

x0,t+1 =
(
1 + �0

)
x0,t +

I+2∑
j=1

�1,jwj,tx0,t+

−

I∑
i=1

[(
1 + �+

i

)((
1 + �0

)
x
+
i,t
+

I+2∑
j=1

�1,jwj,tx
+
i,t

)]

+

I∑
i=1

[(
1 − �−

i

)((
1 + �0

)
x
−
i,t
+

I+2∑
j=1

�1,jwj,tx
−
i,t

)]
− lt, t ∈ T ⧵ {�},

(7)

xi,t+1 =
(
1 + �i

)
xi,t +

I+2∑
j=1

�i+1,jwj,txi,t +
(
1 + �i,t

)
x
+
i,t
+

I+2∑
j=1

�i+1,jwj,tx
+
i,t

−
(
1 + �i

)
x
−
i,t
−

I+2∑
j=1

�i+1,jwj,tx
−
i,t
, i ∈ I, t ∈ T ⧵ {�}.

(8)lt+1 =
(
1 + �l

)
lt +

I+2∑
j=1

�I+2,jwj,tlt, t ∈ T ⧵ {�}.

(9)�t+1 = A�t + But +

I+2∑
j=1

[
Cj�t + Djut

]
wj,t, t ∈ T ⧵ {�},

(10)A ∶=

⎡⎢⎢⎢⎣

1 + �0 0 … − 1

0 1 + �1 … 0

⋮ ⋱ ⋮

0 … 1 + �l

⎤⎥⎥⎥⎦
,
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where

We consider next a possible formulation of the PF investment problem as a con-
strained stochastic control problem with state and control multiplicative noise and, 
following the approach in Primbs and Sung (2009), solve it as a semidefinite pro-
gramming problem. We then consider the problem refinement induced by a chance 
constraint on the funding ratio.

3  Optimal pension fund asset‑liability management

The following sequence of non-anticipative portfolio recourse decisions, shortly invest-
ment policy, and liability, or DBO values, is considered in the decision process:

The portfolio strategy is expected to preserve the PF liquidity and at the same time 
to comply with the constraint on the FR. We assume a risk-averse PF manager with 
mean-variance preferences and formulate the decision problem with an objective 
function based on a trade-off between a maximum growth problem and the mini-
mization of the squared difference between a portfolio value trajectory and a target 
portfolio path Gt . The objective function reads:

(11)

B ∶=

⎡⎢⎢⎢⎣

−
�
1 + �0

���
1 + �+

1

�
,… ,

�
1 + �+

I

�� �
1 + �0

���
1 − �−

1

�
,… ,

�
1 − �−

I

��
Diag

�
1 + �1,… , 1 + �I

�
− Diag

�
1 + �1,… , 1 + �I

�
[0]
(1×I)

[0]
(1×I)

⎤⎥⎥⎥⎦
,

(12)Cj ∶= Diag
(
�1,j, �2,j,… , �I+2,j

)
, j = 1,… , I + 2,

(13)Dj ∶=

⎡
⎢⎢⎢⎣

−d+
j

+ d−
j

Diag
�
�2,j,… , �I+1,j

�
− Diag

�
�2,j,… , �I+1,j

�
[0]
(1×I)

[0]
(1×I)

⎤
⎥⎥⎥⎦
, j = 1,… , I + 2,

d+
j
=
[(
1 + �+

1

)
�1,j,… ,

(
1 + �+

I

)
�1,j

]
, j = 1,… , I + 2,

d−
j
=
[(
1 − �−

1

)
�1,j,… ,

(
1 − �−

I

)
�1,j

]
, j = 1,… , I + 2.

initial state of the system (portfolio,liability, FR)
(
�1,�1,�1

)
→ …

→ (rebalancing) decision
(
u1

)
→ observation

(
�1
)
→ state

(
�2,�2,�2

)
→ …

→ … state
(
�t−1,�t−1,�t−1

)
→ decision

(
ut−1

)
→ observation

(
�t−1

)
→

→ state
(
�t,�t,�t

)
⋯ → final state

(
��,�� ,��

)
.

(14)J� (�, u) ∶=

�∑
t=1

[
��

[
−�t

]
+ (1 − �)�

[(
�t − Gt

)2]]
,
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where, in the given set-up, different specifications of � ∈ [0, 1] will span alternative 
trade-offs and risk profiles; the definition of the target function Gt can be calibrated 
by the PF manager to reflect a DBO evolution and ease the satisfaction of the chance 
constraint. Alternatively, as mostly the case in many applications, the target function 
will reflect a desirable portfolio return path. The relevance of such trade-off will be 
tested in the case study.

We consider a general quadratic objective function, which in matrix form reads 
as follows:

with

qt ∶=
(
−� + 2�Gt−2Gt

)[
𝟙

(1×(I+1))
0
]
∈ ℝ

I+2, and q0
t
∶= G2

t
∈ ℝ.

Eq. (15) is minimized, given the linear system (9) and, for t ∈ T  , a set of no-
short selling xi,t ≥ 0, i = 0,… , I and technical constraints on the control vari-
ables: namely ut ≥ 0 , and x−

i,t
≤ xi,t , i ∈ I  which can be rewritten as:

where:

3.1  Open‑loop control formulation with linear feedback

Consider now the objective function (15), the liability and return dynamics, 
respectively in (8) and (9), and the policy constraints (16). Here next we formal-
ize the system dynamics once a feedback rule is considered as control function.

To this aim let �∗
t
∶=

[
x∗
0,t
,… , x∗

I,t
, l∗
t

]⊤
 be the initial conditions at time t and x̄k

:=�
[
�k|Ft

]
 be the conditional expectation of the state vector with respect to the 

filtration Ft (see Primbs and Sung 2009). For k = t + 1,… , t + � − 1 , we denote 
with uk the control vector.

(15)J𝜏(�, u) ∶=

𝜏∑
t=1

�
[(
�⊤
t
Q�t + qt

⊤�t + q0
t

)]
,

Q ∶= (1 − �)

[
𝟙

((I+1)×(I+1))
0

0 0

]
∈ ℝ

(I+2)×(I+2)
s

,

(16)F

[
�t
ut

]
≤ [0],

F ∶=

⎡⎢⎢⎢⎢⎢⎣

−�
((n−1)×(n−1))

[0]
((n−1)×(1))

[0]
((n−1)×m)

[0]
(m×(n−1))

[0]
(m×1)

−�
(m×m)�

[0]
(
m

2
×1)

, −�
(
m

2
×(n−2))

�
[0]
(
m

2
×1)

�
(
m

2
×m)

⎤⎥⎥⎥⎥⎥⎦

.
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We can now define the following finite horizon control problem, in which the 
vector uk is specified as the sum of the open-loop controls ūk and a linear feedback 
function Kk

(
�k − x̄k

)
 . We denote this problem formulation by �

(
�∗
t
, �
)
:

where the minimization is taken over ūk , for k = t, ..., t + � and Kk , for 
k = t + 1, ..., t + �.

Let’s summarize the key elements of problem (17–22):

• The optimal policy in �
(
�∗
t
, �
)
 is based on the specification, for k = t,… , t + � , 

of the controls uk as the sum of the open-loop controls ūk and a linear term 
Kk

(
�k − x̄k

)
.

• Equation (21) focuses on the feedback rule: given an initial control u1 at subse-
quent stages the optimal control policy will react to deviations from a mean port-
folio allocation depending on the multiplicative factor Kk : this acts as a mean-
reverting coefficient that will drive the speed of the adjustments so to minimize 
the quadratic cost function.

• We see that for k = t,… , t + � − 1 , the mean portfolio evolution can be deter-
mined as x̄k+1 = Ax̄k + Būk.

• The portfolio evolution is stochastic and determined in each stage, for given con-
trols and linear operators A,B,Cj,Dj , by a continuous source of uncertainty wj,k 
for all j, k.

• The constraint (22) forces the investment strategy not to go short but only in 
expectation: this relaxation of the no short-selling condition helps taking full 
advantage of the convergence speed of semidefinite programs’ algorithms. 
Notice however, that short positions are allowed only after the initial allocation: 
indeed throughout the case study, consistently with PF practice, no short posi-
tions are allowed at t = 1.

(17)min�

[
t+𝜏∑
k=t

(
�⊤
k
Q�k + q⊤

t
�k + q0

t

)||||F
t

]

(18)
s.t.:

�t = �∗
t

(19)�k+1 = A�k + Buk +

I+2∑
j=1

[
Cj�k + Djuk

]
wj,k, k = t,… , t + � − 1,

(20)ut = ūt,

(21)uk = ūk + Kk

(
�k − x̄k

)
, k = t + 1,… , t + 𝜏,

(22)�

[
F

[
�k
uk

]||||F
t

]
≤ [0], k = t,… , t + �,
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• The solution of the problem depends on � and the initial states �∗
t
 . For every instance 

of �(�∗
t
, �) , before t all statistical coefficients are assumed constant and to trace the 

market evolution, they are updated as t increases when a new problem is formu-
lated.

3.2  Semidefinite program formulation

The solution of problem (17–22) leads to the definition of the optimal control ūt to 
be implemented by the pension fund manager. Once new information on returns 
and payments becomes available at time t + 1 , a new vector of initial conditions 
�t+1 =

[
x0,t+1,… , xI,t+1, lt+1

]⊤ will be computed, and the next control ūt+1 obtained by 
solving the optimization problem �

(
�∗
t+1

, �
)
.

We first show that key quantities, such as the mean and covariance processes, can be 
characterized in a convex manner. We then use these results to formulate the finite hori-
zon optimization �

(
�∗
t
, �
)
 in the receding horizon approach as a semi-definite program. 

The significance of a semi-definite programming formulation is that the on-line opti-
mizations are relatively tractable, indicating that real time implementation is possible.

Let Ψk:=�
[(
�k − x̄t

)(
�k − x̄k

)⊤] be the conditional variance-covariance matrix. 
From the first period t, we have:

For k > t the evolution of the variance-covariance matrix is:

Under the assumption that Ψk ≻ 0 , k = t,… , t + � − 1 , and defining Uk ∶= KkΨk , an 
upper bound on Ψk can be expressed, by using Schur complements, as the following 
linear matrix inequalities:

(23)Ψt+1 =

I+2∑
j=1

(
Cjx̄t + Djūt

)(
Cjx̄t + Djūt

)⊤
.

(24)

Ψk+1 =
(
A + BKk

)
Ψk

(
A + BKk

)⊤

+

I+2∑
j=1

(
Cj + DjKt

)
Ψk

(
Cj + DjKk

)⊤

+

I+2∑
j=1

(
Cjx̄k + Djūk

)(
Cjx̄k + Djūk

)⊤
, k = t + 1,… , t + 𝜏 − 1.

(25)

⎡⎢⎢⎢⎢⎣

Ψt+1 ∗ … ∗�
C1x̄t + D1ūt

�⊤
1 … 0

⋮ ⋮ ⋱ ⋮�
CI+2x̄t + DI+2ūt

�⊤
0 … 1

⎤
⎥⎥⎥⎥⎦
≽ 0,
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Notice that both the mean and covariance have been characterized in a convex 
manner as in (24), (25) and (26). Analogous bounds on the variance-covariance 
matrix of vector [�k, uk] can be obtained by introducing matrix variables Pk , for 
k = t,… , t + � , such that:

We partition each matrix Pk , for k = t,… , t + � in three blocks Px
k
∈ ℝ

n×n , 
Pxu
k

∈ ℝ
m×n , Pu

k
∈ ℝ

m×m such that:

Equation (27) can be rewritten as a linear matrix inequality using Schur comple-
ments. When k = 1 we can write:

For k = t,… , t + � − 1 , we obtain:

Finally, when k = t + � we do not have controls and equation (30) can be replaced 
by:

(26)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψk+1 ∗ ∗ … ∗ ∗ … ∗�
AΨk + BUk

�⊤
Ψk ∗ … ∗ ∗ … ∗�

C1Ψk + D1U
⊤
k

�
0 Ψk … ∗ ∗ … ∗

⋮ ⋮ ⋮ ⋱�
CI+2Ψk + DI+2Uk

�⊤
0 0 … Ψk ∗ … ∗�

C1x̄k + D1ūk
�⊤

0 0 … 0 1 … ∗

⋮ ⋮ ⋮ ⋮ ⋱�
CI+2x̄k + DI+2ūk

�⊤
0 0 … 0 0 … 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≽ 0,

for k = t + 1,… , t + 𝜏.

(27)

Pk ≽ �

[[
�k
uk

][
�⊤
k
, u⊤

k

]]

= �

[[ (
�k − x̄k

)
+ x̄k

ūk + Kk

(
�k − x̄t

)
][ (

�k − x̄k
)
+ x̄k

ūk + Kk

(
�k − x̄k

)
]⊤]

=

[
x̄k
ūk

][
x̄k
ūk

]⊤
+

[
Ψk

Uk

]
Ψ−1

k

[
Ψt

Uk

]⊤
.

(28)Pk ∶=

[
Px
k

(
Pxu
k

)⊤
Pxu
k

Pu
k

]
.

(29)
⎡⎢⎢⎣

P1

�
x̄1
ū1

�

�
x̄⊤
1
, ū⊤

1

�
1

⎤⎥⎥⎦
≽ 0.

(30)

⎡⎢⎢⎢⎣

Pk

�
Ψk

Uk

� �
x̄k
ūk

�

�
Ψk,U

⊤
k

�
Ψk 0�

x̄⊤
k
, ū⊤

k

�
0 1

⎤
⎥⎥⎥⎦
≽ 0.
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The auxiliary matrices Px
k
 enable us to rewrite the objective function (17) as:

Problem (17–22) can now be replaced by the following semi-definite program 
�
(
�∗
t
, �
)
 , for k = t,… , t + �:

This problem can be efficiently solved for practical choices of the finite horizon � 
and number of assets I in the investment universe thanks to the reformulation as a 
semi-definite program. The investment horizon of the PF manager is � , based on 
financial and economic motivations as well as operational practice. Here the focus 
is on a relatively frequent rebalancing assumption and a medium term investment 
horizon, which allows a tight control of the PF FR. For regulatory purposes � does 
not need to be consistent with the pension fund population expected lifetime. In the 
problem formulation, consistently with the adopted DB scheme, liabilities are exog-
enous to the optimal control, which, instead, depends on the random asset returns r . 
These are characterized by a mean vector and variance-covariance matrix, estimated 
from past data: for each t the elements 

[
�0,�1,… ,�I

]
 and [Σ]i,ji = 1,… , I + 1, j ≤ i 

are derived from historical returns.

3.3  Liability evaluation and chance constraints on the funding ratio

Let’s now focus on the liabilities. Net benefits l depend on economic factors and 
on PF members’ incoming and outgoing intensity. In presence of an open fund 
the active to passive members ratio will evolve over time according to generation 
dynamics. In this model the dependency ratio depends on mortality scenarios and 
the net benefits will be determined for given DR evolution, average benefit and con-
tribution rates, by the inflation process.

The computation of the PF DBO �t over T  relies on a Monte Carlo (MC) 
approach, where over a given long horizon �Λ and relying on a members’ updating 
rule and evolution of the term structure of interest rates, we determine future net 
benefits and the forward estimates of the liability value through a consistent dis-
counting process (EIOPA 2021). A simplified pension model is presented in Sup-
plementary Materials in which a single representative benefit class is assumed. A 
PF manager feasible investment policy must satisfy the chance constraint in eq. (1).

For every t ∈ TΛ , k > t we generate s = 1, 2,… , S sample paths l̂s,k and 𝜄s,k 
respectively for the net benefits l  and a technical discount rate � between t and 
t + �Λ . The net benefits l̂s,k are computed for constant contribution and benefit 

(31)
[
Px
𝜏
− Ψ𝜏 x̄𝜏
x̄⊤
𝜏

1

]
≽ 0.

(32)
t+𝜏∑
k=t

[
Tr
(
QPx

k

)
+ q⊤

k
x̄k + q0

k

]
.

(33)
min

x̄k ,ūk ,Uk ,Ψk ,Pk

(32)

s.t.: (22), (24), (25), (26), (30), (31).
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rates from given active and passive members’ scenarios. Then, the mean �l and 
the variance [Σ]I+2,I+2 will be estimated directly from l̂s,k for k = t,… , t + � + 1 
and s = 1,… , S . The net benefits are assumed uncorrelated with the asset returns. 
For every k = {t, t + 1,… , t + �} we have:

For every t we derive the set of estimates 
[
Λ

�

t ,… ,Λ
�

t+�

]
 needed, for every problem 

instance �
(
�∗
t
, �
)
 , to instantiate constraint (1).

Following Eq. (34) increasing interest rates in the economy will affect posi-
tively the PF liability, while longevity phenomena will carry a negative effect that 
may be compensated only by a decreasing DR. In recent years negligible or even 
negative interest rates in OECD economies together with longevity phenomena 
had a widespread negative impact on global PFs. This evidence provides an addi-
tional motivation to introduce a chance constraint on the FR.

The probabilistic constraint (1), which can be equivalently written as

can indeed be effectively approximated through a Čebyšëv inequality to complete the 
problem specification (32–(33). Consider the following conservative approximation 
of the set of chance constraints (1), based on the one-side Čebyšëv inequality (Pintér 
1989). For each k = t + 1,⋯ , t + � , let �2

X,k
 and �X,k be the variance and the mean of 

the portfolio value �k respectively. We have:

which, for k = t , is automatically satisfied. Now, since �2
X,k

= �
[
X
2
k

]
− �2

X,k
 , we have:

Due to (27) we have that Px
k
− �

[
�k�

⊤
k

]
≽ 0 , for k = t,… , t + � , which implies 

�
⊤Px

k
�
⊤ − �

⊤
�[�k�

⊤
k
]� ≥ 0 . It is straightforward to show that �⊤�[�k�⊤k ]� = �[�2

k
] , 

so that the following condition holds:

and in turn we have:

(34)Λ
𝜙

k
= 𝜙

�
1

S

S�
s=1

k+𝜏Λ�
j=k

l̂s,j∏j

h=k

�
1 + 𝜄s,h

�
�
.

(35)ℙ

[
(Λ

�

k
− Xk) ≥ 0

]
≤ �,

(36)ℙ

[
(Λ

�

k
− Xk) ≥ 0

]
≤

�2
X,k

�2
X,k

+
(
�X,k − Λ

�

k

)2
, k = t,… , t + �,

�2
X,k

�2
X,k

+
(
�X,k − Λ

�

k

)2
=

�2
X,k(

Λ
�

t

)2

− 2�X,kΛ
�

k
+ �

[
X
2
t

] .

(37)�
[
X
2
k

]
≤

I∑
i=0

I∑
j=0

[
Px
k

]
i,j
,
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By defining the variance of the i-th state variable at k with �2
i,k

 and the covariance 
between the i-th and the j-th state variables with �i,j,k , we can write the portfolio var-
iance at k as 𝜎2

X,k
=
∑I

i=0
𝜎2
i,k
+ 2

∑I

i=0

∑
j<i 𝜎i,j,k , which can be bounded as follows:

In conclusion, a conservative approximation of the set of chance constraints (1) is 
determined:

We evaluate in the numerical study the sensitivity of the optimal policy to the above 
chance constraint. Notice that the distributional assumptions on the mean and var-
iance-covariance matrix of the random process are updated in time. Alternative 
approaches to approximate the chance constraint on the FR can be considered as in 
Iyengar and Ma (2016) preserving the assumption of a continuous probability space: 
the adoption of Čebyšëv however is appropriate when considering a regulatory com-
pliance problem.

4  Computational evidence

We present an extended set of computational results to validate the proposed meth-
odology and discuss its main implications. The collected evidences span several 
aspects of the problem, since, to the best of our knowledge, this is the first time in 
which this optimal control methodology is extended to include a chance constraint 
approximation and applied to a pension fund ALM problem.

Here next let �
(
�∗
t
, �, � , �

)
 denote a problem instance specified at time t with ini-

tial portfolio xt , investment horizon � , risk-reward trade-off � and chance constraint 
tolerance � . We assess the effectiveness of the proposed approach to control the PF 
long-term funding conditions through the solution of a sequence of chance-con-
strained Strategic Asset Allocation (SAA) problems and evaluate the impact of alter-
native objective function specifications. Portfolio revisions occur in t = 1 and with 
quarterly frequency: accordingly � is defined in quarterly terms.

In this section we first summarize the main features of the adopted data set, its 
statistical properties and the initial funding conditions of the pension fund based on 
liabilities’ expected dynamics over a 30 year horizon i.e. �Λ = 120 quarters. We test 
two initial funding conditions of the PF: (i) a stressed case in which X1 = Λ

�

1
 and (ii) 

a standard, more operational, case in which at t = 1 the portfolio value is set slightly 

(38)
�2
X,k

�2
X,k

+
�
�X,k − Λ

�

t

�2
≥

�2
X,k�

Λ
�

t

�2

− 2�X,kΛ
�

k
+
∑I

i=0

∑I

j=0

�
Px
k

�
i,j

.

(39)𝜎2
X,k

=

I∑
i=0

𝜎2
i,k
+ 2

I∑
i=0

∑
j<i

𝜎i,j,k ≤

I∑
i=0

[
Ψt

]
i,i
+ 2

I∑
i=0

∑
j<i

[
Ψk

]
i,j
.

(40)

∑I

i=0

�
Ψt

�
i,i
+ 2

∑I

i=0

∑
j<i

�
Ψk

�
i,j�

Λ
𝜙

k

�2

− 2Λ
𝜙

k

∑I

i=0
x̄i,t +

∑I

i=0

∑I

j=0

�
Px
t

�
i,j

≤ 𝛼, k = t,… , t + 𝜏.
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above the minimal funding level � . Then after we present evidences on the solution 
of a SAA problem, which is extended through a rolling window approach for out-of-
sample backtesting, to span 10 years of market history.

Following the problem formulation (32) subject to the constraints from (33) to 
(40), when analysing a single problem solution, after the first stage t = 1 , the invest-
ment policy and the terminal portfolio distribution will depend on an optimal linear 
feed-back rule, the specified target function Gt and market conditions. Accordingly, 
we are interested to evaluate how alternative specifications of the white noise in (2) 
and (3) will affect the main solution outputs for given optimal linear feed-back. Con-
sistently with finance theory (Sornette et  al. 2000; Kolm et  al. 2014) and stylized 
market evidences (Barro et al. 2019; Xiong and Idzorek 2011), three random noises 
with increasing kurtosis are considered. We select in particular, a standard normal, a 
t-Student with 4 degrees of freedom and a Generalized Hyperbolic (GH) distribution 
with negative skewness; the three density functions are drawn in Fig. 1. The differ-
ent probability distributions are considered to verify by simulation the consistency 
of the optimal solutions and chance constraints tolerance with respect to alternative 
asset returns dynamics.

4.1  Data specification and experimental set‑up

In this case study, the asset universe I = {1,… , I} is composed by four Euro Area 
Government bond indices, Barcap Euro Gov Bond 1-3, 3-5, 7-10 and 30 year matu-
rity, and by three equity indices MSCI-Europe, MSCI-USA, MSCI-World. Results 
are presented relying on three asset classes for Money market, Bond and Equity, 
including respectively: Cash and Bond 1–3; Bond 3–5, 7–10 and 30 years; and the 
3 MSCI equity indices. We refer to “Appendix 5” for assets’ return statistics. Taking 

-8 -6 -4 -2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 1  Probability density functions for w defined on (ℝd ,F,ℙ),ℙ ∈ P under a standard nor-
mal, t-Student with 4 degrees of freedom and Generalised Hyperbolic distribution with parameters 
[�, �, �, �,�] = [−2.9, 0.58,−0.59, 2.9, 0]
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also into account the models’ statistical assumptions, the adopted investment uni-
verse may be representative of market spans by institutional investors focusing pri-
marily on bond and equity markets. It is thus not intended to describe investment 
domains of pension funds currently operating in global markets, that would typically 
include real estate assets as well as inflation-linked bonds. We see however that the 
adopted investment domain is sufficient to convey the main features of the approach 
presented so far. A standard 3 year investment horizon will be considered consist-
ently with medium term operational practice and strategic planning.

Correlation coefficients over the 10 years between equity markets are very high 
and indeed the US and World equity benchmarks are very highly correlated, leaving 
little space to diversification benefits. On the other hand those three equity indices 
may diverge in specific subperiods and be jointly included in optimal PF portfolios. 
We check such possibility in the out-of-sample section.

The problem has been implemented in MATLAB and solved relying on Mosek 
v.9, a software with a specialized interior-point solver for semi-definite programs, 
on a 3.4 GHz Intel Core i7 machine, with a RAM of 16 GH running Windows 10 
as operating system (ApS 2019). We present in Table 1 evidence on the problems 
dimension and solution times for different investment horizons, 2, 3 and 4 years 
(� ∈ {8, 12, 16}) respectively.

At current time t = 1 , given an estimate of the liability value Λ1 = 21.252 Mln 
Euros (determined with a valuation horizon �Λ = 120 quarters, or 30 years) and a 
funding level � = 0.9 , we assume an initial portfolio worth X1 = 19.125 Mln Euros, 
to reflect a stressed market condition. In Sect.  4.4 to assess the effectiveness of 
Čebyšëv inequality to approximate the chance constraint on the funding ratio, we 
assume also a less challenging, but operationally surely more realistic initial portfo-
lio of X1 = 20.189 Mln Euros, slightly above the funding level � . Transaction costs 
are set to �−

i
= �+

i
= 0.001 , for i = 1,… , I.

Following the average returns in Table 5, the target function Gt+j, j = 1,… , � in 
(14) is based on a 1% quarterly net return target: Gt+j = (1 + 0.01)jXt , net of current 
benefit costs. For t = 1 the 1% compounded return would determine over 3 years a 
target wealth of G12 = 21.552 Mln Euros.

Several results are presented first, for in-sample model validation, with respect to 
a single problem instance �

(
�∗
t
, �, � , �

)
 for different specifications of � ∈ {8, 12, 16} , 

� ∈ {0.1, 0.5, 0.9} and � ∈ {0.01, 0.02, 0.05} , and then extended through roll-
ing windows to span a 10 year period with resulting additional, in this case 

Table 1  Solution time, number 
of variables and constraints 
of one problem instance 
�
(
x
t
, �, � , �

)
 with I = 7 and for 

different choices of � = 8, 12, 16

� = 8 � = 12 � = 16

CPU solution time (s) 862 2555 3946
Number of scalar variables 3729 5637 7545
Number of conic variables 3433 5185 6937
Number of semidefinite vari-

ables (scalarised)
540280 1285606 2349028

Number of constraints 14339 22227 30115
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out-of-sample, results. Throughout, by forcing slightly its meaning, we denote as in-
sample all those evidences associated with optimal, model-based, problem solutions 
without any market-based validation and as out-of-sample the results collected, ex-
post, when evaluating a given strategy once market information becomes available. 
In-sample analysis aims primarily at checking the results consistency with the main 
problem assumptions thus for model validation, while out-of-sample backtesting 
intends to evaluate the what-if in case an optimal strategy is actually implemented 
over time, given observed market data.

By setting � ∈ {0.1, 0.5, 0.9} in (14) we derive different characterizations of the 
optimization problem: as � increases an increasing weight is on the expected wealth 
maximization objective and a decreasing weight on the squared difference with 
respect to the target. We analyse:

• The net benefits evolution, the associated dependency ratio and PF liability over 
a 30 year horizon;

• The optimal first stage decision �∗
1
 under alternative specifications of � , � and �;

• The evidence on chance constraints violation and target achievement likelihood 
from the portfolio distribution based on different white noise specifications and 
benchmarking different investment rules;

• The associated optimal investment policy over t = 1, ..., 12 , from the initial 
investment decision �∗

1
 , taken under full uncertainty, to the optimal controls over 

the investment horizon with respect to w in (2) and (3);
• The out-of-sample performance of the optimal policy over the 2008-2018 period 

against a representative set of investment policies.

Throughout the case study no policy bounds nor turnover constraints on the invest-
ment strategy, as would be canonical in PF management problems (Consigli et al. 
2017; Bertocchi et al. 2010; Blome S. 2007), will be imposed to facilitate the results 
interpretation. The only policy constraint we consider is the no short selling con-
straint to be satisfied in expectation, thus generating the semidefinite program 
formulation.

4.2  Liability evolution

We consider an open pension fund with an evolving number of active, 18 to 65-year 
old, and passive, beyond 65-year old members. The liability model (see Supplemen-
tary Materials and Lauria (2017)) accounts for stochastic mortality rates, inflation 
and discount rates. Every year new pensioners are replaced by new active mem-
bers according to an exponential distribution: incoming PF participants are younger 
than middle-age members. As mentioned in Sect.  3.3, the net benefits lt and the 
stream of liability values in (34) are then obtained by Monte Carlo simulation as 
l̂s,t, s = 1,… , S . We plot the mean, the mean +/- the standard deviation and the 
extreme scenarios of net pension payments in Fig. 2a, and of the dependency ratio, 
defined as the ratio of passive to active members multiplied by a hundred, in Fig. 2b. 
The resulting average mean value �l is equal to 0.0171 per quarter (see formula (3)).
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The evidence in Fig.  2 describes an increasing pension fund liability driven 
by a decreasing active to passive ratio. The PF DBO at t = 1 is computed as the 
expected value of net benefits over the following 30 years.

The estimated evolution of the DBO �t over the 2013 − 2017 period is dis-
played in Fig. 3. Such evolution will determine the PF funding condition at t = 1 : 
the PF is assumed to be underfunded with FR �1 = 0.9.

We show in the sequel that indeed the partition of the PF manager decision 
horizon in two parts: until � as investment horizon and until �Λ for liability evalu-
ation is consistent with a FR long-term improvement. The PF manager is assumed 
to seek an optimal risk-reward tradeoff according to the objective (14) and at 
the same time, through the chance constraints (40), preserve a sufficient funding 
condition.
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Fig. 2  Monte Carlo simulations of net pension payments (panel a), associated dependency ratio (panel b) 
over 30 years
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Fig. 3  Estimated 3 year DBO evolution, January 1, 2013 estimate
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4.3  Optimal initial portfolio

We present in Table 2 a comprehensive set of results on first stage optimal alloca-
tions for t = 1 : January 1, 2013 and different investment horizons � ∈ {8, 12, 16} , 
risk-reward trade-offs ( � ∈ {0.1, 0.5, 0.9} ), when no chance constraints are imposed 
on the funding ratio ( � = 1 ) or when such constraint is active and a tolerance 
� ∈ {0.01, 0.02, 0.05} is considered. The individual assets are aggregated into a 
Money market or Bond or Equity asset classes (see “Appendix 6” for detailed results 
with every investment opportunity).

We analyse the initial optimal allocation of a dynamic strategy as the three 
parameters �, � , � change. In principle we may expect an increasing risky alloca-
tion as � and � increase: we see indeed here below that for increasing � and, given � , 
increasing � the portion invested in bonds decreases in favour of equity investments 
and this tendency is even stronger as the investment horizon increases.

As relevant and sound financial evidence we see from Table 2, that:

• As � increases from 0.1 to 0.9: for � = 8 the fraction invested in equities increases 
respectively from 44% under � = 0.1 to 63% under � = 0.9 when � = 1 ; from 14% 
to 36% when � = 0.01 and from 39% to 49% when � = 0.05 . The associated short 
term money market and bond investments decrease in proportion. As the invest-
ment horizon increases to � = 16 we see that when � = 1 the equity investment 
increases from 55% under � = 0.1 to 83% under � = 0.9 ; for � = 0.01 from 41% 
to 49% and for � = 0.05 from 73% to 86% , money market and bond investments 
decrease in proportion. A similar pattern is observed when � = 12.

• The difference between the optimal portfolios with or without active chance 
constraints is remarkable as the risk-reward trade-off changes due to an increas-
ing � , thus reflecting a reduced focus on the target return function. When the 

Table 2  First stage portfolio composition for 4-3 and 2-year planning horizons, different chance con-
straints tolerances ( � ∈ {1, 0.01, 0.02, 0.05} ) and risk-reward trade-offs ( � ∈ {0.1, 0.5, 0.9})

� = 16 � = 12 � = 8

� � Money m. Bonds Stocks Money m. Bonds Stocks Money m. Bonds Stocks

0.1 1 0.45 44.22 55.33 9.55 49.61 40.84 4.46 51.02 44.52
0.01 0.75 57.68 41.58 0.23 60.41 39.36 6.30 79.84 13.86
0.02 0.41 41.75 57.84 0.33 55.83 43.84 0.04 70.09 29.87
0.05 0.17 26.99 72.84 0.37 48.75 50.88 0.40 60.74 38.86

0.5 1 0.35 33.20 66.45 7.99 49.88 42.13 0.33 45.32 54.35
0.01 0.01 47.10 52.89 0.10 59.15 40.75 7.39 74.78 17.84
0.02 0.08 40.11 59.81 0.31 55.87 43.82 1.42 81.18 17.40
0.05 0.19 27.71 72.10 0.39 49.22 50.39 0.15 59.56 40.30

0.9 1 0.13 17.15 82.72 0.15 12.45 87.40 0.12 36.49 63.39
0.01 0.14 50.73 49.13 0.12 58.12 41.76 0.01 64.32 35.67
0.02 0.20 44.00 55.81 0.09 49.74 50.17 8.40 68.14 23.47
0.05 0.03 14.21 85.76 0.03 37.85 62.13 0.00 50.83 49.17



989

1 3

Optimal chance‑constrained pension fund management through…

investment horizon increases to 4 years we see that the risky allocation becomes 
less sensitive to the chance constraints. As � increases from 0.01 to 0.05, fixed 
income allocations decrease in percentage and the equity allocation increases. 
Take � = 0.5 and � = 12 : at � = 0.01 the fixed income investment is around 
60% and goes down to 50% when � = 0.05 . It can be observed that even a small 
change from 0.01 to 0.02 has an impact on the first stage optimal portfolio com-
position. Similar patterns for the other investment horizons and risk-reward 
trade-offs. The sensitivity of the first stage optimal portfolio to variations of the 
chance-constraint tolerance reflects the effectiveness of the introduced approxi-
mation bounds.

• The maximum investment in bonds and money market is roughly equal 
to 85% of the portfolio value for � = 0.1, � = 0.01, � = 8 , while the maxi-
mum investment in equity, roughly 86% of the total portfolio value, occurs for 
� = 0.9, � = 0.05, � = 16.

• For � = 12 , under � = 0.1 or 0.5 and � = 0.01 , we observe, interestingly, that 
both optimal portfolios are close to the canonical 60 − 40 , bond–equity, fix-
mix strategic asset allocation often adopted by investment managers in practice. 
Looking closely at the solution output, we see that if no chance constraints are 
active then a relevant portion of the fixed income portfolio, though, is invested 
in the money market. This is interesting since we are considering a PF problem 
and for � = 0.1 the optimal strategy will be primarily determined by the squared 
difference with respect to the target. In this case, in absence of the chance con-
straint, the optimal portfolio will be more liquid. We see however in the next 
Sect. 4.4 that such investment policy will not be regulatory compliant.

Already in the first stage of a dynamic policy, the impact of the chance constraints 
on the optimal portfolio is relevant and indeed we see that a relaxation of the chance 
constraint tolerance from 0.01 to 0.05 affects the optimal first stage decision increas-
ingly as � and � increase.

We concentrate in what follows on the canonical 3 year horizon ( � = 12 ) and 
analyze more in detail the implications of the investment strategies on the funding 
condition.

We test the effectiveness of chance constraints approximations in the linear policy 
by simulating 5000 trajectories 

{
w
(s)
t

}12

t=1
 , s = 1,… , 5000.

4.4  Chance constraints tolerance and target wealth

The implications on the problem solution and resulting funding condition of a con-
servative approximation of chance constraints as in (40), are assessed by estimating 
ex-post the exceedance probabilities ℙ(Λ�

t − Xt) , as we vary the tolerance � and the 
objective function trade-off � , under different white noise parametric assumptions.

We consider two cases: 

1. An initial portfolio of X1
1
= 20.189 Mln Euros.
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2. An initial portfolio, as above, of X2
1
= 19.125 Mln Euros (see “Appendix 7”);

The rationale of the two alternatives can be found in the associated initial violation 
probabilities: in the first case ℙ

[
(Λ

�

1
− X2

1
) ≥ 0

]
= 0 while in the second 

ℙ

[
(Λ

�

1
− X1

1
) ≥ 0

]
= 1.

2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a)

2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(c)

2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(d)

2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(e)

2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

(f)

Fig. 4  Probability of chance constraint violations with � = 0.9 and with an initial portfolio 
X
1

1
= 0.95Λ0.9

1
 , under different assumptions on the noise distribution for � = 12 . Fixed mix are always 

bond–equity classes with money market or cash as part of the bond class
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We display in Fig. 4 the exceedance probabilities for a 3 year investment prob-
lem where the initial portfolio value is 95% of the liability value (case 1). In such 
a situation the portfolio manager wishes to preserve the funding condition slightly 
above regulatory constraints as is typically the case in an operational context. We 
show that for � = 0.5 the introduction of the chance constraints is critical to achieve 
a good funding condition relative to the � = 0.1 case. The evidence for � = 0.9 is not 
reported, being fully consistent with the � = 0.5 case. Those results are all model-
dependent: first the problem is solved under a specific combination of � and � or 
without chance constraints and either relying on the associated optimal investment 
policy or on a predetermined policy rule, then we estimate stage by stage, ex-post, 
depending on the white noise distribution, the proportion of scenarios (out of 5000) 
exceeding the tolerance.

The probability of violating the constraints are compared to three classical (non-
optimized) investment rules: a buy-and-hold equally weighted portfolio and two fix-
mix portfolios: 40% bonds and %60 stocks and 60% bonds and %40 stocks. Within 
each problem specification those policy rules are implemented directly leading to 
the results in Fig. 4.

The results presented in Fig. 4 provide immediate evidence of the effectiveness of 
the resulting optimal policies to comply with the regulatory constraint for different 
tolerance levels. The issue is now not how fast violation probabilities decrease but 
how effectively they are controlled by an optimal chance-constrained policy relative 
to the other cases.

From the plots in Fig. 4 we can surely confirm that under the different probabilis-
tic assumptions:

• In case of Gaussian white noise assumption, unlike in any other case, the viola-
tion probabilities remain at 0 over the entire 3-year investment horizon, under 
either � = 0.1 or 0.5.

• When assuming a t − LS assumption, the violation probabilities are consistent 
with the postulated tolerances throughout the investment horizon. As before 
unlike in the alternative cases.

• In the bottom two plots, under a skewed GH assumption, again unlike the alter-
native cases, violation probabilities are controlled over the investment horizon 
but exceed the tolerances by a certain degree.

Figure 4 provides evidence of the effectiveness and operational viability of the intro-
duced chance-constrained approximation. We refer to “Appendix 7” for a stressed 
PF funding condition (case 2).

4.4.1  Summary evidences

We focus here on the end of the investment horizon and the portfolio value dis-
tribution associated with different specifications of the white noise distribu-
tion w . Under the chance constraint least tolerance � = 0.01 and X1 = Λ

�

1
 we 

present in Fig.  5 the terminal wealth distributions generated by the solutions 
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�
(
�∗
t
, 12, � , 0.01

)
 , with � ∈ {0.1, 0.5, 0.9} together with the liability constraint 

Λ
�

12
 (vertical dashed red line), and the target portfolio value (vertical dashed blue 

line). In order to provide a more comprehensive set of evidences, we present in 
Table 3 an extended set of statistics. The results are collected for the case � = 0.1 
from the simulated optimal portfolio values at the horizon under alternative 
chance constraint tolerances � . We compare the optimal chance-constrained port-
folio in-sample results with two alternative fix-mix policies over the 12 quarters 
from 2013 to 2015.

The difference among the three portfolio distributions (Normal, t-student and 
Generalized Hyperbolic) are tolerable and indeed under any � the generated dis-
tributions exceed the target with different probability and satisfy the chance con-
straint tolerance. The GH distribution, as expected due to its fat tails and negative 
skewness, is the one which exceeds the most the 1% constraint violation tolerance 
( � = 0.01 ). Relative to the other chance-unconstrained cases, the model without 
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Fig. 5  Simulated optimal portfolios CDFs for � = 12 , � ∈ {0.1, 0.5, 0.9} and � = 0.01
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Table 3  Summary statistics of different portfolio return at the terminal stage, with � = 0.9 and on the 
top three sections an initial portfolio X1 = Λ

�

1
 and on the bottom three sections X1 > Λ

𝜙

1
 under alterna-

tive noise distributional assumptions for � = 0.1 : �
(
�∗
t
, 12, 0.1, �

)
 , with t = 1 on January 2013. Fixed mix 

40-60 and 60-40 respectively bond–equity

Model Expected return Standard 
deviation

Sharpe ratio q0.01(r
X

12
) q0.99(r

X

12
) Prob. of 

constraint 
violation

Normal distribution

P
(
�∗
t
, 12, 0.1, 0.05

)
0.271 0.070 3.871 0.079 0.412 0.013

P
(
�∗
t
, 12, 0.1, 0.02

)
0.270 0.049 5.480 0.128 0.358 0.003

P
(
�∗
t
, 12, 0.1, 0.01

)
0.286 0.040 7.06 0.152 0.3602 0.001

No chance constraints 0.356 0.169 2.105 − 0.053 0.742 0.058
Fixed Mix: 60–40 0.087 0.072 1.207 − 0.071 0.266 0.517
Fixed Mix: 40–60 0.053 0.087 0.615 − 0.138 0.267 0.667
t-Student distribution

P
(
�∗
t
, 12, 0.1, 0.05

)
0.272 0.100 2.706 − 0.022 0.482 0.044

P
(
�∗
t
, 12, 0.1, 0.02

)
0.270 0.073 3.683 0.044 0.412 0.020

P
(
�∗
t
, 12, 0.1, 0.01

)
0.285 0.065 4.394 0.051 0.437 0.015

No chance constraints 0.358 0.239 1.500 − 0.227 0.927 0.124
Fixed Mix: 60–40 0.086 0.101 0.856 −0.138 0.337 0.517
Fixed Mix: 40–60 0.053 0.122 0.438 −0.214 0.375 0.667
GH distribution

P
(
�∗
t
, 12, 0.1, 0.05

)
0.243 0.247 0.987 −0.426 0.734 0.133

P
(
�∗
t
, 12, 0.1, 0.02

)
0.248 0.169 1.464 −0.302 0.576 0.085

P
(
�∗
t
, 12, 0.1, 0.01

)
0.273 0.198 1.379 −0.237 0.662 0.059

No chance constraints 0.321 0.580 0.553 −1.031 1.421 0.238
Fixed Mix: 60–40 0.057 0.181 0.315 −0.292 0.528 0.517
Fixed Mix: 40–40 0.025 0.209 0.120 −0.385 0.579 0.667
Normal distribution

P
(
�∗
t
, 12, 0.1, 0.05

)
0.224 0.063 3.542 0.054 0.355 0.0012

P
(
�∗
t
, 12, 0.1, 0.02

)
0.209 0.045 4.655 0.077 0.291 0.0015

P
(
�∗
t
, 12, 0.1, 0.01

)
0.220 0.036 6.151 0.104 0.285 0.0017

No chance constraints 0.326 0.160 2.036 −0.064 0.699 0.018
Fixed Mix: 60–40 0.099 0.072 1.372 −0.064 0.282 0.1772
Fixed Mix: 40–60 0.066 0.088 0.753 −0.128 0.287 0.3552
t-Student distribution

P
(
�∗
t
, 12, 0.1, 0.05

)
0.223 0.090 2.473 −0.040 0.405 0.0051

P
(
�∗
t
, 12, 0.1, 0.02

)
0.209 0.066 3.171 0.010 0.342 0.012

P
(
�∗
t
, 12, 0.1, 0.01

)
0.219 0.057 3.880 0.020 0.342 0.0144

No chance constraints 0.326 0.222 1.471 −0.202 0.861 0.0624
Fixed Mix: 60–40 0.099 0.100 0.986 −0.135 0.354 0.2404
Fixed Mix: 40–60 0.065 0.121 0.543 −0.205 0.373 0.3956
GH distribution

P
(
�∗
t
, 12, 0.1, 0.05

)
0.198 0.327 0.605 −0.397 0.651 0.0840
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chance constraints has the least constraint violations when the objective param-
eter � is set equal to 0.1.

The evidences in Fig. 4 and 5, in Table 3 and “Appendix 7” allow several rel-
evant remarks:

• Under any probabilistic assumption, in-sample when considering optimal 
chance-constrained portfolios the funding condition either improves or it is 
strictly under control and within the portfolio tolerance level over the planning 
horizon.

• As � decreases, when an initial stressed funding condition is assumed, a least 
tolerance over the chance constraint violation, leads consistently to improved 
funding conditions and a smooth convergence to full funding under Gaussian or 
t-student white noise assumptions.

• For given � , we see that the collected evidences are robust across different proba-
bilistic assumptions even if they worsen slightly as we move from the normal 
standard or the t-Student to the generalized hyperbolic cases.

• Under any model instance, the risk-adjusted returns, measured by the Sharpe 
ratio, are consistently higher when chance constraints are active than under any 
other portfolio policy: we show in Sect. 4.5 that this evidence is confirmed out-
of-sample.

• Across all implemented models, the �
(
�∗
t
, 12, 0.1, �

)
 instances for � = 0.01 or 

0.02 generate consistently the best risk-reward and constraints violation trade-
offs. See also Table 7 in “Appendix 6” for the good diversification properties of 
the associated optimal portfolios.

The computational evidences presented so far are encouraging in terms of both the 
effectiveness of the adopted approach to control the FR through a probabilistic con-
straint and the relevant difference with respect to either the no chance-constrained 
case or the benchmark investment rules. In “Appendix 8” we discard the � = 1 case 
and provide more in-sample evidences on the investment policy evolution over time 
and under different noise assumptions. In the following sections we consider only 
the case of X1 = Λ0.9

1
.

Table 3  (continued)

Model Expected return Standard 
deviation

Sharpe ratio q0.01(r
X

12
) q0.99(r

X

12
) Prob. of 

constraint 
violation

P
(
�∗
t
, 12, 0.1, 0.02

)
0.188 0.184 1.026 −0.336 0.515 0.0544

P
(
�∗
t
, 12, 0.1, 0.01

)
0.208 0.370 0.561 −0.283 0.589 0.0482

No chance constraints 0.279 0.580 0.481 −1.093 1.427 0.4142
Fixed Mix: 60–40 0.070 0.194 0.359 −0.282 0.544 0.4198
Fixed Mix: 40–60 0.039 0.270 0.144 −0.366 0.613 0.5180
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4.5  Out‑of‑sample analysis

We present in this section the out-of-sample evidences over a 10 year horizon, the 
evolution of the optimal first stage portfolio and the associated portfolio value based 
on observed market data. The reference problem instance is again a 3-year optimal 
control problem with quarterly rebalancing, � = 0.5 , � = 0.01 and X1 = Λ0.9

1
 . Every 

problem instance is associated with a moving data history of two years. We apply 
a rolling window procedure starting with the solution of the January 1, 2008 prob-
lem and ending with the solution of the October 1, 2017 problem. Every problem 
instance is solved having as input the optimal portfolio obtained in the previous 
instance, updated with the realized (historical) returns. As before we consider quar-
terly steps of the rolling window and accordingly the optimal portfolio is assumed 
to undergo quarterly rebalancing decisions. In practice, Pension funds tend to revise 
their strategic asset allocation depending on the market phase from twice to four 
times per year.

No policy bounds nor turnover constraints have been imposed and Fig. 6 shows 
indeed that the portfolio undertakes significant revisions over the 10 years but, over-
all presents good diversification properties. In specific periods we see that an only 
equity portfolio is optimal, as during 2011–2012, or an only fixed income portfolio 
as in 2009 or 2016 or a balanced well diversified portfolio as in 2015 and in the last 
quarter of the test period.

At the end of the 10 years an average out-of-sample return of 4.331% per 
annum is recorded, based on a final portfolio value at December 31, 2017 of 
�t = 2.0968e + 07 and an initial value on January 2008 of �t = 1.3721e + 07 €.

As final evidence of this case study we analyse the out-of-sample performance of 
the optimal portfolio against a selected set of benchmark policies and in relationship 
with the evolution of the PF liability. We consider the following strategies: 
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Fig. 6  Portfolio policy evolution over 2008–2018—first stage decision, out-of-sample performance



996 D. Lauria et al.

1 3

1. The optimal chance constrained policy generated by the sequence of 
�(�∗

t
, 12, 0.5, 0.01) problems for t spanning from the 1st quarter of 2008 to the 4th 

quarter of 2017.
2. A fix-mix strategy based on a 50% investment in Money market and Bonds and 

the remaining 50% in equity (strategy 1).
3. A fix-mix strategy based on a 60% investment in Money market and Bonds and 

the remaining 40% in equity (strategy 2).
4. A fix-mix strategy based on long-term bonds: namely 50% in Bonds 7-10 and 50% 

in Bond 30 (strategy 3).
5. A fix-mix strategy based on a 60% investment in Equity and the remaining 40% 

in Money market and Bonds (strategy 4).
6. A fully diversified 1/I policy in which at every rebalancing decision the optimal 

portfolio is evenly distributed across all asset classes.
7. A constant investment policy only in long-term 30 year bonds.
8. A constant policy fully concentrated in USA equity. These two last policies will 

thus replicate the associated total return benchmarks.

From Fig. 7 we see that in specific periods, after 2015 and between 2010 and 
2014 the optimal investment policy significantly outperforms the other policies 
and generates a positive outcome while all other strategies lead to negative per-
formances. Even more relevant the evidence that Xt starts in 2008 with a � = 90% 
underfunding condition relative to the PF DBO �t (dashed red line) and over time 
reaches a stable and robust overfunding condition: over the 10 years we see that, 
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Fig. 7  Out-of-sample portfolio performance relative to benchmark policies for � = 12 , � = 0.5 and 
� = 0.01



997

1 3

Optimal chance‑constrained pension fund management through…

as also indicated in the previous sections, the PF liability increases and it reaches 
at the end of 2017 a value of roughly 18802 Mln Euros with a PF portfolio worth 
20.968 Mln Euros and a FR �t = 1.115.

5  Conclusions

In this article we have extended the optimization approach developed in Primbs and 
Sung (2009) to account for chance constraints on a PF solvency condition and for 
the first time apply the methodology to an open occupational DB pension fund ALM 
problem. From a methodological perspective we try to overcome the limits associated 
with classical multistage stochastic programs (Consigli et al. 2017) namely due to sce-
nario tree approximation errors, curse of dimensionality, and the difficulty to integrate 
in an effective way regulatory constraints formulated as chance constraints. The pro-
posed methodology has been shown to achieve the long term control of a PF solvency 
condition relying on the solution of a sequence of medium-term strategic allocation 
problems.

The adopted model of uncertainty for asset returns and liability costs relies on a vec-
tor random process driven by a white noise which for sensitivity analysis and simula-
tion purposes has been given three alternative probability distributions. An extensive 
set of computational evidences allowed us to verify and share several aspects of the 
adopted approach and its implications.

The following can be regarded as main contributions of this research:

• The formulation of the ALM problem as a stochastic control problem with proba-
bilistic constraints whose solution is based on a medium-term investment horizon 
� , justified by the funding ratio tight control and a long-term liability evaluation 
horizon �Λ.

• A thorough study of the effectiveness of chance constraints on the optimal solution 
and the implications on the ALM policy of funding ratio regulatory compliance.

• The characterization of the optimal investment policy in presence of different risk-
reward, chance constraints tolerance and medium term planning horizons with col-
lected evidences consistent with evolving market conditions.

• The evaluation of alternative white noise probabilistic assumptions, correspond-
ing to different market phases, on the portfolio wealth distributions and PF funding 
condition. Mainly through simulation we have seen how different market volatility 
conditions will impact the overall PF solvency. A topic that can be extended further 
be subject to a more rigorous analysis.

• Finally, both in- and out-of-sample optimal chance constrained portfolios lead to 
robust return generation over the selected test-period and show a good portfolio 
diversification.

We believe that this approach can represent under relatively mild assumptions an effec-
tive alternative to currently employed ALM methods.
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Appendix

Parameters estimation

In this first appendix we present the collected evidences when applying maximum 
likelihood (ML) estimation to the asset return model (2). Input data are weekly 
returns over the 2008-2017 period. The assets’ return statistics for this period are 
presented in Tables 4–5–6. The cash account interest rate is set equal to “Bank 
interest rates - three months deposits” in the Euro area, from the European Cen-
tral Bank. The results in Tables 4 and 5 are based on weekly data and converted 
in quarterly statistics.

In Table 5 we present ML estimates of Gaussian and t-Location Scale (t-LS) 
distributions: both the mean and standard deviation agree with high significance 
with the estimates in Table 6 which have been adopted in this case study.

Estimates bias for the correlation matrix have been computed by fitting a 
Gaussian and t Copula where three correlation matrices are compared in Fig> 8. 
The evidences support the adoption of the correlation matrix in Table 4.

Here next we show the heat maps of the asset returns correlation matrix asso-
ciated with either the empirical estimate top-left or the Gaussian copula top-
right or the t-copula function, just below. The evidence confirms that given the 
set of marginal distributions the empirical estimate captures the co-dependence 
between asset returns adopted in the simulation study. The mean absolute relative 
error between the empirical correlation matrix and the Gaussian and t Copula are 
0.0362 and 0.0351 respectively.

Table 4  Asset returns correlation matrix over the period January 2 2008 - December 29 2017, with quar-
terly frequency

Cash Bond 1–3 Bond 
3–5

Bond 
7–10

Bond 30 Stock EU Stock USA Stock 
World

Cash 1.0000 0.6230 0.5081 0.1718 0.0406 −0.3769 −0.3765 − 0.3994
Bond 1-3 0.6230 1.0000 0.9727 0.6605 0.3825 −0.3343 −0.3321 − 0.3645
Bond 3-5 0.5081 0.9727 1.0000 0.7999 0.5313 −0.3241 −0.3403 − 0.3639
Bond 7-10 0.1718 0.6605 0.7999 1.0000 0.8711 −0.2174 −0.2646 − 0.2666
Bond 30 0.0406 0.3825 0.5313 0.8711 1.0000 −0.0492 −0.0784 − 0.0752
Stock EU −0.3769 −0.3343 −0.3241 −0.2174 − 0.0492 1.0000 0.8151 0.9271
Stock USA −0.3765 −0.3321 −0.3403 −0.2646 − 0.0784 0.8151 1.0000 0.9659
Stock 

World
−0.3994 −0.3645 −0.3639 −0.2666 − 0.0752 0.9271 0.9659 1.0000
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Detailed optimal portfolio composition

Stressed funding conditions: X1

1
= 3

�

1

In this Appendix we consider an initial portfolio of X2
1
= 19.125 Mln Euros and 

we investigate the exceedance probabilities for a three year investment problem. In 
Fig. 9 we clearly see that as � decreases to 0.01 the constraint becomes increasingly 
effective across any problem specification.

Table 6  Quarterly statistics of the Asset Universe over the period January 2 2008 - December 29 2017

Cash Bond 1–3 Bond 3–5 Bond 7–10 Bond 30 Stock EU Stock USA Stock World

Mean 0.0014 0.0057 0.0074 0.0147 0.0201 0.0036 0.0213 0.0134
Std 0.0007 0.0084 0.0109 0.0273 0.0535 0.0861 0.0800 0.0780
Skewness 0.5221 1.2762 0.7797 −0.5406 −0.6853 −0.4504 −0.7592 −0.6973
Kurtosis 2.5334 4.6408 4.0442 3.1152 4.5488 3.3370 3.7537 3.5472
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Fig. 8  Correlation matrices represented as heat maps. Panel a: empirical correlation. Panel b: estimated 
Gaussian Copula. Panel c: estimated t-Copula
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Table 7  Optimal initial percentage portfolio composition for different specifications of �, � and �

� Cash Bond 1-3 Bond 3-5 Bond 7-10 Bond 30 Stock EU Stock USA Stock World

� = 16

� = 0.1

No C.C. 0.5 1.1 1.2 15 27 48 1.2 6
0.01 0.7 2.5 3.7 21 31 33 2.1 6
0.02 0.4 0.8 1 9 31 56 0.8 1
0.05 0.15 0.55 0.62 2.1 24 71 0.58 1
� = 0.5

No C.C. 0.3 1 1 7.2 24 63 1 2.5
0.01 0.01 0.029 0.032 0.15 46.7 53 0.029 0.05
0.02 0.08 0.42 0.4 3 36 59 0.4 0.72
0.05 0.2 0.61 0.74 3 23 70 0.65 1.3
� = 0.9

No C.C. 0.15 0.48 0.57 2 14 81 0.5 1.3
0.01 0.1 0.57 0.33 7 43 48 0.5 0.5
0.02 0.2 0.7 0.8 6 36 54 1 1.3
0.05 0.03 0.11 0.12 0.4 14 85 0.14 0.2
� = 12

� = 0.1

No C.C. 9.5 12 12 13 13 14 13 14
0.01 0.23 1 1.2 18 40 38 0.69 1.1
0.02 0.33 1.1 1.4 14 39 41 1 1.9
0.05 0.37 1.2 1.3 12 34 47 1.2 2.4
� = 0.5

No C.C. 8 11 11 14 14 17 12 14
0.01 0.097 0.44 0.48 13 45 40 0.31 0.52
0.02 0.31 1.1 1.2 14 40 41 0.97 1.7
0.05 0.39 1.3 1.4 13 34 47 1.3 2.6
� = 0.9

0 0.15 0.52 0.58 1.9 9.5 86 0.53 1
0.01 0.12 0.55 0.63 14 43 41 0.42 0.7
0.02 0.091 0.36 0.39 7.9 41 49 0.3 0.56
0.05 0.029 0.12 0.14 0.63 37 62 0.12 0.21
� = 8

� = 0.1

No C.C. 4.5 9.4 10 15 17 20 10 14
0.01 6.3 0.064 0.028 67 12 14 0.005 0.0063
0.02 0.038 0.13 0.14 41 29 30 0.067 0.098
0.05 0.4 1.5 1.7 19 38 36 1.1 1.9
� = 0.5

No C.C. 0.3 1.4 1.7 15 27 46 1.3 6.8
0.01 7.4 0.65 0.31 61 13 18 0.052 0.067
0.02 1.4 1.8 3.1 29 48 17 0.34 0.55
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Notice in the same figure the difference between the No chance constraint cases 
for � = 0.1 or 0.5: in this latter case there is essentially no control over the funding 
condition. A similar evidence holds independently of � for any non-optimal invest-
ment policy. Indeed the worst results are associated with the buy-and-hold, fixed 
portfolio diversification. Furthermore those exceedance probabilities over the 3-year 
investment horizon do either increase or decrease. On the other hand, the � = 0.1 
case is associated with a tighter risk control relative to the target portfolio evolu-
tion and a decreasing underfunding probability across all the simulated scenarios. 
The effectiveness of the funding policy and chance constraint approximation can in 
this case be inferred from the speed of decay of the violation probabilities over the 
investment horizon, relative to the chance-unconstrained cases and those generated 
by alternative investment policies. We see however that in this case a good reliabil-
ity level is reached only at the end of the investment horizon. Indeed this evidence 
depends on the postulated initial funding assumption.

Simulated optimal policy under different �

We present in this section evidence on the evolution of the optimal portfolio com-
position over 3 years ( � = 12 ). Given the optimal policy, we perturb such policy 
by MC simulation. From 5000 MC simulations we show in Fig. 10 the optimal 
portfolio composition at different stages: the purpose is two-fold. From a finan-
cial viewpoint we wish to analyse under the given uncertainty and model assump-
tions the investment strategy evolution. From a methodological viewpoint instead 
this study intends to verify the robustness of the optimal strategy with respect to 
alternative assumptions on w.

We display nine plots for every set of simulations from the solution of problem 
�(�∗

t
, 12, 0.5, 0.01) for t = 2, 7, 13 ( 13 = 12 + 1 , being t = 1 the initial decision), 

where in each row we have alternative white noise specifications and in each col-
umn a stage instance to capture the portfolio evolution.

The three set of outputs describe the evolution of the optimal portfolio over 
the SAA horizon. Within each column, to facilitate comparison, for given stage 
we order the portfolio compositions by increasing money market investment. On 

Table 7  (continued)

� Cash Bond 1-3 Bond 3-5 Bond 7-10 Bond 30 Stock EU Stock USA Stock World

0.05 0.15 0.56 0.66 16 43 39 0.37 0.74
� = 0.9

No C.C. 0.12 0.52 0.61 9.6 26 62 0.5 1.3
0.01 0.012 0.031 0.034 26 38 36 0.017 0.025
0.02 8.4 7.5 6.9 30 24 21 1.1 1.5
0.05 0.0019 0.011 0.013 0.14 51 49 0.0093 0.015
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the right part of the simulation output an increasing portion of the portfolio is 
invested in liquid money market instruments while the investment in bonds and 
stocks decreases significantly.

We see that the optimal portfolio policy is both time- and state-dependent and 
different noise processes have a moderate, though not negligible, impact on the 
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Fig. 9  Probability of chance constraint violations with � = 0.9 and with an initial portfolio X2

1
= 0.9Λ0.9

1
 , 

under different assumptions on the noise distribution for � = 12 . Fixed mix are always bond–equity 
classes with money market or cash as part of the bond class
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portfolio composition. Over the first stages the optimal bond–equity policy is 
consistent across alternative market conditions, as time progresses the equity pro-
portion decreases. Overall the investment policy is robust against the w simula-
tion outputs.

Supplementary Information The online version contains supplementary material available at https:// doi. 
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Fig. 10  Portfolio composition over five thousands simulations under different white noise assumptions, 
for t = 2, 7, 13 and with � = 0.5
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