
Vol.:(0123456789)

OR Spectrum (2022) 44:733–761
https://doi.org/10.1007/s00291-021-00661-w

1 3

ORIGINAL ARTICLE

Minimizing setups and waste when printing labels
of consumer goods

Herbert Meyr1 · Mirko Kiel1

Received: 28 February 2020 / Accepted: 4 November 2021 / Published online: 21 December 2021
© The Author(s) 2021

Abstract
A real-world planning problem of a printing company is presented where differ-
ent sorts of a consumer goods’ label are printed on a roll of paper with sufficient
length. The printer utilizes a printing plate to always print several labels of same
size and shape (but possibly different imprint) in parallel on adjacent lanes of the
paper. It can be decided which sort is printed on which (lane of a) plate and how
long the printer runs using a single plate. A sort can be assigned to several lanes of
the same plate, but not to several plates. Designing a plate and installing it on the
printer incurs fixed setup costs. If more labels are produced than actually needed,
each surplus label is assumed to be “scrap”. Since demand for the different sorts
may be heterogeneous and since the number of sorts is usually much higher than
the number of lanes, the problem is to build “printing blocks”, i.e., to decide how
many and which plates to design and how long to run the printer with a certain
plate so that customer demand is satisfied with minimum costs for setups and scrap.
This industrial application is modeled as an extension of a so-called job splitting
problem which is solved exactly and by various decomposition heuristics, partly
basing on dynamic programming. Numerical tests compare both approaches with
further straightforward heuristics and demonstrate the benefits of decomposition and
dynamic programming for large problem instances.

Keywords Cutting stock · Scheduling · Lot-sizing · Real-world production process ·
Mixed integer programming

 * Herbert Meyr
 h.meyr@uni-hohenheim.de

 Mirko Kiel
 m.kiel@uni-hohenheim.de

1 Department of Supply Chain Management, University of Hohenheim, Stuttgart, Germany

http://orcid.org/0000-0002-9856-3789
http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-021-00661-w&domain=pdf

734 H. Meyr, M. Kiel

1 3

1 Introduction

The following work is motivated by a practical application in the label printing
industry. The printing company’s customers are consumer goods manufacturers.
They typically require labels of several sorts of a single product family like, for
example, different sorts (strawberry, pineapple etc.) of the product family yogurt.
These labels show different imprints, but share the same form and size.

Thus, from the printing company’s point of view, a customer order comprises
several order lines with varying demands dj for different sorts j = 1,… , J , which
have to be delivered together in a batch. The printer can print several printing
lanes l = 1,… , L of equal width in parallel on a single roll of paper of sufficient
length. The maximum number of lanes L can easily be calculated because of the
labels’ common size.

To set up the printer, a printing plate has to be designed incurring fixed costs
sc. Let us temporarily assume J = L . Then all different sorts j could be printed in
parallel on a single plate and the sort ĵ with the maximum demand d̂ ∶= maxj {dj}
would define how long the printer has to run. Thus, surplus quantities (d̂ − dj)
would have to be generated for the other sorts j ≠ ĵ . Because customers fre-
quently change their labels’ inscriptions, such surplus production quantities,
which exceed the actual customer demand, are not held in stock. They have either
to be disposed or can be sent to the customer as some free-of-charge bonus quan-
tity. Both alternatives are not desired from the company’s point of view. Thus,
these surplus quantities are in the following denoted as “scrap”. Each unit of
scrap causes variable costs vc. The overall costs of scrap could, e.g., be decreased
by only allowing a single sort j per plate and printing

⌈
dj∕L

⌉
 units of this sort in

parallel. However, this would necessitate J printing plates and thus imply setup
costs J ⋅ sc instead of just sc.

Generalizing the above example to arbitrary J (not necessarily equaling L), the
planning problem arises how to assign the sorts j to and spread their demands dj
over the lanes l of different printing plates s = 1,… , Ŝ so that the sum of setup
costs for designing and installing plates and variable costs of surplus scrap are
minimized. A sort j could also be produced on more than one and less than L
lanes in parallel, but should not involve several printing plates. Printing the same
sort on several plates might lead to slight differences in the printed impression.
This is not desired by the company and its customers. Since paper is much more
expensive than color, the company would rather prefer the “free-of-charge-send-
ing” than disposing empty paper. However, the company does not want to express
these preferences by further detailing the costs of scrap vc. Instead, as a general
rule of planning, it does not allow a lane to remain empty. The production lot of
a printing plate is called a “printing block”. Thus, for ease of notation, this prac-
tical optimization problem the company is faced with will in the following be
named the “block building problem” (BBP).

An illustrative example of different solutions of a BBP with L = 2 , J = 4 and
d1 = 10 000, d2 = d3 = 20 000 and d4 = 30 000 is shown in Fig. 1. The intuitive
solution (a)—using one lane per sort—requires the minimum of two plates, but

735

1 3

Minimizing setups and waste when printing labels of consumer…

necessitates 20 000 units of scrap. The other intuitive solution (b)—using L par-
allel lanes per sort—does avoid scrap, but needs the maximum number of four
plates. As the less intuitive solution (c) demonstrates, solution (b) is inefficient
because scrap can also be avoided when using just three printing plates. However,
solution (a) has to be preferred to solution (c) as long as 20 000vc < sc holds.

Up to the authors’ knowledge, this special type of practical application has not yet
been considered in the scientific literature. Therefore, the intended contribution of
this paper is

– to formalize the practical problem BBP sketched above as a mixed integer pro-
gramming (MIP) model in order to ease understanding and allow comparisons
with related problem settings, model formulations and solutions approaches
known from scientific literature,

– to present a solution heuristic for this problem that has successfully been intro-
duced in the label printing company some years ago and since then is sustainably
used there, and

– to compare this heuristic with the exact solution of the MIP model and with fur-
ther, alternative heuristic approaches.

Thus, Sect. 2 discusses closely related problems and shows how the BBP differs.
An MIP model of the BBP, which is an extension of a so-called job splitting prob-
lem, is introduced in Sect. 3. This MIP model allows a more precise and more for-
mal problem definition than the examples used in the introduction. It is followed

Fig. 1 Three different solutions of a BBP with L = 2 , d1 = 10 000, d2 = d3 = 20 000 and d4 = 30 000

736 H. Meyr, M. Kiel

1 3

by a decomposition approach in Sect. 4, which is tailored to and takes advantage of
the special needs and characteristics of the BBP. This decomposition scheme allows
to define several heuristics. One of them is used by the above-mentioned printing
company. The other ones will serve as benchmarks. The numerical tests of Sect. 5
compare these decomposition heuristics with further intuitive solution approaches
and with exact and heuristic solutions of the MIP solver for problem instances of
different sizes. Finally, Sect. 6 summarizes the most important results and proposes
directions of future research.

2 Literature review

Obviously, the BBP is related to cutting, scheduling and lot-sizing problems. The
former tries to avoid the waste or scrap resulting from some cutting process as good
as possible. On contrary, the latter minimize setup costs by optimizing the sequence
of changeovers or by bundling several demands for the same or (in terms of the
setup effort involved) “similar” products to bigger production lots.

Wäscher et al. (2007) introduce a typology of and give an overview over cutting
(and packing) problems in general. It is hard to classify the BBP according to this
typology. Since the width and number of lanes are fixed, but the length of the paper
roll can be assumed as infinite, the BBP could be seen as a one-dimensional “input
minimization” problem, where a high number of identically shaped small items (the
labels) have to be placed on one large object (the paper roll) with a variable length.
This would classify the BBP as a so-called open dimension problem (ODP). How-
ever, according to Wäscher et al. (2007, Sect. 7.8), ODPs are only possible in two or
more dimensions. This apparent contradiction is due to the fact, that the labels are
identically shaped, but nevertheless heterogeneous in terms of the imprint (different
sorts) and that the necessity of building blocks introduces a sort of additional “vir-
tual” dimension.

Teghem et al. (1995) describe the “mating problem” (MP), an optimization prob-
lem closely related to the BBP, which has unfortunately not been discussed and cat-
egorized by Wäscher et al. (2007). Here book covers j have to be grouped (mated)
on offset plates s with L = 4 different rectangular compartments l per offset plate
and thus per sheet of paper printed. A given demand dj has to be fulfilled with mini-
mum total costs for the different offset plates involved and for overall sheets of paper
printed. Contrary to the BBP, a single book cover can be assigned to several plates.
All four compartments have to be used. The authors propose a nonlinear and a linear
MIP formulation together with a simulated annealing-based solution heuristic. An
overview of further solution approaches to and extensions of this problem is given
by Baumann et al. (2015) who denote this class of problems as the cover-printing
problem (CPP).

One of these extensions is the so-called label printing problem (LPP) of Yiu
et al. (2007). As for the BBP the intended application is printing labels. However,
the technology used is different. The labels are not printed on quasi endless rolls of
paper, but—alike the MP—on discrete rectangular sheets of paper consisting of L
rectangular compartments. Thus, the role of the lanes of the BBP is the same as the

737

1 3

Minimizing setups and waste when printing labels of consumer…

role of the compartments of the MP/LPP (or CPP in general). But the lanes are only
arranged in one dimension, whereas the compartments are arranged in two dimen-
sions. As opposite to the MP, the LPP is not restricted to L = 4 and a sort j can only
be assigned to a single offset plate s. In contrast to the BBP and MP, compartments
of the LPP may remain empty. The authors formulate a nonlinear IP which mini-
mizes the amount of printed scrap and empty compartments. Costs are not consid-
ered. A solution heuristic decomposes the LPP into two subproblems, one of which
is solved by simulated annealing again.

Degraeve and Vandebroek (1998) describe and model a layout problem in the
fashion industry, which is a variant of the one-dimensional cutting stock problem
(see Gilmore and Gomory 1961, 1963). Transferring its basic idea to the BBP would
mean that a maximum of JL combinations to place sorts j on lanes l has to be enu-
merated. These “patterns” define the set of potential printing plates s = 1,… , JL
which could be designed. Among them (or at least some reasonably pre-defined
subset), the ones need to be selected that should actually be used. Additionally, the
corresponding production lot-sizes have to be determined that finally establish the
printing blocks. Again, Baumann et al. (2015) give an overview over this stream of
the literature.

Motivated by practices in the printing industry, Ekici et al. (2010) introduce
the “job splitting problem” (JSP). Here J different product types j with demands dj
(“jobs”) have to be produced on a single machine which has L slots l. Each slot l can
produce each type j, but only one at a time. The slots need to be set up for the types
in a joint setup process with costs sc. Then, all slots do produce simultaneously dur-
ing a “run” s until the next setup process and the next run s + 1 start. If total produc-
tion exceeds total demand, each unit of waste produced incurs costs vc. The problem
is to split the demands into feasible production quantities per slot and per run so that
the total costs for setups and waste are minimized.

The authors transform the original objective function into a (w.l.o.g. equivalent)
substitute where scaled setup costs c ∶= sc

vc⋅L
 plus the total run length of the machine

(makespan) are minimized. They show that the JSP is strongly NP-hard and present
a nonlinear and two linear IP formulations called IP1 and IP2. Whereas IP1 is rather
intuitive, IP2 is more efficient because it avoids unnecessary symmetries and allows
further improvements. Empty slots could basically occur, but would (in the objec-
tive function) be accounted for as if they were producing waste. A job can be split
over several runs. The authors propose a polynomial time (O(L log J)) algorithm for
solving the special case J ≤ L , which they call the “single run problem” (SRP). The
basic idea of this “single run algorithm” is to iteratively allocate the type which cur-
rently determines the run length to the next free slot. If necessary, a fractional run
length is rounded up to the next higher integer number. This algorithm is a major
building block to design two heuristic solution procedures for the original JSP where
J can also exceed L.

Baumann et al. (2015) present a practical application where customer-spe-
cific designs j of napkin pouches are printed using a single machine with L = 7
slots l per offset printing plate s. Alike the JSP, the setup costs for the neces-
sary runs of the different printing plates s have to be minimized together with
the run-time-dependent costs of waste. However, in extension to the JSP, several

738 H. Meyr, M. Kiel

1 3

further technical constraints have to be considered like, for example, that colors
of napkins and the potential occurrence of white borders restrict the allocation of
designs to slots, that slots must not remain empty and that a single design may not
be allocated to several plates. The authors present a linear MIP formulation and a
savings-based heuristic to solve the problem.

Obviously, the BBP is most closely related to the JSP. It is another extension of
the JSP, but with less restrictions than Baumann et al. (2015). In addition to the
JSP, merely the further constraints that a slot may not remain empty and that a
single item can only be produced in a single run are necessary.

Note that there is a close relationship between the problems discussed until
now and so-called multi-period or integrated lot-sizing and cutting-stock prob-
lems, as recently reviewed by Melega et al. (2018). While the former ones assume
that overproduction is scrap incurring one-time costs of waste, the latter ones
assume that overproduction can be stored for later usage, thus causing inven-
tory holding costs for every period of storage. The main difference is that the
multi-period versions have additional degrees of freedom to save setups by bring-
ing forward some demand of later periods. Two examples for this type from the
molded pulp packaging industry are Martínez et al. (2018) and Martínez et al.
(2019). The molding machines described there show similar characteristics as
assumed in the BBP and JSP. Instead of lanes or slots, various molds l do simul-
taneously produce different sorts of packages j in parallel. Several molds require
a joint setup because together they constitute a replaceable molding pattern s. The
authors describe nonlinear and linearized multi-period MIPs which have to con-
sider some further, very challenging constraints.

These molding models basically build on the single-machine general lot-sizing
and scheduling problem (GLSP), introduced by Fleischmann and Meyr (1997).
Here, the overall planning horizon is subdivided into rather long, discrete, non-over-
lapping “macro-periods” t = 1,… , T of fixed lengths (e.g. weeks), which help to
model the time-varying, dynamic demand and the holding of inventory. Each macro-
period t again consists of a pre-determined number S of shorter “micro-periods”
s = (t − 1)S + 1,… , tS whose lengths are decision variables. Subsequent micro-
periods producing the same product constitute a production run with its correspond-
ing lot-size. Setups can only occur when changing from one product to another
between two subsequent micro-periods s and s + 1.

Therefore the BBP could also be modeled by reducing the GLSP to a single
macro-period T = 1 with s = 1,… , S being the micro-periods of this single macro-
period. However, unlike the molding models, the BBP needed to build on multi-
machine GLSP formulations using a “common time grid” ws for all machines l
involved, where the variables ws ≥ 0 denote the starting times of the micro-peri-
ods s. Such a common time grid was introduced by Meyr (2004) and later on used
by, e.g., Seeanner and Meyr (2013) for the GLSP with multiple production stages
(GLSPMS) and by Wörbelauer et al. (2019) for considering secondary resources on
the parallel machines of a single stage of production. Note that, according to the
classification of Wörbelauer et al. (2019), a printing plate of the BBP can be inter-
preted as a cumulative secondary resource (with sufficient capacity, but causing
setup costs), whereas the printing lanes constitute the parallel primary resources.

739

1 3

Minimizing setups and waste when printing labels of consumer…

This is worth mentioning because these analogies show that the BBP-model of
Sect. 3, which is an adaption of a single-period JSP, could be extended to a multi-
period integrated lot-sizing and cutting stock problem in a quite straightforward
manner if stockable standard products were produced instead of non-storable cus-
tomized products.

3 Model formulation

Before introducing this model formulation, the printing company’s planning prob-
lem BBP and its basic assumptions are briefly summarized:

i Demands dj of different sorts j of labels have to be satisfied by printing them on
a single machine, the “printer”.

ii The printer consists of L parallel printing lanes l, which always have to be used
simultaneously. It can be decided how long the printer runs. If it runs, all lanes
have to be utilized (“empty” lanes are not allowed) and exactly one sort j has to
be produced per lane l. Since all labels have the same size and shape, the length
of such a run can be determined by counting the labels of a single lane and needs
to be an integer number. All labels produced in parallel in a single run are called
a “printing block”.

iii By designing so-called printing plates, it can be decided which sort j is pro-
duced on which lane l in a single block. Several different printing plates s can be
designed and installed one after each other on the printer. However, designing
and installing (“setting up”) a certain plate s incurs fixed setup costs sc.

iv A single sort j can be assigned to several lanes l of the same plate, but not to
several plates.

v If more labels are produced than actually needed, each surplus label is assumed
to be “scrap” and incurs per unit costs vc.

The planning problem BBP is to assign sorts j to lanes l of different plates s and to
determine the run length Qs of each block s so that the overall costs of setups and
scrap are minimized while meeting the above assumptions. Obviously, in an optimal
solution of the BBP each plate s will exactly be used once, i.e., for a certain printing
block of a single run using this plate s. Thus the terms plate, block and run s will be
used interchangeably in the remainder.

The following model IP2ext represents the practical problem BBP as a linear MIP-
model. It is an extension of the JSP-model IP2 of Ekici et al. (2010), briefly introduced
in Sect. 2. Sorts, printing lanes and printing blocks of the BBP correspond with product
types, slots and runs of the JSP, respectively. As compared to the original IP2 formula-
tion of Ekici et al. (2010), its BBP-extension IP2ext needs additional constraints forbid-
ding that a lane may remain empty (see assumption ii above) and that a product type
can be produced in several runs (see assumption iv). An overview of all indices, data
and variables necessary to formulate IP2ext is given in Table 1. Note that Ekici et al.

740 H. Meyr, M. Kiel

1 3

(2010) have shown that
⌈
J

L

⌉
 and J are lower and upper bounds to the number of blocks

used in an optimal solution. Thus S is typically initialized by S ∶= J.
IP2 of Ekici et al. (2010) is more efficient than their IP1 because—instead of explic-

itly assigning the sorts j to each lane l of a block s—only the aggregate number of lanes
per sort is counted. Thus, binary variables xjsl ∈ {0;1} indicate whether l printing lanes
are set up for sort j in block s or not. Only in case of a setup, the corresponding produc-
tion quantities qjsl ≥ 0 can take on positive values. The variables rs ∈ {0;1} show value
1 if block s is needed and thus setup costs have to be incurred. The production quantity
of a single lane of block s and thus the length of run s is then measured by the non-
negative integer variable Qs ∈ ℤ

≥0 . IP2ext is defined by its objective function (1) and
the constraints (2)–(13).

IP2ext (modeling the BBP as an extension of IP2 of Ekici et al. (2010)):

subject to

(1)minimize sc
∑

s

rs + vc

(
L
∑

s

Qs −
∑

j

dj

)

(2)
∑

s

∑

l

qjsl = dj ∀j

(3)
∑

j

∑

l

l ⋅ xjsl = L ⋅ rs ∀s

(4)qjsl ≤ l ⋅ Qs ∀j, s, l

(5)qjsl ≤ dj ⋅ xjsl ∀j, s, l

Table 1 Indices, data and variables of IP2ext, an extension of IP2 of Ekici et al. (2010)

Indices:
j = 1,… , J sorts (product types)
s = 1,… , S potential printing blocks and corresponding printing plates (runs)
l = 0, 1,… ,L printing lanes (slots)
Data:
dj demand of sort j
sc setup costs of a printing block (run)
vc costs per unit of scrap
Variables:
xjsl ∈ {0;1} equals 1 if l lanes of block s are assigned to sort j (0 otherwise)
qjsl ≥ 0 intended production quantity of sort j if l lanes print sort j in block s
rs ∈ {0;1} equals 1 if block s is produced at all (0 otherwise)
Qs ∈ ℤ

≥0 (non-negative integer) run length of block s

741

1 3

Minimizing setups and waste when printing labels of consumer…

The objective function (1) minimizes BBP’s overall costs of setup and scrap. There,
the term in brackets represents the total amount of scrap. Note that the IP2 formula-
tion of Ekici et al. (2010) prefers to minimize the transformed objective
sc

vc⋅L

∑
s

rs +
∑
s

Qs , i.e., some scaled setup costs plus the makespan. Although the opti-

mal objective values differ, the optimal solutions obtained by this transformation are
equivalent to the ones that result from minimizing the original setup and scrap costs
directly. With respect to the real-world application, it will be more convenient to use
the original costs in the following.

Constraints (2) ensure that the demand for each sort j is satisfied. Constraints (3)
differ from the original IP2 of Ekici et al. (2010) by using an = instead of a ≤ sign.
They guarantee that all L printing lanes are assigned to the sorts in each block, so
that there is no empty lane allowed (see assumption ii). Thus, IP2ext extends the
original IP2 by some additional constraints

Constraints (4) and (5) determine the quantity qjsl of sort j in block s if l printing
lanes are assigned to j in this block. (4) set an upper bound to qjsl with respect to the
length of run s. In contrast, (5) force that qjsl can only be positive if its corresponding
binary indicator xjsl is set to 1 and has to be 0 otherwise. These constraints together
with constraints (6) ensure that exactly l printing lanes are assigned to a sort j in a
block s if qjsl > 0 , where l has to be a unique number between 0 and L.

Constraints (7) and (8) are “symmetry-breaking constraints” proposed by Ekici
et al. (2010), which help to strengthen the formulation. Alike (14), constraints (9)

(6)
∑

l

xjsl = 1 ∀j, s

(7)Qs ≥ Qs+1 ∀s

(8)
∑

j

∑

l

qjsl ≤ L ⋅ Qs ∀s

(9)
∑

s

∑

l≥1

xjsl = 1 ∀j

(10)xjsl ∈ {0;1} ∀j, s, l

(11)qjsl ≥ 0 ∀j, s, l

(12)rs ∈ {0;1} ∀s

(13)Qs ∈ ℤ
≥0 ∀s

(14)
∑

j

∑

l

l ⋅ xjsl ≥ L ⋅ rs ∀s.

742 H. Meyr, M. Kiel

1 3

also extend the original IP2 of Ekici et al. (2010). They ensure that a sort j can only
be produced in exactly one block (see assumption iv). Constraints (10)–(13) define
the domains of the variables. Note that the variables qjsl only denote the actually
intended share of the total production quantity

∑
s,l

(l ⋅ xjsl ⋅ Qs) of sort j. Their values

will automatically become integer in a feasible solution. It is not necessary to claim
qjsl ∈ ℤ

≥0.
The single block special case of IP2ext with J ≤ L and S = 1 will in the remain-

der of this paper be called IP2ext1. There, the index s and constraints (7) are not
necessary any longer. IP2ext1 does not completely equal the single run problem
SRP of Ekici et al. (2010) (see also Sect. 2) because for SRP empty lanes were
basically allowed. For example, if S = J = 1 , L = 2 and d1 = 1 000 , the solution
q111 = q112 = 500 would be optimal for both IP2ext1 and SRP, but the solution
q111 = 1 000, q112 = 0 would only be feasible for SRP. Nevertheless, the single run
algorithm of Ekici et al. (2010, Algorithm 1) does produce optimal solutions for
both special cases because it anyway avoids empty lanes. Note that the first solution
shows a makespan Q1 = 500 in contrast to a makespan Q1 = 1 000 of the second
solution. This later completion time is less attractive from a practical point of view
and thus further justifies assumption ii.

4 Decomposition heuristics

In general, a solution of the BBP is characterized by an ordered sequence
(j) = (j1,… , jJ) of sorts, an ordered partitioning of this sequence into Ŝ ≤ J printing
blocks [s] = [s1,… , sŜ] = [(j1,… , ji),… , (jk,… , jJ)] and a solution of IP2ext1 for
each of these blocks. For example, solution c) of Fig. 1 could be represented by the
sequences (1, 2, 3, 4) or (1, 3, 2, 4), respectively, and their corresponding partitions
[(1), (2, 3), (4)] and [(1), (3, 2), (4)], both with Ŝ = 3 printing blocks.

In Section 4 five different solution heuristics for the BBP will be introduced,
which base on a common solution approach: They exploit the above characteristics
in order to decompose the overall planning problem into the three subroutines

 I. “determining a sequence of sorts”,
 II. “partitioning this sequence into printing blocks”, and
 III. “solving IP2ext1 for potential printing blocks”.

These subroutines are executed successively and iteratively, as illustrated by the
flowchart of Fig. 2. In order to come up with a single solution of the BBP, sub-
routine I first generates a sequence of sorts. Subroutine II then determines the
number of printing blocks Ŝ to be used and uniquely assigns each sort to a single
block (see assumption iv) without changing the sequence that has been defined
by subroutine I. For all potential printing blocks considered by subroutine II,
subroutine III is called. There, for each block separately, the sorts of the print-
ing block are assigned to the different lanes and the run length of the block is

743

1 3

Minimizing setups and waste when printing labels of consumer…

determined so that these sorts’ demand is met and the block’s costs of scrap can
be calculated. Thus, subroutine III corresponds with solving an IP2ext1 for each
printing block individually. After subroutine II, the sequence of subroutine I has
been partitioned, i.e., it has been converted to a feasible solution of the BBP. The
overall setup and scrap costs of the finally used printing blocks of this sequence
are known after this step.

This procedure is repeated L ⋅ J times (see dashed arc of Fig. 2) in order to gener-
ate a pool of solutions, from which the best one is then selected in the end. Subrou-
tine I has to ensure that different sequences and thus (at least usually) various solu-
tions of the BBP will result.

As the flowchart indicates, for each of the three subroutines two different alter-
natives will be proposed how to solve the subroutine’s planning problem. The
two alternatives for subroutine I will be described in Subsect. 4.3.1 and 4.3.2 of
Sect. 4.3. Similarly, the two alternatives of subroutine II will be explained in Sub-
sect. 4.2.1 and 4.2.2 of Sect. 4.2. Since the single run algorithm of Ekici et al.
(2010) is the second way to solve the models IP2ext1 of subroutine III, only one
solution method needs to be introduced in Sect. 4.1. Note that the order of descrip-
tion—subroutine III first in Sect. 4.1, followed by II and I in Sect. 4.2 and 4.3—has
been reversed in order to be able to re-use earlier definitions and thus to ease under-
standing for the reader.

Not all eight heuristics that could result from combining two alternatives for three
subroutines will be implemented and compared later on. We will concentrate on five

Dynamic program (shortest path)

(Subsect. 4.2.1)

Evenly distributed

(Subsect. 4.2.2)
or

II. partitioning the sequence into printing blocks

Dynamic program

(Sect. 4.1)

single run Algorithm

(Ekici et al. (2010))
or

III. solving IP2ext1 for each potential printing block

Sorted by demands

(Subsect. 4.3.1)

Random

(Subsect. 4.3.2)
or

I. determining a sequence of sorts

new sequence, e.g., (1,3,2,4)

costs of scrap for the
potential printing blocks
of the sequence, e.g.,
for (1), (1,3), (3),
(3,2), (2), (2,4), (4)

termination after generating LJ sequences

partitioning
= solution,
e.g., [(1),(3,2),(4)]

costs of setups & scrap for
finally used printing blocks
→

→

Fig. 2 Flowchart of the decomposition approach

744 H. Meyr, M. Kiel

1 3

of them and justify this selection in Sect. 4.4 after the subroutines’ alternatives have
been explained in further detail.

4.1 Solving IP2ext1 for potential printing blocks

IP2ext1 is limited to a single block and single run, respectively. Thus, for the
remainder of this subsection, J ≤ L can be assumed and the index s can be omitted.
The optimal solutions for J = 1 and J = L are obvious. For 1 < J < L , the MIP for-
mulation of Sect. 3 could be solved or the single run algorithm of Ekici et al. (2010,
Algorithm 1) could be applied. Because the label printing company was not aware
of Ekici et al. (2010) at the time of implementation and did not want to use an MIP
solver, the dynamic programming formulation (DP) defined by (15) had been chosen
as an alternative. Such a DP seemed promising because the number of lanes L is
usually rather small in real-world applications (see Sect. 5.1).

Let j denote the sort j considered in stage j = 1,… , J of the recursion. Further-
more, lj defines the first lane on which sort j is produced. Thus, lj+1 − 1 represents the
last lane on which sort j is produced and lj+1 − lj calculates the total number of lanes,
on which sort j is produced. At any stage j of the recursion, F(j;lj) denotes the mini-
mum costs if production of sort j starts on lane lj when the lanes lj,… , L are left to
produce the remaining sorts j, j + 1,… , J . By initializing T0 ∶= 0 , F(J + 1;l) ∶= 0
for l = 1,… , L + 1 and l1 ∶= 1 , the recursion starts and stops at stage 1 with F(1; 1)
representing the total minimum costs to produce all J sorts on the given L lanes:

Tj−1 represents the overall production time that is needed until stage j − 1 to produce
the sorts 1,… , j − 1 on the lanes 1,… , lj − 1 . Since a sort i is produced on li+1 − li
lanes in parallel, Tj−1 can be computed by Tj−1 ∶= max1≤i≤j−1

di

li+1−li
.

On stage j, the DP has to decide on which lanes k the sort j has to be pro-
duced. Since at least the last J − j lanes have to be reserved for the remaining sorts
j + 1,… , J , the index k may only vary between lj and L − J + j with the cheapest
alternative to be chosen. Thus, depending on k, sort j is produced on k − lj + 1 lanes
in parallel and the next sort j + 1 starts on lane k + 1 , incurring cumulated costs
F(j + 1, k + 1) for the remaining products. For ease of readability, in (15) the substi-
tution h ∶= k − lj + 1 takes place.

The first summand of (15) is relevant if the production time dj
h
 of sort j is longer

than the production time Tj−1 of the preceding sorts j = 1,… , j − 1 . In this case,
additional scrap costs for all these preceding sorts on the lanes l = 1,… , lj − 1 have
to be accounted for the corresponding time delta. Otherwise, scrap costs for sort j
have to be accounted for the time difference by which Tj−1 is exceeding the sort’s

(15)

F(j;lj) ∶= min
1≤h≤L−J+j−lj+1

{{[
dj

h
− Tj−1

]
⋅ vc ⋅ (lj − 1)

}+

+

{
h ⋅ vc ⋅

[
Tj−1 −

dj

h

]}+

+F(j + 1;lj + h)
}

745

1 3

Minimizing setups and waste when printing labels of consumer…

production time on all h lines where j is produced (second summand). The third
summand F(j + 1;lj + h) recursively adds the minimum costs of all subsequent sorts
j + 1,… , J on the subsequent lanes lj + h,… , L.

Finally, the total run length TJ of the printing block is rounded up to ⌈TJ⌉.

4.2 Partitioning a given sequence into printing blocks

Now let us consider a general BBP with S = J and possibly J > L , but the sequence
(j) = (j1,… , jS) of sorts is assumed to be known in advance. Then, a partitioning of this
sequence into s = 1,… , Ŝ printing blocks is looked for. However, the partitioning can
only group 1 ≤ k − i + 1 ≤ L subsequent sorts (ji, ji+1,… , jk−1, jk) into a single block
(i ≤ k). Since a sort’s complete demand has to be satisfied by a single printing block,
i.e., since ji ≠ jk for all 1 ≤ i, k ≤ S with i ≠ k , a sort can only be assigned to a single
block. Then, the costs of this block can be computed by solving the DP of Sect. 4.1
and by using the single run algorithm of Ekici et al. (2010), respectively, and adding
the setup costs sc once. We will denote these costs of a block (ji,… , jk) as FB

i−1,k
 in the

following.
Note that this type of problem is quite similar to an uncapacitated, dynamic lot-siz-

ing problem as introduced by Wagner and Whitin (1958). The pre-defined sequence
of sorts of the BBP corresponds with the given sequence of periods of the lot-sizing
model. A building block corresponds with a production lot, both of them necessitating
fixed setup costs. Demand of different sorts cannot be split, resembling the so-called
Wagner and Whitin (W&W) property that in an optimal solution of the lot-sizing prob-
lem only a period’s complete demand can be pre-produced. However, the BBP incurs
variable costs of scrap instead of inventory holding costs.

In Subsect. 4.2.1, a dynamic program will be proposed that solves this problem
optimally in a shortest-path-like manner. To have some benchmark algorithm available,
in Subsect. 4.2.2 the same planning problem is heuristically solved by distributing the
printing blocks more or less evenly over the given sequence (j) = (j1,… , jS) of sorts.

4.2.1 Using a dynamic program of the shortest path type

To adapt the well-known shortest path algorithm for W&W models (see, e.g., Pochet
and Wolsey 2006, Sect. 7.3) to the planning problem of subroutine II we assume that
the indexes j1,… , jS of the BBP’s given sequence define the nodes of a graph. The
graph can be sorted topologically, i.e., an arc from node ji to node jk does only exist if
i < k . The arc from ji−1 to jk represents the printing block (ji,… , jk) with FB

i−1,k
 being

the cost of the arc. By introducing a dummy node j0 with costs FN
0
∶= 0 , the costs

FN
k

 of node jk can be computed in the order k = 1,… , S according to the forward
recursion:

Since maximally L sorts can be grouped into a printing block, it is sufficient to limit
the search to i ≥ {k − L}+ instead of i ≥ 0 . Thus,

∑L

l=1
(J − l + 1) =

L

2
(2J − L + 1)

(16)FN
k
∶= min

{k−L}+≤i<k
{FN

i
+ FB

i,k
}

746 H. Meyr, M. Kiel

1 3

instances of the type IP2ext1 have to be solved at a maximum in order to initialize
the scrap costs of the potential building blocks of a given sequence (see Fig. 2 for
an example with J = 4 and L = 2). FN

S
 are then the costs of the shortest path from

node j1 to node jS and of the cost-optimal partitioning of BBP’s given sequence,
respectively. Walking the shortest path backwards, from node jS to node j1 , allows to
reconstruct the building blocks of this partitioning.

The reader is referred to the rich literature on W&W models if ideas for more
efficient implementations of such recursions are desired (see, e.g., Aggarwal and
Park 1993; Federgruen and Tzur 1991 ; Wagelmans et al. 1992).

4.2.2 Evenly distributing the blocks over the sequence

A simpler alternative to get a partitioning of a given sequence (j) = (j1,… , jS) is
to more or less evenly distribute these sorts over a predefined number of printing
blocks. Ekici et al. (2010) have shown that a minimum number Sl ∶= ⌈J∕L⌉ and a
maximum number Su ∶= J of printing blocks can be defined. In case of Sl , almost
all sorts will be produced on a single printing lane, what results in minimum setup
costs. On the other hand, in case of Su , each sort will be produced on L printing
lanes, so that every printing block just involves a single sort. To get a partitioning of
a given sequence (j) = (j1,… , jS) , the number Ŝ of actually used printing blocks can
be varied in the interval

[
Sl,… , Su

]
.

Let, for a given Ŝ , the variable si define the number of sorts assigned to printing
block i where i = 1,… , Ŝ . Then, the Eqs (17) and (18) allow an (almost) even distri-
bution of sorts over the Ŝ printing blocks of the sequence:

We enumerate all potential even distributions for Ŝ = Sl,… , Su and calculate their
corresponding setup costs sc ⋅ Ŝ and costs of scrap by solving each involved IP2ext1
with subroutine III. Thus, in the end, there are

(
Su − Sl + 1

)
 solutions for the given

sequence, the best of which will be chosen.
As an example assume L = 2 , J = 4 and the sequence (1, 3, 2, 4) as given. We

get Sl ∶= 2 and Su ∶= 4 so that Ŝ has to be varied in the interval [2, 3, 4]. For Ŝ = 2 ,
the values s1 = s2 = 2 and the partitioning [(1, 3), (2, 4)] result. Additionally, Ŝ = 3
leads to s1 = 2 , s2 = s3 = 1 and the partitioning [(1, 3), (2), (4)]. Finally, Ŝ = 4
comes up with s1 = s2 = s3 = s4 = 1 and the partitioning [(1), (3), (2), (4)]. Among
these three solutions the one with lowest total costs is finally selected.

(17)s1 ∶=

⌈
J

Ŝ

⌉

(18)si ∶=

�
J −

∑i−1

k=1
sk

Ŝ − (i − 1)

�
i = 2,… , Ŝ

747

1 3

Minimizing setups and waste when printing labels of consumer…

4.3 Determining the sequence of the sorts

Finally, it has to be explained how promising sequences are generated by repeatedly
executing subroutine I. Subsection 4.3.1 tries to support the basic idea of the single
run algorithm of Ekici et al. (2010) that the sort with the highest remaining demand
should be split and additionally be allocated to a further lane (see Sect. 2). In con-
trast, Subsect. 4.3.2 assumes that random sequences suffice.

4.3.1 Demand‑oriented sorting

The basic idea to generate promising sequences is that at best those sorts should be
pooled together in a block whose production times are as equal as possible. Thus,
the sorts are sorted with respect to their demands. However, a single sort can be split
over several parallel lanes of a printing block. Therefore, the property that the pro-
duction time tj of sort j depends on the number hj of parallel lanes per sort j accord-
ing to tj ∶=

dj

hj
 will be used to vary the sequences:

A starting sequence is determined by setting hj ∶= 1 ∀j and sorting all sorts j
with respect to descending tj . The costs of this sequence are determined using the
partitioning algorithm of Sect. 4.2. Altogether, L ⋅ J iterations are executed in the
following. In each iteration, the sort k with the currently longest production time is
searched for, i.e., k ∶= argmaxj{

dj

hj
} is determined. This sort’s counter hk is increased

by 1. Thus, the production time tk of this single sort k has been decreased from dk
hk

 to
dk

hk+1
 . All sorts are re-sorted again with respect to descending production times. The

costs of the resulting (typically new) sequence are determined using subroutines II
and III. If these costs improve the currently best solution, the sequence is stored. No
matter whether the best solution has been improved or not, the new value hk of sort k
and the old values hj of the remaining sorts j build the starting point for the next
iteration.

Note that the auxiliary variables hj—counting the number of parallel lanes per
sort j—are only used to determine the next sequence of sorts within subroutine I.
These variables are not relevant at all when partitioning the new sequence during
subroutine II.

Applying this principle to the example of Fig. 1 leads to sequence (4, 2, 3, 1) with
hj = 1 ∀j in iteration 1, sequence (2, 3, 4, 1) with h1 = h2 = h3 = 1 and h4 = 2 in
iteration 2, sequence (3, 4, 1, 2) with h1 = h3 = 1 and h2 = h4 = 2 in iteration 3, etc.
Note that in subroutines II and III symmetric sequences cause identical costs so that
the sorting could also be ascending instead of descending.

4.3.2 Random sorting

To find out whether the above effort of sorting really pays back, a very simple and
stupid alternative sequencing algorithm will be used as a benchmark: Within each
of the L ⋅ J iterations, the natural sequence (1, 2,… , J) of the sorts will be shuffled
randomly to get a new sequence (j1, j2,… , jJ).

748 H. Meyr, M. Kiel

1 3

4.4 Definition of the decomposition heuristics

Note that computation times can be decreased if the solutions of IP2ext1 are
stored in tree-like data structures whose levels are defined by an ordered sequence
of the subset of sorts which is input to a IP2ext1. For example, the second print-
ing block of solution c) of Fig. 1 could alternatively be represented by the sub-
sequences (2, 3) and (3, 2), which both are equivalent and show the same objec-
tive value sc + 0 ⋅ vc . If an increasing sorting was used, for both sub-sequences
the parent node 2 would form the root of such a tree and the child node 3 would
contain the objective value sc of this printing block’s sub-sequence. These trees
remain rather small because IP2ext1 is limited to maximally L sorts. The sequenc-
ing algorithms of subroutine I and the partitioning algorithms of subroutine II
necessitate that many equivalent IP2ext1s have to be evaluated. Thus, retriev-
ing the objectives of already solved instances from the trees’ database instead of
every time computing them from scratch promises to reduce computation times
considerably. This general principle is applied to all decomposition heuristics.

As already mentioned only five out of all eight heuristics that would result
from combining each two alternatives for the three subroutines of Fig. 2 have
been implemented. Table 2 shows which ones these are. The bold capital letters
of Fig. 2 and of columns 2-4 in Table 2 define the heuristic’s name according to
the sequence of the subroutines’ occurrence. For example, heuristic SDD deter-
mines a sequence “Sorted by demands” as described in Subsect. 4.3.1, partitions
this sequence into blocks using the “Dynamic program” of Subsect. 4.2.1 and
solves IP2ext1 with the “Dynamic program” of Sect. 4.1. SDD has been selected
because it is in practical use by the label printing company. It shall be compared
with SDA in order to check the effects of the single run algorithm against the DP
of Sect. 4.1. As some pre-tests have revealed and Sect. 5.2 will demonstrate, both
show the same solution quality, but the single run algorithm runs faster. Thus, the
two alternatives for the two subroutines I and II are only tested with the quicker
option for subroutine III.

Summing up, SDD denotes the algorithm that is in use by the label printing
company. SDA represents an alternative where in subroutine III the single run
algorithm of Ekici et al. (2010) is used instead to solve IP2ext1. SDA will serve

Table 2 Overview of the decomposition heuristics

The bold letters are built the acronyms for the heuristics

heuristic I. determ. a sequence II. partition. into blocks III. solving IP2ext1

SDD Sorted by demands Dynamic program Dynamic program
SDA Sorted by demands Dynamic program single run Algorithm
SEA Sorted by demands Evenly distributed single run Algorithm
RDA Random Dynamic program single run Algorithm
REA Random Evenly distributed single run Algorithm

749

1 3

Minimizing setups and waste when printing labels of consumer…

as some sort of “base algorithm” to check how the alternatives of only subroutine
I (RDA), only subroutine II (SEA) and both simultaneously (REA) behave.

Since all of these heuristics decompose the overall planning problem into three
subproblems which are solved successively instead of simultaneously, it cannot
be expected that (always) global optima are found. Nevertheless, the dynamic
programming subroutines and the single run algorithm should help to find good
solutions in a short computation time because they at least solve subproblems
optimally. The next section evaluates to which extent this is really true.

5 Computational results

As mentioned above, the solution heuristic SDD has been implemented and is still
being used by the company. Only a few real-world problem instances have been made
available to the authors. Unfortunately, these cannot be published for reasons of confi-
dentiality. SDD led to an average cost saving of 8 % for these instances when compared
to the company’s own solutions. Furthermore, the company reported that SDD was
superior to their previous manual solution approach for all problem instances that have
been tested there. An automated planning using SDD is considered as particularly ben-
eficial if J ≥ 8 holds. Since the preparation of the printing plates etc. is time-consuming
anyway, a computation time of several hours would be acceptable to solve the really big
problem instances.

To allow a systematic evaluation of BBP’s complexity and the performance of
the different heuristics of Sect. 4.4, in Sect. 5.1 artificial test instances are generated.
Although drawn at random, their overall parameter setting bases on the experiences
made in practice. Section 5.2 compares how BBP can be solved exactly and heuristi-
cally for a small base scenario. In Sect. 5.3 the influence of the variation of different
problem parameters on solution quality and computation time is tested (also for small
problem instances). Section 5.4 finally evaluates the running time behavior of the heu-
ristics for larger instances.

Besides the heuristics of Sect. 4.4 the MIP model IP2ext of Sect. 3 is solved by
Gurobi (GUR; Gurobi Optimization LLC 2021) either exactly or heuristically by abort-
ing after a pre-defined maximum time limit. However, for very large instances, Gurobi
might not be able to find a feasible solution at all within such a time limit. Thus, to
have some other benchmark available, the intuitive solution methods illustrated in
Fig. 1 have been implemented too: Similar to solution a) the sorts are sorted according
to increasing demands and each sort is assigned to a single lane. If some unused lanes
remain for the last printing block, this printing block’s largest sort is distributed equally
on the remaining lanes. Second, all sorts are sorted according to decreasing demands
and the same procedure is repeated. Third, in analogy to solution b) of Fig. 1, a sched-
ule avoiding scrap, but generating maximum setup costs is computed. Finally, the best
solution of all three methods is selected. This solution method will be called “Intuitive
Solution Method” (ISM) in the following.

All computational tests have been executed in a virtual machine of an Intel Xeon
E5-2630 v2 2.6GHz QC server with 16 GB RAM, using the Ubuntu 20.04.2 LTS oper-
ating system and Python 3.8.10 or Gurobi 9.0.3, respectively.

750 H. Meyr, M. Kiel

1 3

5.1 Scenario generation

In the real-world application, the number of lanes L typically varies between 2 and 7.
The number of sorts per order J typically varies between 4 and 9 with J/L in a range
between 1.0 and 2.5. However, L may grow to 15 and J may grow to 100. Thus, J/L
can reach 7 or even more. Nevertheless, the majority of orders show J ≤ 15 . An
order with L = 15 and J = 30 , i.e., with L ⋅ J = 450 , is already considered as “big”
by the company.

Thus, for the computational tests L is varied in the range 2,… , 10 if small
instances and additionally in the range 11,… , 15 if larger instances are to be tested.
J will be varied from 1 to 10 with step size 1 for small and then up to 100 with step
size 10 for large instances.

The mean demand d̄ is 80 000 units for all scenarios. Upper and lower bounds
for demand are set to dmin ∶= d̄(1 − HET) and dmax ∶= d̄(1 + HET) , respectively.
Demand dj of sort j is then drawn at random from a discrete uniform distribution
over the interval [dmin;dmax] . In order to represent scenarios with low, average and
high heterogeneity of customer demand, the parameter HET is set to 0.1, 0.5 and
0.9, respectively.

The cost relation vc⋅d̄
sc⋅L

 varies between 16% and 90% in the practical cases. Thus we
choose a CR of 10%, 50% and 100% to represent a low, average and high influence
of variable costs. In order to generate such scenarios, the setup costs are normalized
to sc ∶= 800 and the variable costs are set according to vc ∶= CR⋅sc⋅L

d̄
= 0.01 ⋅ CR ⋅ L.

The maximum time limit will be set to 600 seconds for all problem instances.
We will build problem classes where J, L, HET and CR are varied. For each prob-
lem class, R = 10 or R = 30 replications are drawn at random in the way described
above.

We measure the aggregate performance over all replications of a class. For exam-
ple, %nOpt denotes the percentage of replications of a class where Gurobi has not
been able to find an optimal solution within the given time limit. Furthermore,
%m1∕m2 measures the percentage deviation of solution method m1 from solution
method m2 for each problem instance (replication) of the problem class and averages
these deviations over all instances of the class. For example, %SDD∕GUR calculates
the average percentage deviation of the objective values found by heuristic SDD
from the corresponding objective values found by Gurobi. In analogy %m1∕best
denotes the percentage deviation of the solution found by method m1 from the best
solution found at all for this problem instance, averaged over all instances of the
respective class. Finally, “aSec m1” averages the computation times (in seconds) of
solution method m1 over all replications of the respective problem class.

5.2 Exact solution of base scenarios

In order to get some impression how difficult it is to solve BBP exactly and to
get an idea how the company’s heuristic SDD compares, L and J are varied sys-
tematically in the ranges L, J = 2,… , 10 . We use a base setting with mean values

751

1 3

Minimizing setups and waste when printing labels of consumer…

HET = 0.5 and CR = 0.5 and draw R = 30 replications per problem class (combi-
nations of J and L) at random. Gurobi was able to solve all instances of the base
setting to optimality with the time limit of 600 seconds. Table 3 lists the corre-
sponding average computation times aSec Gur for L ≥ 2 and J ≥ 2.

Obviously increasing J is more crucial than increasing L. This is not surprising
since the number of binary variables xjsl of IP2ext grows with the factor J ⋅ J ⋅ L .
All computation times remain below 17 seconds and are thus negligibly small.
Since for typical practical problems 2 ≤ L ≤ 7 , 4 ≤ J ≤ 9 and 1.0 ≤ J∕L ≤ 2.5
hold (see Sect. 5.1), solving practical problems to optimality seems reasonable in
most cases. Whether this is also true for larger practical problems will be checked
in Sect. 5.4.

Therefore, heuristics like SDD, SDA or ISM were actually not necessary
for small problem instances. Nevertheless, Tables 4 and 5 also show how those
behave. Table 4 goes into detail for the company’s heuristic SDD. In contrast,
Table 5 shows aggregate results for all heuristics.

Table 4 shows the average percentage deviation %SDD∕GUR of SDD from
Gurobi. For ease of readability, values 0.0 have been left blank. As can be seen in
the left-hand part of the table, SDD can solve all problem instances to optimality

Table 3 Average computation
times (aSec GUR) of Gurobi in
seconds (no entry means: 0.0;
R = 30 , HET = 0.5 , CR = 0.5)

L J= 2 3 4 5 6 7 8 9 10

2 0.1 0.1 0.2 0.8 0.5
3 0.1 0.1 0.3 0.5 0.8 1.7
4 0.1 0.1 0.2 0.4 0.9 1.5 2.3
5 0.1 0.2 0.3 0.7 1.2 2.6 4.0
6 0.1 0.2 0.4 1.3 1.9 3.3 6.1
7 0.1 0.2 0.5 1.5 2.4 4.2 7.1
8 0.1 0.2 0.7 1.8 2.5 4.7 10.2
9 0.1 0.2 0.3 0.8 2.2 3.7 5.7 13.6
10 0.1 0.2 0.3 1.1 2.4 4.1 7.3 16.2

Table 4 Average percentage
deviation (%SDD/GUR) of the
solutions of heuristic SDD from
the optimal solutions (no entry
means: 0.0; R = 30 , HET = 0.5 ,
CR = 0.5)

L J= 2…5 6 7 8 9 10

2
3 0.8 0.1 1.2
4 0.6 0.7 0.9
5 0.1 0.6 2.1 2.4
6 0.2
7 0.7 0.3 0.9 3.2 5.4
8 0.2 0.6 1.5 1.8
9 0.3 1.3 1.2 3.2
10 0.1 0.2 1.8 2.4 2.6

752 H. Meyr, M. Kiel

1 3

if L ≤ 2 or J ≤ 5 . Usually the deviation of the SDD solutions from the MIP-solu-
tions is not worse than 3 percent. The only exceptions are (L, J) = (7, 10) with
%SDD∕GUR = 5.4 , (L, J) = (7, 9) with %SDD∕GUR = 3.2 and (L, J) = (9, 10) with
%SDD∕GUR = 3.2.

The upper part of Table 5 aggregates the results for the average percentage devia-
tion %heuristic/GUR with respect to the number of binary variables JJL and addi-
tionally shows the performance of the remaining heuristics. Comparing SDD and
SDA does not show any differences and thus lets suspect that not only the single
run algorithm of Ekici et al. (2010), but also the dynamic program of Sect. 4.1 with
its final rounding procedure solve IP2ext1 to optimality. A formal proof that this
hypothesis is indeed true can be found in the Appendix.

Looking at all heuristics reveals the advantages of SDD and SDA. For the base
instances, the next best solutions are delivered by the heuristic RDA, which uses
a random sequence of the sorts, but also the shortest-path-like dynamic program
for partitioning the sequence. Since SEA and REA both perform worse, solving
the sub-problem of subroutine II optimally instead of evenly distributing the blocks
clearly pays back in terms of overall solution quality. Comparing SDA with RDA
and SEA with REA shows that —yet to a smaller extent—the same is true when
sorting sequences by demand during subroutine I. ISM performs worst in all cases.
Obviously, decomposing BBP into successively and iteratively solved sub-problems
is always better than just applying simple intuition.

The lower part of Table 5 demonstrates the effects of relaxing the integer domain
of the blocks’ run lengths to a continuous one. Let GURℝ denote the solution
method that uses Gurobi to solve the IP2ext model of Sect. 3 with Qs ∈ ℤ

≥0 (13)
being replaced by Qs ≥ 0 . (Note that xjsl and rs are still binary.) When solved to opti-
mality, this relaxation provides a lower bound to IP2ext so that % GURℝ∕GUR ≤ 0 .
As can be seen the resulting relative gaps are extremely small. The Appendix again
helps to explain why this is the case. For each individual printing block s, the con-
tinuously optimal run length Qs can simply be rounded up to the next higher inte-
ger ⌈Qs⌉ in order to achieve the optimal integer run length. Because typical practical
demands dj comprise several thousands of labels per sort, the resulting cost differ-
ences are almost negligible.

Table 5 Average percentage deviation (%heuristic/GUR) of the heuristic solutions from Gurobi solutions
for L = 1,… , 10 and J = 1,… , 10 , further aggregated with respect to the number of binary variables JJL
of BBP (no entry means: 0.0; R = 30 , HET = 0.5 , CR = 0.5)

JJL ≤ 125 250 375 500 625 750 875 1000

%SDD/GUR 0.1 0.4 0.8 1.3 2.5 2.1 2.9
%SDA/GUR 0.1 0.4 0.8 1.3 2.5 2.1 2.9
%SEA/GUR 2.2 5.3 10.4 11.6 12.5 11.5 11.1 12.5
%RDA/GUR 0.1 1.9 2.2 3.2 3.8 4.8 5.3 4.7
%REA/GUR 2.7 7.6 12.8 14.4 17.3 15.0 14.8 15.4
%ISM/GUR 27.3 45.5 60.7 77.5 99.2 102.3 105.3 103.6
%GUR

ℝ/GUR 0.00 − 0.01 − 0.01 − 0.01 − 0.01 − 0.01 − 0.02 − 0.01

753

1 3

Minimizing setups and waste when printing labels of consumer…

Table 6 finally presents the average computation times of the exact method, the
decomposition heuristics and the relaxation in an aggregate manner. ISM is not
shown at all because its running times even fall below 50 milliseconds.

All heuristics are faster than solving BBP exactly. However, at least for these
small base problems, this does not really matter. Obviously, the single run algorithm
of Ekici et al. (2010) runs quicker than the DP implementation of Sect. 4.1. Thus
SDA should be preferred to SDD. Since also all other decomposition heuristics can-
not beat SDA in terms of solution quality, but show similar computation times, SDA
can be recommended as the number one heuristic—at least for the base scenario’s
instances. For obvious reasons, we abstain from further experiments with SDD and
REA in the following sections.

Interestingly, relaxing the integer variables Qs ∈ ℤ
≥0 to continuous Qs ≥ 0

does not decrease, but increase the computation times of the large instances with
JJL ≥ 750 . Apparently, insisting on only complete labels to be printed makes IP2ext
rather easier than more difficult to solve.

5.3 Variation of selected problem parameters

Before evaluating the heuristics’ performance for even larger problem sizes, we want
to find out whether and how selected problem characteristics like heterogeneity of
demand or the relation between setup and scrap costs influence the “hardness” to
solve a certain problem instance.

In a first step, we vary demand heterogeneity, i.e., we decrease and increase the
variance of the order sizes for different sorts j of some single product family. As
explained in Sect. 5.1, this can be reached by varying the parameter HET. Assum-
ing HET = 0.5 , underlying the experiments of Sect. 5.2, was a medium heterogene-
ity of some base scenario, the values HET = 0.1 and HET = 0.9 allow a comparison
with rather low and rather high heterogeneity of demand. Table 7 shows the results
of corresponding experiments where R and CR are kept alike the base scenario.

Apparently, problems with small heterogeneity are easier to solve to optimality
than problems with medium or high heterogeneity. As given in Table 7 both aSec
GUR and %SDA∕GUR are clearly lower if HET = 0.1 than if HET = 0.5 . How-
ever, differences are less obvious between HET = 0.5 and HET = 0.9 . Computa-
tion times are quite similar or might even improve a little when changing from

Table 6 Average computation
times for L = 1,… , 10 and
J = 1,… , 10 , further aggregated
with respect to the number of
binary variables JJL of BBP
(no entry means: 0.0; R = 30 ,
HET = 0.5 , CR = 0.5)

JJL ≤ 125 250 375 500 625 750 875 1000

aSec GUR 0.1 0.4 1.1 2.5 4.2 5.4 8.8 14.9
aSec SDD 0.1 0.1 0.2 0.3 0.5 0.9
aSec SDA 0.1 0.1 0.1 0.2
aSec SEA 0.1 0.1 0.1 0.1
aSec RDA 0.1 0.1 0.1 0.1 0.2
aSec REA 0.1 0.1 0.1 0.1
aSec GURℝ 0.1 0.3 1.1 2.4 4.2 5.5 9.6 15.6

754 H. Meyr, M. Kiel

1 3

medium to high heterogeneity. The solution heuristic SDA seems to get (mono-
tonically) worse when heterogeneity grows, whereas ISM does not show a clear
picture.

Table 8 varies the relation between the fix costs for designing and installing
printing plates and the variable costs of scrap. Let us again assume that CR = 0.5 ,
used in Sect. 5.2, is some sort of base relation. Then CR = 0.1 and CR = 1.0 repre-
sent situations with a low and high influence of variable costs for scrap.

Table 8 reveals that problems with low variable and high fix costs can easily
be solved to optimality. Similar to Table 7 and HET = 0.1 , for CR = 0.1 instances
can be solved fastest, with a more pronounced difference the larger the instances
are. The problems also seem to be the harder to be solved optimally, the higher
CR gets. The average computation times aSec GUR of Gurobi increase when the
influence of scrap costs grows.

The picture is less clear for the other solution heuristics SDA and ISM. SDA
also seems to behave worse if CR grows, but the picture changes if JJL ≥ 625 .
Then SDA’s results are worst if CR = 0.5 . If JJL ≥ 375 , ISM also behaves worst
for CR = 0.5 . Please remember that ISM always chooses the best of the two

Table 7 Variation of demand heterogeneity HET, grouped with respect to the number of binary variables
JJL of BBP (R = 30 , CR = 0.5)

HET JJL ≤ 125 250 375 500 625 750 875 1000

0.1 aSec GUR 0.1 0.3 0.8 1.3 2.5 3.3 3.6 5.8
0.5 aSec GUR 0.1 0.4 1.1 2.5 4.2 5.4 8.8 14.9
0.9 aSec GUR 0.1 0.5 1.2 2.9 4.4 6.3 10.3 13.0
0.1 %SDA/GUR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 %SDA/GUR 0.0 0.1 0.4 0.8 1.3 2.5 2.1 2.9
0.9 %SDA/GUR 0.0 0.2 0.6 1.8 2.6 2.9 3.2 4.4
0.1 %ISM/GUR 23.4 46.1 40.3 92.1 95.4 65.4 150.2 21.9
0.5 %ISM/GUR 27.3 45.5 60.7 77.5 99.2 102.3 105.3 103.6
0.9 %ISM/GUR 29.6 48.6 66.7 85.3 101.5 102.3 103.6 112.8

Table 8 Variation of the relation CR between fix and variable costs (R = 30 , HET = 0.5)

CR JJL ≤ 125 250 375 500 625 750 875 1000

0.1 aSec GUR 0.0 0.2 0.5 0.9 1.5 2.3 3.7 4.5
0.5 aSec GUR 0.1 0.4 1.1 2.5 4.2 5.4 8.8 14.9
1.0 aSec GUR 0.1 0.5 1.7 4.8 7.7 11.0 16.3 19.1
0.1 %SDA/GUR 0.0 0.0 0.1 0.0 0.0 0.1 0.2 0.3
0.5 %SDA/GUR 0.0 0.1 0.4 0.8 1.3 2.5 2.1 2.9
1.0 %SDA/GUR 0.0 0.2 0.6 1.1 1.0 2.1 2.1 2.4
0.1 %ISM/GUR 43.0 48.2 45.0 49.0 51.8 73.1 87.9 57.7
0.5 %ISM/GUR 27.3 45.5 60.7 77.5 99.2 102.3 105.3 103.6
1.0 %ISM/GUR 20.8 35.4 46.5 64.4 62.5 67.8 74.6 74.9

755

1 3

Minimizing setups and waste when printing labels of consumer…

extreme solutions, which offer lowest setup costs or lowest variable costs. Thus
there has to be some value of CR where ISM switches from one extreme to the
other.

5.4 Heuristic solution of big problems

Finally it is of interest how Gurobi and the proposed heuristics perform for large
problem instances. Therefore, we choose GUR’s best solution found after the time
limit of 600 seconds and compare it with the best solutions of the other heuristics
using the same time limit. As mentioned in Sect. 5.1, L may grow to 15 and J may
grow to 100 in industrial practice. In the following, we thus vary L from 2 to 15 with
step size 1 and J from 10 to 100 with step size 10. To restrict the computational bur-
den, the number of replications is reduced to R = 10.

Table 9 shows average computation times of SDA and GUR for these problem
sizes when HET = 0.5 and CR = 0.5 of the base scenario are used again. If detailed
results of GUR are omitted, GUR has reached its time limit of 600 seconds. As can
be seen, this is the case if J ≥ 20 and L ≥ 7 or J ≥ 30 and L ≥ 3 . Thus, one cannot
expect to solve large problem instances to optimality.

In contrast, SDA stays well below the time limit for all instances tested. It can
be seen that the dynamic program and the single run approach used as subroutines
of SDA indeed are sensitive with respect to the problem dimensions. Fortunately—
also for large problem instances—the decomposition of BBP into three subsequently
solved sub-problems keeps computations times in an acceptable range although two
of the three sub-problems are solved to optimality.

Further results are again only presented in an aggregate manner. Table 10
summarizes the comparison of the heuristics, grouped to classes with
JJL ≤ 10 000, 20 000,… , 50 000 and then in step size of 20 000 until 150 000 . Note
that %nOpt represents the percentage of replications per class where GUR has not

Table 9 Average computation
times [sec.] of SDA/GUR or
SDA only for big problems
with 10 ≤ J ≤ 100 (all other
results of GUR ≥ 600 ; R = 10 ,
HET = 0.5 , CR = 0.5)

L J=10 20 30 40 50 60 70 80 90 100

2 0/0 0/47 0/555 0 0 0 0 0 1 1
3 0/2 0/172 0 0 0 1 1 1 1 2
4 0/2 0/349 0 0 1 1 2 2 2 3
5 0/4 0/490 1 1 1 1 2 3 3 4
6 0/6 0/514 0 1 1 2 3 3 5 6
7 0/7 0 1 1 2 3 4 5 7 9
8 0/11 1 1 2 2 4 5 8 9 12
9 0/14 1 1 2 4 5 7 10 13 17

10 0/15 1 2 3 5 7 10 12 16 20
11 0/16 1 2 4 6 9 13 16 21 26
12 0/17 2 3 5 8 12 16 21 27 33
13 0/26 2 4 7 11 14 20 26 33 41
14 0/22 2 5 8 13 18 24 32 40 51
15 0/29 2 6 10 15 21 29 38 50 63

756 H. Meyr, M. Kiel

1 3

been able to find an optimal solution within ten minutes. SEA and RDA shall help to
get a better insight which subroutine of Fig. 2 is especially important to obtain good
solutions. Average computation times aSec are again omitted for ISM because they
still range below 500 milliseconds.

GUR is always able to find a feasible solution, but only seldom to find the opti-
mal one. Only for 38 percent of the smallest instances with JJL ≤ 10 000 , a proven
optimum can be reached within ten minutes.1 In terms of solution quality, obviously
SDA is the first choice for these large instances. It does in all other cases not only
reliably generate feasible solutions, but also the respective benchmark solution. The
average percentage deviation %GUR∕Best of Gurobi from the best solution increases
from 2 percent for JJL ≤ 10 000 up to 212 percent for 130 000 < JJL ≤ 150 000.

Contrary to the results of the base instances given in Table 5, SEA shows bet-
ter solutions than RDA for these big instances. The average percentage deviation
%SEA∕Best of SEA from the best solution is always smaller than the average per-
centage deviation %RDA∕Best of RDA, while computation times aSec SEA usually
are also faster. Apparently, for large problem instances, finding a good sequence of
sorts is more important than partitioning this sequence. A rather “dumb” partition-
ing algorithm can outperform another similarly “dumb” sorting algorithm, because
the number of J − ⌈J∕L⌉ + 1 partitionings to be checked by SEA does not grow as
fast as the number J! of potential, randomly selected sequences of RDA.

Nevertheless, the results also show that the demand-oriented sequencing of
Sect. 4.3.1, the shortest-path-like partitioning of Sect. 4.2.1 and the single run algo-
rithm of Ekici et al. (2010) are not only again the best combination of subroutines
I–III of Fig. 2, but moreover the best way at all to solve large problem instances.
ISM as well reliably and quickly generates feasible solutions. However, its quality
is by far worse than the one of SDA. The deviation is around 50 percent in the best

Table 10 Comparison of Gurobi, SDA, SEA, RDA and ISM for big problems grouped with respect to
the number of binary variables JJL (no entry means: < 1 ; R = 10 , HET = 0.5 , CR = 0.5)

JJL ≤ 1000⋅ 10 20 30 40 50 70 90 110 130 150

%nOpt 62 100 100 100 100 100 100 100 100 100
aSec GUR 398 602 603 605 606 607 610 613 615 616
aSec SDA 1 2 4 7 7 13 20 29 41 57
aSec SEA 1 3 6 10 14 20 31 44 53 68
aSec RDA 2 8 17 29 33 61 97 146 195 270
%GUR/Best 2 16 23 31 22 41 61 67 103 212
%SDA/Best 2
%SEA/Best 19 31 31 36 31 49 58 55 61 60
%RDA/Best 27 53 70 80 98 94 94 93 94 100
%ISM/Best 68 62 72 74 50 86 106 99 149 212

1 Note that Gurobi apparently finishes some operations before and/or after checking the time limit
parameter. Thus computation times slightly higher than 600 seconds may occur.

757

1 3

Minimizing setups and waste when printing labels of consumer…

case and more than 200 percent in the worst case. This deviation seems to grow
when problem sizes grow.

6 Summary and outlook

A real-world planning problem of a printing company, called the “Block Building
Problem” (BBP), has been presented where different sorts of a consumer goods’
label are printed in parallel lanes on a roll of paper with sufficient length. Printing
plates have to be designed to set up the printer for a certain combination of sorts.
Each sort can only be printed with a single plate. Waste may be produced and has
to be disposed as scrap if the demands of a printing plate’s sorts do not match each
other. Decisions shall be made how to build “printing blocks”, i.e., how many and
which plates to design and how long to run the printer with a certain plate so that the
fixed costs for designing the plates and setting up the printer and the variable costs
of waste are minimized.

To model this practical situation, a mixed integer program (MIP) has been formu-
lated, which is an extension of the so-called the “job splitting problem” where empty
lanes are not allowed and where a single sort cannot be printed in several blocks.

A heuristic solution approach has been developed, which decomposes the BBP
into the three subroutines “determining a sequence”, “partitioning the sequence into
printing blocks” and “scheduling each potential printing block”. These are executed
successively and iteratively. Five different decomposition heuristics are proposed
and tested by combining different solution alternatives for each subroutine. The two
most successful decomposition heuristics are called SDD and SDA. Both of them
determine the sequence of sorts to be produced by re-sorting them with respect to
varying demand. And both of them partition sequences into printing blocks by solv-
ing a dynamic program that takes advantage of BBP’s proprietary constraint that
a single sort can be printed in one block only. They differ in the way how the third
subroutine is executed: whereas SDD relies on another dynamic program, SDA uses
the so-called single run algorithm of Ekici et al. (2010). Both solve the correspond-
ing planning problem differently, but optimally. For benchmark purposes, an addi-
tional heuristic has been introduced which combines some rather intuitive solution
ideas. The heuristic SDD has been for some years and still is in use by the printing
company.

From an academic point of view, the performance of these different solution heu-
ristics compared with each other and with standard MIP solvers appears of interest.
Thus a numerical study with artificially generated test instances has been executed.
Small instances up to 10 sorts and 10 lanes and large instances up to 100 sorts and
15 lanes have been generated which show similar characteristics as can be found in
the label printing company.

Using Gurobi as an MIP solver reveals that all small instances can be solved to
optimality in less than 20 s. Large problems, however, can—within a time limit of
600 s—only optimally be solved if they do not comprise more than 20–30 different
sorts. With respect to industrial practice does this mean that instances of practically
relevant size can exactly be solved in many cases, but not in all.

758 H. Meyr, M. Kiel

1 3

Thus heuristics are necessary for larger instances. Besides the already
described heuristics, of course, the MIP solver can also be applied heuristically
when aborting after a certain time limit like the above ten minutes. Among these
heuristics SDD and SDA perform best because they generate sequences prob-
lem-oriented and solve both other sub-problems, generating printing blocks and
scheduling each printing block, optimally. SDD and SDA show identical solu-
tion quality. However, SDA runs faster and thus should be preferred. The intuitive
methods would even be quicker, but their solution quality is not satisfying at all.
For small problems, which can still be solved exactly, usually the average devia-
tion of SDA’s and SDD’s solutions from the optimal ones is below three per-
cent. For bigger problems with more than 10 sorts, the MIP heuristic is 16–212 %
worse than SDA which needs 1-2 minutes in the worst case in contrast to the MIP
solver’s 10 minutes.

Apparently, the BBP is harder to solve to optimality if the number of sorts
increase than if the number of lanes grow. That means it is easier to plan for
smaller labels than for more sorts per customer order. Hardly surprising, also
homogeneous demands within a customer order can easier be dealt with than
heterogeneous demands. The higher the influence of the scrap costs is, the more
difficult it seems to find a proven optimum. The heuristic SDA shows a similar
behavior like the MIP solver, but less pronounced.

The company is satisfied with SDD in terms of both solution quality and time.
Nevertheless, it can be recommended to solve small problem instances to opti-
mality instead and to replace SDD with SDA for larger instances. That means,
computation times could be decreased by substituting the currently used dynamic
program with the single run algorithm. These advices seem generally valid for all
companies who face a planning problem like BBP.

Two directions of future research appear promising: If optimal solutions are
desired, the MIP formulation might still be improved, e.g., by additional symme-
try breaking constraints and valid inequalities. If heuristic solutions are sufficient,
the performance of SDA could tried to be improved, for instance, by introduc-
ing more sophisticated local search principles in subroutine I of the decompo-
sition approach. Then, the question needs to be answered whether the expected
improvements in solution quality are not overcompensated by the probable
increase of computation times.

Appendix: Some remarks on the single block problem

Objective (19) and constraints (20)–(26) summarize the single block problem
IP2ext1 that has been introduced at the end of Sect. 3. It arises if J ≤ L , i.e., if
the number of sorts J does not exceed the number of lanes L. Since only a single
printing block is involved, the index s has been omitted.

IP2ext1:

759

1 3

Minimizing setups and waste when printing labels of consumer…

subject to

Ekici et al. (2010) transform the objective (19) into (27), which merely minimizes
the makespan Q, and consider all fixed costs outside the model.

They formulate the single run problem SRP, basically consisting of (27), (20), (21),
(25) and (26), and solve it to proven optimality using the single run algorithm SRA.
The SRA successively assigns sorts j to lanes l by first allocating hj ∶= 1 lanes to
each product j and then increasing the number of lanes hj by 1 for the product j
where the current ⌈ dj

hj
⌉ is highest. SRA stops when all lanes are used. The optimal

makespan Q⋆ is then set to Q⋆ ∶= maxj ⌈
dj

hj
⌉.

Note that SRA will only leave lanes empty if dj
hj
< 1 and hj > 1 for some sort j.

This will not occur in the label printing industry because demands are too high
there. Thus, constraints (22)–(24) of IP2ext1 were not mandatory, but can help to
tighten model formulations if several blocks s are involved as, for example, in the
model IP2ext of Sect. 3.

Let IP2ext1ℝ denote the continuous relaxation of IP2ext1 where Q ∈ ℤ
≥0 has

been replaced by Q ≥ 0 in (26). Please note that the dynamic program formu-
lated by (15) in Sect. 4.1 does solve IP2ext1ℝ instead of IP2ext1. Only the final
rounding of the continuously optimal makespan Qℝ⋆ to ⌈Qℝ⋆⌉ does create a fea-
sible solution for the integer problem IP2ext1. The computational experiments of

(19)minimize sc + vc

(
LQ −

∑

j

dj

)

(20)
∑

l

qjl = dj ∀j

(21)qjl ≤ l ⋅ Q ∀j, l

(22)qjl ≤ dj ⋅ xjl ∀j, l

(23)
∑

l≥1

xjl = 1 ∀j

(24)xjl ∈ {0;1} ∀j, l

(25)qjl ≥ 0 ∀j, l

(26)Q ∈ ℤ
≥0

(27)minimize Q

760 H. Meyr, M. Kiel

1 3

Sect. 5.2 let suspect that this solution is also optimal for IP2ext1. Nevertheless, a
formal proof is outstanding.

Theorem 1 A final rounding of the optimal makespan Qℝ⋆ that has been determined
by the dynamic program (15) up to ⌈Qℝ⋆⌉ provides the optimal run length of IP2ext1.

Proof Considering the transformed objective (27) to minimize the makespan, it can
easily be seen that a continuous version SRAℝ of SRA, where the current highest dj

hj
 is

used instead of ⌈ dj

hj
⌉ and where the final optimal makespan Qℝ⋆ is determined by

Qℝ⋆ ∶= maxj {
dj

hj
} , alike (15) also solves IP2ext1ℝ to optimality. Without loss of

generality, let us assume that in SRA among the products j that show equal highest
⌈ dj

hj
⌉ always one is selected where additionally dj

hj
 is highest. Then, SRA and SRAℝ

only differ by rounding up the final makespan Qℝ⋆ in the final step of SRA accord-
ing to Q⋆ ∶= ⌈Qℝ⋆⌉.

Since (15) and SRAℝ both determine the same optimal makespan Qℝ⋆ of
IP2ext1ℝ , since SRAℝ and SRA only differ in the final rounding and since it is suffi-
cient to round Qℝ⋆ up in order to gain an optimal solution for IP2ext1, a final round-
ing of the optimal makespan determined by the dynamic program (15) does also
provide the optimal makespan and run length of IP2ext1. ◻

Acknowledgements The authors are grateful to Dr. Rainer Ulrich, the unknown referees and the editors
for their helpful support and comments.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Aggarwal A, Park JK (1993) Improved algorithms for economic lot size problems. Operations Res
41(3):549–571

Baumann P, Forrer S, Trautmann N (2015) Planning of a make-to-order production process in the print-
ing industry. Flex Serv Manuf J 27(4):534–560

Degraeve Z, Vandebroek M (1998) A mixed integer programming model for solving a layout problem in
the fashion industry. Manag Sci 44(3):301–310

Ekici A, Ergun O, Keskinocak P, Lagoudakis MG (2010) Optimal job splitting on a multi-slot machine
with applications in the printing industry. Nav Res Logist 57(3):237–251

Federgruen A, Tzur M (1991) A simple forward algorithm to solve general dynamic lot sizing models
with n periods in 0(n log n) or 0(n) time. Manag Sci 37(8):909–925

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

761

1 3

Minimizing setups and waste when printing labels of consumer…

Fleischmann B, Meyr H (1997) The general lotsizing and scheduling problem. Op Res Spektrum
19(1):11–21

Gilmore PC, Gomory RE (1961) A linear programming approach to the cutting-stock problem. Op Res
9(6):849–859

Gilmore PC, Gomory RE (1963) A linear programming approach to the cutting stock problem-part II. Op
Res 11(6):863–888

Gurobi Optimization LLC (2021) Gurobi optimizer. https:// www. gurobi. com/ produ cts/ gurobi- optim izer/.
Accessed October 2021

Martínez KP, Adulyasak Y, Jans R, Morabito R, Toso EAV (2019) An exact optimization approach for an
integrated process configuration, lot-sizing, and scheduling problem. Comput Op Res 103:310–323

Martínez KP, Morabito R, Toso EAV (2018) A coupled process configuration, lot-sizing and scheduling
model for production planning in the molded pulp industry. Int J Prod Econ 204:227–243

Melega GM, de Araujo SA, Jans R (2018) Classification and literature review of integrated lot-sizing and
cutting stock problems. Eur J Op Res 271(1):1–19

Meyr H (2004) Simultane Losgrößen- und Reihenfolgeplanung bei mehrstufiger kontinuierlicher Ferti-
gung. Zeitschrift für Betriebswirtschaft 74(6):585–610

Pochet Y, Wolsey LA (2006) Production planning by mixed integer programming. Springer series in
operations research and financial engineering, Springer Science & Business Media, New York

Seeanner F, Meyr H (2013) Multi-stage simultaneous lot-sizing and scheduling for flow line production.
OR Spectr 35(1):33–73

Teghem J, Pirlot M, Antoniadis C (1995) Embedding of linear programming in a simulated anneal-
ing algorithm for solving a mixed integer production planning problem. J Comput Appl Math
64(1):91–102

Wagelmans A, van Hoesel S, Kolen A (1992) Economic lot sizing: an O(n log n) algorithm that runs in
linear time in the Wagner-Whitin case. Op Res 40(1(supplement—-1)):S145–S156

Wagner HM, Whitin TM (1958) Dynamic version of the economic lot size model. Manag Sci 5(1):89–96
Wörbelauer M, Meyr H, Almada-Lobo B (2019) Simultaneous lotsizing and scheduling considering sec-

ondary resources: a general model, literature review and classification. OR Spectr 41(1):1–43
Wäscher G, Haußner H, Schumann H (2007) An improved typology of cutting and packing problems. Eur

J Op Res 183:1109–1130
Yiu KFC, Mak KL, Lau HYK (2007) A heuristic for the label printing problem. Comput Op Res

34(9):2576–2588

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://www.gurobi.com/products/gurobi-optimizer/

	Minimizing setups and waste when printing labels of consumer goods
	Abstract
	1 Introduction
	2 Literature review
	3 Model formulation
	4 Decomposition heuristics
	4.1 Solving IP2ext1 for potential printing blocks
	4.2 Partitioning a given sequence into printing blocks
	4.2.1 Using a dynamic program of the shortest path type
	4.2.2 Evenly distributing the blocks over the sequence

	4.3 Determining the sequence of the sorts
	4.3.1 Demand-oriented sorting
	4.3.2 Random sorting

	4.4 Definition of the decomposition heuristics

	5 Computational results
	5.1 Scenario generation
	5.2 Exact solution of base scenarios
	5.3 Variation of selected problem parameters
	5.4 Heuristic solution of big problems

	6 Summary and outlook
	Acknowledgements
	References

