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Abstract
The paper investigates the static dial-a-ride problem with ride and waiting time min-
imization. This is a new problem setting of significant practical relevance because 
several ride-sharing providers launched in recent years in large European cities. In 
contrast to the standard dial-a-ride problem, these providers focus on the general 
public. Therefore, they are amongst others in competition with taxis and private 
cars, which makes a more customer-oriented objective necessary. We present an 
adaptive large neighbourhood search (ALNS) as well as a dynamic programming 
algorithm (DP), which are tested in comprehensive computational studies. Although 
the DP can only be used for a single tour and, due to the computational effort, as a 
restricted version or for small instances, the ALNS also works efficiently for larger 
instances. The results indicate that ride-sharing proposals may help to solve the 
trade-off between individual transport, profitability of the provider, and reduction of 
traffic and pollution.

Keywords  Demand responsive transport · Dial-a-ride · Adaptive large 
neighbourhood search · Dynamic programming

1  Introduction

In major cities, people enjoy a wide range of transportation modes: buses, urban 
railways, trams, taxis, and their own private cars. Besides, different ride-shar-
ing providers started in recent years, although the dial-a-ride concept is already 
known since around 1970 (Oxley 1980). An important difference to the first con-
cepts is that nowadays providers usually use apps to connect drivers and pas-
sengers. The biggest company, Uber, which connects private drivers to potential 
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customers, started 2009 and operates worldwide (Uber Technologies, Inc. 2020). 
In contrast to Uber, most providers have employed drivers. Among others even 
companies with competing business models push into the ride-sharing mar-
ket. MOIA—a subsidiary company of the automobile manufacturer Volkswa-
gen AG—operates in Hanover (since 2018), and Hamburg (since 2019) (MOIA 
GmbH 2020). ioki—a subsidiary company of the main German railway company, 
Deutsche Bahn AG—was founded in 2017 and operates among others in Ham-
burg (ioki GmbH 2020).

Although the dial-a-ride problem is well investigated (Ho et al. 2018), to the 
best of our knowledge no paper considers the problem these competitors of taxis 
and private cars in large cities have. For them customer satisfaction is much more 
important than a minimal driven distance. On the one hand, they compete directly 
with other modes of transportation and need a high service level to reach a suf-
ficient market share. Thus, they have to be fast enough from the perspective of 
many customers in order to become a viable alternative for the end user. On the 
other hand, these companies want to improve the quality of life by less traffic 
and reduced pollution. Beside the traffic reduction due to the pooling effect, they 
use electric vehicles to reach this aim. However, electric vehicles are cheaper to 
recharge and, perspectively [MOIA plans to use autonomous vehicles in Ham-
burg from 2025 on (MOIA GmbH 2020)], driver costs can be omitted if autono-
mous vehicles are available. Because of that pure distance minimization is not 
an appropriate objective. Instead, these ride-sharing providers aim at the mini-
mization of the time between request and arrival at the delivery location for each 
customer.

In this paper, we minimize the sum of relative detours over all customers in a 
static setting, i.e. the arrival time at the destination minus the request time minus 
the direct travel time between pickup and delivery location divided by the latter. 
The maximum relative detour is penalized additionally to prevent prohibitively long 
ride or waiting times. We assume a number of vehicles with a maximum passenger 
capacity as given. Due to our objective, we can omit time windows and maximum 
waiting and ride time constraints (Psaraftis 1980; compare Cordeau 2006; Ropke 
et al. 2007). Therefore, we do not need feasibility tests (see Hunsaker and Savels-
bergh 2002; Tang et al. 2010; Gschwind and Drexl 2019) since picking up a cus-
tomer and driving directly to their destination before the next customer gets into 
the vehicle is always feasible even if only one vehicle with a sufficient capacity is 
used (all customers must be picked up after their request time). Our objective might 
lead to empty trips, which are detrimental relating to other objectives such as cost 
minimization, but they are necessary to compete against taxis and private cars. Taxis 
have significant empty trips as well (Bischoff and Maciejewski 2016), which are 
even increased to reduce passenger waiting times (Lees-Miller and Wilson 2012).

We present a literature review in Sect. 2. Afterwards, we introduce the problem 
in detail in Sect. 3. In Sect. 4, we put forward a general heuristic solution approach 
based on adaptive large neighbourhood search and in Sect. 5 we introduce a dynamic 
programming approach for single-tour instances. Both approaches are evaluated 
in a computational study (Sect. 6) afterwards. The paper closes with a conclusion 
(Sect. 7).
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2 � Literature review

The static dial-a-ride problem (DARP) has been subject to an extensive amount 
of research. Originally, it was formulated by Psaraftis (1980). The exact definition 
of the DARP differs, but generally the DARP features customer satisfaction (Par-
ragh et al. 2008) to distinguish it from a standard pickup and delivery problem. 
However, the way customer satisfaction is measured differs a lot. Most commonly 
used are maximum ride time constraints (Lehuédé et al. 2014) and time windows. 
Some authors consider hard time windows, which are never allowed to be vio-
lated (Cubillos et  al. 2014), while others allow violations and penalize them in 
the objective function (Chevrier et al. 2012; Atahran et al. 2014).

The objective function of a DARP formulation often aims to minimize oper-
ating costs like the number of needed vehicles (Baugh et  al. 1998) or the total 
travelled distance (Diana and Dessouky 2004). Mostly, they are combined in a 
multi-criteria objective function (Baugh et al. 1998). Other approaches search for 
pareto-optimal frontiers of solutions instead (Atahran et al. 2014).

However, there are also works which consider customer satisfaction in the objec-
tive function. Parragh et al. (2009) propose a multi-objective DARP where both the 
routing cost and the mean user ride times are minimized. The same objective func-
tion is evaluated in Molenbruch et al. (2017b). Sexton and Bodin (1985) consider 
a problem where the customers can specify a desired delivery time and the objec-
tive function then minimizes the sum of excess ride times and the deviation to the 
desired delivery time. Diana and Dessouky (2004) present a DARP where the cus-
tomer can specify a pickup or a delivery time. The objective function is a weighted 
sum of the total distance, the excess ride time, and the total idle time. A lexico-
graphic objective is considered by Schilde et al. (2011): Primarily, the total tardiness 
is minimized, then the number of vehicles and finally the total duration of the routes. 
To the best of our knowledge, no other work has presented an objective function that 
minimizes the weighted relative detour as described in Sect. 3. Instead, if the ride or 
waiting time is considered at all in the objective, it is generally summed up nomi-
nally and not relative to the minimum travel time.

Exact solution methods for the DARP have been studied in the form of branch-
and-cut algorithms (Cordeau 2006; Ropke et  al. 2007) and branch-and-cut-and-
price algorithms (Wilson et al. 1999; Baldacci et al. 2011; Gschwind and Irnich 
2015). Heuristic solution methods include metaheuristics such as variable neigh-
bourhood search (Parragh et  al. 2010; Muelas et  al. 2013), Tabu Search (Cord-
eau and Laporte 2003), simulated annealing (Baugh et al. 1998; Reinhardt et al. 
2013), and adaptive large neighbourhood search (Gschwind and Drexl 2019).

A lot of research has been influenced by real-life problems in the transporta-
tion of elderly, handicapped or ill passengers (Jorgensen et  al. 2007; Heilporn 
et al. 2011; Detti et al. 2017). Nevertheless, especially for urban areas dial-a-ride 
problems have also been studied in the context of commercial ride-sharing and 
demand responsive transport systems (Jaw et al. 1986; Parragh et al. 2015). Mue-
las et  al. (2013) consider a dial-a-ride problem for on-demand transportation in 
large cities, but they use routing cost minimization as their objective.
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3 � Problem description

Our problem differs from the standard DARP formulation (Cordeau and Laporte 
2007) in the objective function as well as some constraints. As in the standard for-
mulation we consider

•	 a number of requests with a given demand, i.e. the number of people who want 
to travel in common,

•	 k homogeneous vehicles with fixed capacity starting from the same depot,
•	 a pickup and a delivery location for each request which have to be visited by the 

same vehicle and in the sequence pickup before delivery, and
•	 travel times between each pair of locations.

Ride-sharing providers compete in large cities with different modes of transporta-
tion like public transport, taxis or private cars. Hence, a customer-oriented objective 
is necessary to be attractive for customers. On the other side, it is not that important 
to minimize the total travel distance, as ride-sharing providers typically use electric 
vehicles, which are cheaper to recharge, to reduce pollution in cities (we do not con-
sider recharging in this paper, as the vehicles are typically recharged during upfront 
scheduled breaks in practice). In the medium or long term they further target to use 
autonomous vehicles (no costs for drivers).

Thus, as distinguished from the standard DARP formulation, we do not minimize 
the travel distance or travel time. Instead, we minimize the customer inconvenience 
by minimizing the sum of relative detours over all customers. By detour we mean 
the difference between arrival time at the delivery location and the sum of request 
time and direct travel time between pickup and delivery location, i.e. the detour 
includes the waiting time. Afterwards, the detour is divided by the direct travel time 
between pickup and delivery location to get the relative detour. In order to prevent a 
single customer from having a prohibitively long detour, the maximum detour over 
all customers is additionally penalized.

The objective value is given by

where qi is the number of passengers in request i, ri is the request time (i.e. earliest 
possible pickup time) of request i, ti,i+n is the direct travel time from the pickup to 
the delivery location of request i, Bi+n is the arrival time at the delivery location of 
request i, and w is the penalty factor for the maximum detour. Hence, the first part 
of the objective value measures the sum of relative detours, i.e. the sum of waiting 
time and riding time for each customer relative to the direct travel time, weighted 
with the number of passengers. The second part of the objective function penalizes 
the maximum relative detour. A higher value for the penalty factor w increases the 
importance of minimizing the maximum relative detour compared to minimizing 
the sum of all weighted relative detours. Note that the number of passengers qi is 
not present in the second term, as the maximum relative detour should be measured 

(1)
∑

i∈P

qi
Bi+n − ri − ti,i+n

ti,i+n
+ w ⋅max

i∈P

(
Bi+n − ri − ti,i+n

ti,i+n

)
,
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independently of the number of passengers in the request. If qi would be part of the 
maximum in (1), the maximum could be determined by a request with a smaller 
relative detour but a larger number of passengers.

The direct travel time between pickup and delivery location can be understood as 
the minimum required time for the request. It acts as a benchmark since we assume 
that customers could use their own private car or a taxi to leave at their earliest 
pickup time and travel straight to their destination. Any delay caused by waiting or 
by making a detour for another customer will increase the customer’s inconvenience 
and also increase the objective value. Since the objective value is measured relative 
to the direct travel time, a request with a small direct travel time can lead to a large 
increase in the objective value for a moderate detour. We believe that this captures 
actual customer behaviour, as customers will often put their experienced delay in 
relation to their expected travel time (Nie 2000).

Figure 1 gives an example for the first part of the objective function. It shows 
the vehicle’s tour on top, the customer’s waiting and driving times in the mid-
dle, and a time axis as well as the request times ( r1 – r3 ) in the lower part. First, 
the vehicle drives from the depot to the pickup location of customer 1 ( P1 ). As 
the tour between depot and the first location is not relevant for the objective (we 
assume that each pickup location is reachable directly from depot until the cor-
responding request time, i.e. vehicle and driver are available early enough), it is 
not included in the figure. The vehicle reaches the first pickup location at time 
r1 . From there it drives to the delivery location of customer 1 ( D1 ). Thus, the 
first customer has an objective value of zero. They had no waiting time and trav-
elled directly from the pickup to the delivery location. Afterwards, the vehicle 
drives to P2 . Until it reaches P2 , customer 2 has to wait from r2 on. After driv-
ing to P3 , the vehicle, with customer 2 in it, has to wait because it reaches P3 
before r3 . However, this waiting time counts as journey time for customer 2 since 
they sit in the vehicle. Then, customers 2 and 3 drive to D3 , where customer 3 
leaves the vehicle, before the vehicle finally reaches the destination of customer 
2. The tour between the last delivery location and the depot is not relevant for the 
objective and, therefore, not included in the figure. Like customer 1 customer 3 

Fig. 1   Example for the first part of the objective function. Continuous lines represent journey times. Dot-
ted lines represent waiting times
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has an objective value of zero while customer 2 has a positive objective value. 
It sums up the waiting time between r2 and their entrance in the vehicle and the 
tour P2 → P3 → D3 → D2 (including waiting at P3 ). Afterwards, the direct tour 
P2 → D2 is subtracted before the resulting objective value is obtained by dividing 
the result by the direct travel time P2 → D2.

Although we do not minimize the travel time directly, our objective minimizes 
it indirectly if customers are waiting to be fetched or sitting in the vehicle. Solu-
tion approaches will try to be as fast as possible at a customer location to reduce 
the waiting time of later customers. Thus, the algorithm tries to bundle rides, i.e. 
increase the pooling rate, to reduce travel distance.

Our objective leads further to adjustments of the constraints in comparison with 
the standard DARP formulation. Because we minimize customer inconvenience, 
we do not need constraints which ensure a certain degree of customer satisfaction. 
Therefore, we abstain from a maximum ride time restriction and time windows. This 
is also the reason why there is a feasible solution in our problem setting. If the vehi-
cle’s capacity is at least as high as the highest customer demand, all solutions which 
sequence the delivery location of a customer directly after their pickup location are 
feasible. Although such a solution is minimal according to the journey time of each 
customer, it might be bad according to the waiting times. Therefore, the proposed 
objective solves the trade-off between minimal journey time and waiting time by 
combining the rides of earlier customers, and, thus, increase their journey time, to 
reduce the waiting time of later customers. The maximum relative ride time is fur-
ther controlled by the second part of the objective function. By this, we ensure that 
a single customer is not disadvantaged excessively in favour of the other customers.

In the following, we present a mixed-integer programming formulation for our 
problem setting. The notation used in the remainder of the paper is:

sets and indices:

P = {1,… , n} pickup locations
D = {n + 1,… , 2n} delivery locations
i, j ∈ I locations, I = {0, 2n + 1} ∪ P ∪ D

parameters:

k number of tours
n number of requests
Q capacity of each vehicle
qi demand at location i ∈ P ∪ D : qi > 0 and qi+n = −qi ∀i ∈ P

ri request time (= earliest possible pickup time) of request i ∈ P

with ri = ri−n + ti−n,i ∀i ∈ D

tij travel time between locations i and j ∈ I

w Penalty factor for the maximum relative detour of all customers
Mij sufficiently large value
variables:

Bi departure time of location i ∈ P ∪ D

Qi number of passengers in the vehicle after leaving location i ∈ P ∪ D

Xij = 1 if j is direct successor of i, 0 otherwise; i, j ∈ I
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We always consider a travel speed of one distance unit per time unit and, thus, 
use distances and travel times synonymously. We assume that we have a fleet of k 
vehicles with passenger capacity Q that each drive a single tour starting at a com-
mon depot ( i = 0 ). Each tour ends at the end depot ( i = 2n + 1 ). Since the return 
to the end depot does not influence the objective value, the formulation can also 
be used to model situations where the tours are open-ended. There are n customer 
requests that all need to be served. Each request i has an earliest pickup time ri 
which acts as a hard lower bound for the pickup time. There is no upper limit to 
the pickup time of a customer, however, large deviations are unlikely since they 
increase the objective value and are additionally punished by the penalty factor w. 
All travel times are assumed to fulfil the triangle inequality.

Beside objective function (1), which is minimized, the model is the standard 
2-index dial-a-ride formulation by Ropke et al. (2007) without time windows and 
maximum ride time constraints. We need to define the sets S ⊆ I and S . S is the set 
of all sets S for which 0 ∈ S and there is at least one request i that has its delivery 
node in S but not the pickup node, i.e. S = {S ∶ 0 ∈ S ∧ ∃i ∶ (i ∉ S ∧ n + i ∈ S)} . 
Then, the constraints are:

Constraints (2) and (3) enforce that every pickup and every delivery location is 
entered and left exactly once. Constraint (4) forces the model to leave the depot k 
times to form tours. Constraints (5) serve both as a subtour elimination constraint 

(2)
∑

i∈I

Xij = 1 ∀j ∈ P ∪ D

(3)
∑

j∈I

Xij = 1 ∀i ∈ P ∪ D

(4)
∑

j∈P∪D

X0j = k

(5)
∑

i,j∈S

Xij ≤ |S| − 2 ∀S ∈ S

(6)Bi + tij −Mij(1 − Xij) ≤ Bj ∀i, j ∈ P ∪ D

(7)Qi + qj − Q(1 − Xij) ≤ Qj ∀i, j ∈ P ∪ D

(8)Bi ≥ ri ∀i ∈ P ∪ D

(9)max{0, qi} ≤ Qi ≤ min{Q,Q + qi} ∀i ∈ P ∪ D

(10)Xij ∈ {0, 1} ∀i, j ∈ I
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as well as to ensure that pickup and delivery location of each customer are always 
visited in the same tour and in the correct order. Constraints (6) and (7) enforce the 
correct setting of time and capacity variables. Finally, the Constraints (8), (9), and 
(10) restrict the variable domains.

In order to generate the sets S for Constraints (5), we adopt the procedure by 
Ropke et al. (2007): At every integer feasible solution, a maximum flow problem 
is run for each customer to verify whether the customer’s pickup node and deliv-
ery node are visited in the same tour and correct order. If not, a new set S is added 
to cut off the current solution.

4 � Adaptive large neighbourhood search

Adaptive large neighbourhood search (ALNS) is a metaheuristic developed by 
Ropke and Pisinger (2006a). In each iteration, a new solution is created based 
on the current solution: first, a removal heuristic removes certain customers, i.e. 
their pickup as well as their delivery locations, from the solution. Then, an inser-
tion heuristic reinserts the removed customers back into the solution. Both the 
removal and the insertion heuristic are chosen based on their past performance 
in the algorithm. If a specific heuristic can consistently create new, high-quality 
solutions, it is used more often. The new solution is accepted based on the simu-
lated annealing acceptance criterion. In the following, we describe our implemen-
tation in detail.

Our algorithm’s initial solution is randomly generated. Unless otherwise men-
tioned, the removal heuristics will always remove q (determined similarly to Ropke 
and Pisinger (2006a)) customers and the insertion heuristics will insert all of the 
removed customers back into the solution. The parameter q is dependent on the 
number of customers n and is drawn from the interval [1, � ⋅ n] with 0 < 𝜉 < 1 in 
each iteration.

The heuristics marked with an * are run with an additional random component 
that perturbs the selection process so that we do not always choose the q “best” 
customers but only give a higher probability to better customers to be chosen. It 
works by drawing a random number x ∈ [0, 1) and then raising it to the power of 
a parameter 𝜌 > 1 . x� is a random number that is weighted towards 0 and if mul-
tiplied with the number of options and rounded down, will give the index of the 
option that should be chosen. If the options are sorted according to a quality crite-
rion beforehand, higher quality options will be chosen more often. The procedure is 
explained in more detail in Ropke and Pisinger (2006a) and was originally proposed 
by Shaw (1997). The higher the controlling parameter � , the higher the influence of 
the underlying ordering and the lower the randomization.

The heuristics marked with an + are also run with an additional random compo-
nent but instead of the aforementioned rank based selection by Shaw (1997) we run 
a roulette wheel selection where the quality criteria of all the options are summed 
up and each criterion is then divided by the sum to generate the probability of the 
option to be selected.
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4.1 � Removal neighbourhoods

We implemented the following removal neighbourhoods: 

1.	 Random removal: q customers are selected randomly and removed from their tour 
[diversification; Pisinger and Ropke 2007].

2.	 Worst removal (tour)+ : the q customers with the worst contribution to their tour 
are removed, i.e. the q customers for which the difference between the objective 
value of the corresponding tour with and without the customer is maximized 
(Pisinger and Ropke 2007).

3.	 Worst removal (individual)+ : the q customers with the worst contribution to the 
objective value are removed, i.e. the q customers with the highest individual 
objective value. The request with the current maximum relative detour is addi-
tionally penalized by adding the product of w and its contribution as well.

4.	 Related removal distance*: choose a random customer i ∈ P and remove it as well 
as their q − 1 most related customers, i.e. those customers for which 

 with j ∈ P is minimal (Shaw 1998; Pisinger and Ropke 2007).
5.	 Related removal request time*: referred to as time-oriented removal in (Pisinger 

and Ropke 2007), this heuristic works the same as in 4. with 

6.	 Proximity removal+ : Compute 

 and take for each customer i ∈ P the highest sij value over all customers j ∈ P 
which are assigned to different tours. Then, choose q customers according to a 
roulette-wheel selection where the weight of customer i is the highest sij value. 
In contrast to related removal, the removed customers are not similar amongst 
each other but have a similar request in a different route in which they might 
be inserted (Molenbruch et al. 2017a). As Proximity removal does not work in 
instances with only a single tour (i.e. k = 1 ), it is automatically turned off in 
such cases.

7.	 Cluster removal distance: select a random tour. Apply Kruskal’s algorithm 
(Kruskal 1956) on all customers of the tour until two clusters are left. The edge 
costs for the algorithm are given by 

 for all i, j in the considered tour. Choose one of the two clusters randomly and 
remove all its customers (Ropke and Pisinger 2006b).

(11)sij = tij + tji + ti,j+n + tj+n,i + tj,i+n + ti+n,j + ti+n,j+n + tj+n,i+n

sij = |ri − rj|.

sij =

{
1

tij+tji+ti,j+n+tj+n,i+tj,i+n+ti+n,j+ti+n,j+n+tj+n,i+n+|ri−rj|
if qi + qj ≤ Q,

0 else

t̄ij = tij + ti+n,j+n
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4.2 � Insertion neighbourhoods

1.	 Basic greedy insertion: all customers are sorted according to the costs of their best 
insertion. The customer with the best insertion (smallest increase in the objec-
tive value) is inserted first. Afterwards, the next best customer is chosen. This is 
repeated until all customers are inserted (Pisinger and Ropke 2007).

2.	 Greedy roulette insertion+ : each feasible insertion for every customer is evalu-
ated. Then, a roulette wheel selection is run where each insertion is weighted 
with the inverse of its objective value, i.e. insertions with lower costs have a 
higher chance to be chosen and the selection probability depends on the quality 
of all other options. This increases diversification compared to the normal greedy 
insertion.

3.	 Randomized greedy insertion*: all customers are sorted according to the costs 
of their best insertion. In contrast to insertion neighbourhood 1., we do not 
simply choose the best customers first but run a weighted random selection 
with the randomization from Shaw (1997) instead (described above in the 
second to last paragraph before Sect. 4.1). Compared to insertion neighbour-
hood 2., the randomized greedy insertion only takes the ordering, i.e. the 
ranking, of the insertions into account, not the actual differences between 
their costs.

4.	 Regret g insertion: the customer with the highest regret value is inserted, that is, 
the customer that has the biggest difference between the cost of the insertion into 
the best tour and the insertions into the g best tours (Pisinger and Ropke 2007). 
If g > 2 , the differences between the best and the other tours are added up to 
compute the regret value. In instances with fewer tours than the specified regret 
level, the level is automatically adjusted to the number of tours.

5.	 Greedy insertion perturbation: the same as insertion neighbourhood 1., but each 
objective value is multiplied with a random factor in [1 − � , 1 + �] with 0 < 𝛾 < 1 . 
Afterwards, the best solution is chosen (Hemmelmayr et al. 2012). This operator 
allows us to observe the effect of noise perturbation for a single heuristic.

4.3 � Choice of removal and insertion heuristic

We follow the original implementation of Ropke and Pisinger (2006a) where heu-
ristics are chosen by roulette wheel selection and each heuristic is given a score 
whenever a new solution is found: �1 is assigned to a heuristic whenever a new 
best solution is found, �2 when a better solution is found that has not been accepted 
before and �3 when a worse but accepted solution is found which has not been 
accepted before. After a segment of 100 iterations, the weights for the roulette 
wheel selection are updated with the scores and the scores are reset. A reaction 
factor � ∈ [0, 1] determines how quickly the heuristics change their weights. A 
higher � will increase the influence of the performance in the current segment and 
decrease the influence of the previous weight. The determination of parameters is 
explained in Sect. 6.2.
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4.4 � Temperature

Our algorithm is run for 25,000 iterations or until an objective value of 0 is found. 
At the end of each iteration, we set the temperature T to T∶=�T  with 0 < 𝛼 < 1 . The 
starting temperature is generated similarly to Ropke and Pisinger (2006a): We use 
the objective value of the initial solution and set the starting temperature such that 
a hypothetical move that worsens the initial solution by a factor of � (with � ≥ 0 ) 
is accepted with a probability of 50%. As an example, for � = 0.2 a solution that 
is 20% worse than the initial solution is accepted with a probability of 50%. The 
temperature is used in the simulated annealing acceptance criterion (Kirkpatrick 
et  al. 1983): Whenever a new solution is found that is better than the old one, it 
is accepted. If it is worse, it is accepted with a probability given by e−�∕T where � 
is the difference between the new and the old objective value and T is the current 
temperature.

5 � Dynamic programming algorithm

Dynamic programming algorithms have been studied for dial-a-ride prob-
lems for decades. Early approaches were given by Psaraftis (1980, 1983). Our 
approach is based on the dynamic programming algorithm for the travelling 
salesman problem by Bellman (1962) and Held and Karp (1962). In a recent 
paper, Ritzinger et  al. (2016) developed a dynamic programming algorithm 
for the standard dial-a-ride formulation with time windows and maximum ride 
time constraints. Due to these further constraints, they need a larger state space 
than we do. The following algorithm finds an optimal solution for any single 
tour instance (i.e. k = 1 ) in our problem setting. Although the DP can also be 
expanded to multiple tours, we refrain from doing so because of the memory 
requirements and computation times the single-tour DP already needs (compare 
Table 4).

•	 Stages number of locations without the depot I�{0}.
•	 States states are described by the quadruple (S, v, t, dmax) , where v is the current 

last location, S is the set of all already scheduled locations without v, t the point 
of time, and dmax the maximum relative detour over all customers so far. The 
number of customers in the vehicle is not part of the state, as it can be calcu-
lated with v and S as 

∑
i∈S∪{v} qi . The initial state is ({}, 0, 0, 0) , i.e. no customer 

has been visited so far ( S = {} ), the current location is the depot (0), the current 
point in time is 0 ( t = 0 ), and the maximum relative detour is 0.

•	 Transitions the tour is expanded by one location v′ from the set {i ∈ P ∶ i ∉ S∪

{v} ∧ q
i
+
∑

j∈S∪{v} qj ≤ Q} ∪ {i ∈ D ∶ i ∉ S ∪ {v} ∧ i − n ∈ S ∪ {v}} , i.e. all 
pickup locations are allowed to be scheduled which have not been scheduled so 
far as long as qi does not exceed the remaining capacity Q −

∑
j∈S∪{v} qj as well 

as all delivery locations for which the corresponding pickup location has already 
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been scheduled and which have not been scheduled themselves. The time t 
increases by the travelled time tvv′ between locations v and v′ or up to rv′ if v� ∈ P 
and t + tvv� < rv� , i.e. t� = max(t + tvv� ,1{v�∈P,t+tvv�<rv� }

⋅ rv� ) , where 1{v�∈P,t+tvv�<rv� }
 

is 1 if v� ∈ P and t + tvv� < rv� and 0 else. Thereby, 
d�
max

= max

(
dmax, maxi∈P∶i+n∉S

t�−ri−ti,i+n

ti,i+n

)
 . While the first part of the maximum 

covers the case that the maximum relative detour does not change, the second 
part covers the case where a not yet delivered customer leads to a new maximal 
relative detour. Hence, the new state is (S ∪ {v}, v�, t�, d�

max
).

•	 Recursion costs of a state (S, v, t, dmax) are 

with 1{t>ri+ti,i+n}
=

{
1 if t > ri + ti,i+n,

0 else
 and t =

{
t̄ + tv̄v if v ∈ D,

max{t̄ + tv̄v, rv} if v ∈ P.

The time in the state description leads to a potentially high number of states. Nev-
ertheless, it is necessary, as the tour ṽ → i + n → j → v might be longer (let t be the 
time the vehicle reaches location v) than ṽ → j → i + n → v but leads to a smaller 
objective value, as customer i is taken away earlier. In contrast, the longer tour 
increases the relative detour of all other customers j ∈ P with rj < t which have not 
been taken away so far. Hence, it is possible that C(S, v, t, dmax) < C(S, v, t�, d�

max
) 

although t > t′ . However, we get a dominance rule for the case t′ ≥ t.

Theorem 1  Let

Then, (S, v, t, dmax) dominates (S, v, t�, d�
max

) if t ≤ t′.

Proof  Both states (S, v, t, dmax) and (S, v, t�, d�
max

) coincide in the already visited cus-
tomer locations. Let Π = �|S|+2, ...�2n be any sequence of the not yet visited custom-
ers. Let t ≤ t′ . Let Bi ( B′

i
 ) be the departure time of location i ∈ I , if we merge state 

(S, v, t, dmax) ( (S, v, t�, d�max) ) and Π to a complete solution and wait during the tour 
only if necessary. Then, Bi ≤ B′

i
 for all customer locations in Π . Costs for customers 

with i + n ∈ S ∪ {v} do not change anymore. Costs can occur for customers with 
i + n ∉ S ∪ {v} if the vehicle has to wait longer if starting at t than if starting at t′ . 
These costs are included in 

∑
i∈P∶i+n∉S∪{v} qi ⋅

max(t�−max(t,ri+ti,i+n),0)

ti,i+n
 . Costs for driving 

(12)

C(S, v, t, dmax)

= min
v̄∈S

{
C(S�{v̄}, v̄, t̄, d̄max)

+
∑

i∈P∶i+n∉S

1{t>ri+ti,i+n}
⋅ qi ⋅

min(t − t̄, t − ri − ti,i+n)

ti,i+n

+w ⋅max(0, dmax − d̄max)
}

C(S, v, t, dmax) +
∑

i∈P∶i+n∉S∪{v}

qi ⋅
max(t� −max(t, ri + ti,i+n), 0)

ti,i+n

+ w ⋅max(0, d�
max

− dmax)

< C(S, v, t�, d�
max

).
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the partial tour Π occur for both states. Thus, the relative detour costs starting in 
(S, v, t, dmax) are at most the relative detour costs starting in (S, v, t�, d�

max
) plus ∑

i∈P∶i+n∉S∪{v} qi ⋅
max(t�−max(t,ri+ti,i+n),0)

ti,i+n
.

Because of C(S, v, t, dmax) + w ⋅max(0, d�
max

− dmax) < C(S, v, t�, d�
max

) , it holds

Since Bi ≤ B′
i
 for all customer locations in Π , costs for the maximum relative 

detour do not increase more strongly at any point of the tour if we start in state 
(S, v, t, max(dmax, d

�
max

)) than in state (S, v, t�, d�
max

) . In total, completing the tour from 
v at t leads to no higher costs than starting in v at t′.

Theorem 2 views a variant of Theorem 1 where t� ≥ t ≥ maxi∈P(ri + ti,i+n).

Theorem  2  Let C(S, v, t, dmax) + w ⋅max(0, d�
max

− dmax) < C(S, v, t�, d�
max

) . Then, 
(S, v, t, dmax) dominates (S, v, t�, d�

max
) if t� ≥ t ≥ maxi∈P(ri + ti,i+n).

Proof  Let Π again be any feasible sequence of the remaining locations 
i ∈ (P ∪ D)�(S ∪ {v}) . t� ≥ t ≥ maxi∈P(ri + ti,i+n) implies that t−ri−ti,i+n

ti,i+n
> 0 for all 

i ∈ P ∶ i + n ∉ S ∪ {v} immediately when the car leaves v. Thus, the car does 
not wait during the partial tour Π and B�

i
= Bi + (t� − t) for all customer loca-

tions in Π . Hence, completing the tour from v at t leads to no higher costs than 
starting in v at t′ with the same argumentation as in the proof of Theorem 1 if 
t ≤ t′ and

Theorem 3 considers also the case, where all customers have a positive relative 
detour immediately when the car moves ( min(t, t�) ≥ maxi∈P(ri + ti,i+n) ). Thus, it 
generalizes Theorem 2.

Theorem 3  Let

Then, (S, v, t, dmax) dominates (S, v, t�, d�
max

) if min(t, t�) ≥ maxi∈P(ri + ti,i+n).

Proof  We assume t > t′ . Otherwise, we have the situation of Theorem 2. Let Π again 
be any feasible sequence of the remaining locations i ∈ (P ∪ D)�(S ∪ {v}) . Then, 
Bi = B�

i
+ (t − t�) for all of them. t > t� ≥ maxi∈P(ri + ti,i+n) implies that t

�−ri−ti,i+n

ti,i+n
> 0 

for all i ∈ P ∶ i + n ∉ S ∪ {v} immediately when the car leaves v. However, 

C(S, v, t, max(dmax, d
�
max

)) < C(S, v, t�, d�
max

).

C(S, v, t, dmax) + w ⋅max(0, d�
max

− dmax) < C(S, v, t�, d�
max

).

C(S, v, t, dmax) + w ⋅

(
max(0, d�

max
− dmax)

+max

(
0, max

i∈P∶i+n∉S∪{v}

t − t�

ti,i+n

))

< C(S, v, t�, d�
max

).
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t > t� ≥ maxi∈P(ri + ti,i+n) implies also that t−ri−ti,i+n
ti,i+n

=
t�−ri−ti,i+n

ti,i+n
+

t−t�

ti,i+n
 . Hence, the 

costs for the longer relative detours in (S, v, t, dmax) in comparison to (S, v, t�, d�
max

) 
are already included in C(S, v, t, dmax) . Thus, C(S, v, t, d

max
) +

∑
i∈P∶i+n∉S∪{v}

B
i+n−t

t
i,i+n

< C(S, v, t�, d�
max

) +
∑

i∈P∶i+n∉S∪{v}

B
�
i+n

−t�

t
i,i+n

.
The so far maximum relative detours dmax and d′

max
 are also priced 

in in C(S, v, t, dmax) and C(S, v, t�, d�
max

) , respectively. Because of 
dmax +max(0, d�

max
− dmax) = max(dmax, d

�
max

) , we get

Since Bi = B�
i
+ (t − t�) for all i ∉ S ∪ {v},

If max(dmax, d
�
max

) ≥ maxi∈P∶i+n∉S∪{v}
Bi+n−ri−ti,i+n

ti,i+n
 , we are finished, as the larger maximal 

relative detour is already priced in at location v ( C(S, v, t, max(dmax, d
�
max

)) < C(S, v, t�, d�
max

) ). 
So, let maxi∈P∶i+n∉S∪{v}

Bi+n−ri−ti,i+n

ti,i+n
> max(dmax, d

�
max

) . We distinguish two cases: 

1.	 maxi∈P∶i+n∉S∪{v}
Bi+n−ri−ti,i+n

ti,i+n
> max(dmax, d

�
max

) ≥ maxi∈P∶i+n∉S∪{v}
B�
i+n

−ri−ti,i+n

ti,i+n

2.	 maxi∈P∶i+n∉S∪{v}
Bi+n−ri−ti,i+n

ti,i+n
> maxi∈P∶i+n∉S∪{v}

B�
i+n

−ri−ti,i+n

ti,i+n
> max(dmax, d

�
max

).

It holds

In the first case, this leads immediately to

C(S, v, t, dmax) + w ⋅max(0, d�
max

− dmax) = C(S, v, t, max(dmax, d
�
max

))

< C(S, v, t�, d�
max

).

max
i∈P∶i+n∉S∪{v}

Bi+n − ri − ti,i+n

ti,i+n
> max

i∈P∶i+n∉S∪{v}

B�
i+n

− ri − ti,i+n

ti,i+n
.

max
i∈P∶i+n∉S∪{v}

Bi+n − ri − ti,i+n

ti,i+n

= max
i∈P∶i+n∉S∪{v}

(
B�
i+n

− ri − ti,i+n

ti,i+n
+

t − t�

ti,i+n

)

≤ max
i∈P∶i+n∉S∪{v}

B�
i+n

− ri − ti,i+n

ti,i+n
+ max

i∈P∶i+n∉S∪{v}

t − t�

ti,i+n
.
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In the second case,

implies

Thus, we can add the costs for the relative detour of each customer 
i ∈ P ∶ i + n ∉ S ∪ {v} as well as the maximal detour costs for any sequence Π 

(13)

C

(
S, v, t, max

i∈P∶i+n∉S∪{v}

Bi+n − ri − ti,i+n

ti,i+n

)

= C

(
S, v, t, max

i∈P∶i+n∉S∪{v}

(
B�
i+n

− ri − ti,i+n

ti,i+n
+

t − t�

ti,i+n

))

≤ C

(
S, v, t, max

i∈P∶i+n∉S∪{v}

B�
i+n

− ri − ti,i+n

ti,i+n

)

+ w ⋅max

(
0, max

i∈P∶i+n∉S∪{v}

t − t�

ti,i+n

)

≤ C
(
S, v, t, max(dmax, d

�
max

)
)
+ w ⋅max

(
0, max

i∈P∶i+n∉S∪{v}

t − t�

ti,i+n

)

= C(S, v, t, dmax) + w ⋅

(
max(0, d�

max
− dmax) +max

(
0, max

i∈P∶i+n∉S∪{v}

t − t�

ti,i+n

))

(14)< C(S, v, t�, d�
max

).

(15)

C
(
S, v, t, dmax

)
+ w ⋅max

(
0, max

i∈P∶i+n∉S∪{v}

t − t�

ti,i+n

)

≤ C
(
S, v, t, max(dmax, d

�
max

)
)
+ w ⋅max

(
0, max

i∈P∶i+n∉S∪{v}

t − t�

ti,i+n

)

(13),(14)

< C(S, v, t�, d�
max

)

C

(
S, v, t, max

i∈P∶i+n∉S∪{v}

Bi+n − ri − ti,i+n

ti,i+n

)

=C

(
S, v, t, max

i∈P∶i+n∉S∪{v}

B�
i+n

− ri − ti,i+n

ti,i+n
+

t − t�

ti,i+n

)

≤C

(
S, v, t, max

i∈P∶i+n∉S∪{v}

B�
i+n

− ri − ti,i+n

ti,i+n

)

+ w ⋅max

(
0, max

i∈P∶i+n∉S∪{v}

t − t�

ti,i+n

)

(15)

< C

(
S, v, t�, max

i∈P∶i+n∉S∪{v}

B�
i+n

− ri − ti,i+n

ti,i+n

)
.
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of the remaining customers to C(S, v, t, dmax) (and C(S, v, t�, d�
max

) ) such that state 
(S, v, t, dmax) leads to no higher cost at the end of the tour than state (S, v, t�, d�

max
).

Theorem 4 dominates states at pickup locations v where the car has to wait if it is 
possible to use the waiting time to bring a customer who is in the car to the deliv-
ery location or pick up another customer and drive to their delivery location while still 
reaching v at time rv.

Theorem  4  Let (S�{v̄}, v̄, t̄, d̄max) be the predecessor of (S, v, t, dmax) 
with v ∈ P and t = rv , i.e. (S�{v̄}, v̄, t̄, d̄max) determines the costs of 
(S, v, t, dmax) in (12). Then, (S, v, t, dmax) is dominated if one of the sets  
{i ∈ P ∩ S ∶ i + n ∉ S ∧ t̄ + tv̄,i+n + ti+n,v ≤ t} and {i ∈ P�(S ∩ P) ∶ max(r

i
, t̄ + t

v̄,i)

+ti,i+n + ti+n,v ≤ t ∧
∑

j∈S qj + qi ≤ Q} is not empty, i.e. if it is possible to take away 
a customer in the vehicle or pick up and take away another customer and still reach 
location v not later than rv.

Proof  First, we compare the two transitions (S�{v̄}, v̄, t̄, d̄max) → (S, v, t, dmax) and 
(S�{v̄}, v̄, t̄, d̄max) → (S, i + n, t�, d�

max
) → (S ∪ {i}, v, t, d̃max) with 

i ∈ {i ∈ P ∩ S ∶ i + n ∉ S ∧ t̄ + tv̄,i+n + ti+n,v ≤ t} . In both transitions qj ⋅
min(t−rj−tj,j+n)

tj,j+n
 

is the same for all i ≠ j ∈ P . But customer i reaches the delivery location at no later 
point in time in the second transition, as t′ ≤ t , i.e. qi ⋅

min(t�−ri−ti,i+n)

ti,i+n
≤ qi ⋅

min(t−ri−ti,i+n)

ti,i+n
 . 

As qj ⋅
min(t−rj−tj,j+n)

tj,j+n
 is for no customer j ∈ P larger in the second transition than in 

the first, d̃max ≤ dmax . So, the first transition is dominated.
By the same argumentation (S�{v̄}, v̄, t̄, d̄

max
) → (S, i, t1, d1

max
) →

(S ∪ {i}, i + n, t
2

, d
2

max
) → (S ∪ {i, i + n}, v, t, d̂

max
) domi-

nates (S�{v̄}, v̄, t̄, d̄max) → (S, v, t, dmax) for a customer 
i ∈ {i ∈ P�(S ∩ P) ∶ max(ri, t̄ + tv̄,i) + ti,i+n + ti+n,v ≤ t ∧

∑
j∈S qj + qi ≤ Q}.

Especially the last dominance criterion (Theorem 4) leads to a reduction of states in 
early stages because customers with high request times are dominated.

The above formulation can solve smaller instances but for larger numbers of custom-
ers the time and memory requirements make this exact procedure unsuitable. There-
fore, we change the DP to a restricted DP similar to Malandraki and Dial (1996) and 
Ritzinger et al. (2016). At each stage we only branch on the B states with the lowest 
costs. If B is sufficiently large, this restricted DP still maintains the guarantee of opti-
mality but if there are more than B states in a stage, it devolves into a heuristic.

6 � Computational study

The algorithms were implemented in C++ and compiled with Visual Studio 
2017. The tests were run on an AMD Ryzen Threadripper 3990X with 2.9GHz 
(single-threaded) and 256GB of RAM. The mixed integer program (MIP) was 
solved with CPLEX version 12.9 with dynamic search enabled.
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6.1 � Instances

The instances in the computational study are synthetic test instances which are 
based on a practical application in a district of Hamburg, Germany. For each 
instance, the pickup and delivery locations are determined randomly out of a 
set of possible stops of a ride-sharing provider. Since the city layout needs to 
be taken into account, the resulting distance matrix is not symmetrical but ful-
fils the triangle inequality. Distances are rounded to the second decimal place 
and are measured in units of time. The largest possible travel time between two 
locations is roughly 28 minutes. The smallest possible request time is deter-
mined by the maximum distance of the depot to any pickup location maxT, i.e. 
maxT = maxi∈P t0,i . This ensures that every request can be reached on time if it 
is the first location in a tour. The request times are uniformly distributed in the 
interval [maxT ,maxT + � ⋅ n] with � ≥ 0 . For our instances we set � = 100 which 
resulted in instances of adequate difficulty as preliminary tests showed. Larger 
values for � tend to spread out the requests too much so that the instances become 
too easy while smaller values lead to an unrealistically high concentration of 
requests in a tight time window. The vehicle capacity is set to six passengers 
which is common in practice.

The number of tours is varied between 1, 2, 5, and 8. The number of requests is 
set such that the ratio of requests to tours (i.e. n/k) equals 5, 10, 15, and 20 for each 
tour configuration. This leads to 16 parameter configurations ranging from 5 to 160 
requests. For each configuration we generated 100 instances. Half of the instances 
had their qi set to 1 for every customer. In the other half we drew each qi according 
to an exponential distribution with � = 0.9 and rounded the result to the next highest 
integer. We redrew if the result was greater than our passenger capacity of six. The 
400 instances with one tour were also used for the evaluation of the DP. All utilized 
instances can be found under the following link: https://​doi.​org/​10.​25592/​uhhfdm.​
9610.

6.2 � Parametrization

The instance generator described above was also used for the parametrization 
but we took care not to reuse any instances. Furthermore, the instances for the 
parametrization had passenger demands of one per request and no single-tour 
instances as the latter makes some of the heuristics unsuitable. Additionally, we 
varied the penalty factor w in the used instances between 0, n, 2n,   and 5n such 
that the tuning is not biased towards one specific value of w.

The parameter values for ALNS were determined with the help of the irace 
package which can automatize the parameter tuning (López-Ibáñez et al. 2016). 
irace is given a set of parameters and their respective ranges as well as a training 
set of instances. Then, it performs a certain amount of experiments where the 
algorithm is tried out with different parameter configurations. The distributions 
that irace uses for determining the parameters are changed throughout the search 

https://doi.org/10.25592/uhhfdm.9610
https://doi.org/10.25592/uhhfdm.9610
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to focus on the more promising areas in the parameter search space. In the end, 
irace gives out a set of elite configurations that have performed best. We chose 
the best of these elite configurations which resulted in the use of the parameter 
values in Table 1. The third column additionally gives the range for the distribu-
tions that irace used.

In a next step, we are interested in finding a suitable value for the penalty fac-
tor w. Preliminary results showed that a value of w = n results in a reasonable 
trade-off between the reduction of the maximum relative detour and the reduction 
of the sum of all weighted relative detours. More details about this preliminary 
study can be found in Appendix A. As a result, all instances in the following use 
the penalty factor w = n.

While the adaptive procedure in the ALNS is in theory capable of identify-
ing poorly performing heuristics during the search, in practice a preselection of 
heuristics can improve performance significantly (François et al. 2016). For this 
reason, we performed a series of tests to identify a good heuristic configuration. 
A more detailed description of the tests for the heuristic configurations can be 
found in Appendix B.

The evaluation of the heuristic configurations has shown that there are two 
competitive configurations which are displayed in Table 2. Both of these configu-
rations were utilized in the following calculations. The instances we used for the 
parameter tuning are different from the ones in the computational study to avoid 
any kind of bias.

6.3 � Discussion of results

For the ALNS we solved each of the 1,600 instances of our test bed with the two 
configurations of Table 2. For the 400 instances with one vehicle ( k = 1 ) we turned 
off the proximity removal heuristic from the first ALNS configuration, as it does not 
work if only a single tour is examined. Furthermore, these 400 instances were solved 
by the restricted DP where we varied the amount of states. As an additional bench-
mark, we also ran the MIP for the smaller instances with a computational time of 

Table 1   Parameter values for 
ALNS

Parameter Value Interval for the 
parameter distri-
bution

� 0.9989 [0.995, 0.999999]
� 1.5165 [0.01, 2]
�1 32 [10, 50]
�2 14 [0, �1]

�3 2 [0, �2]

� 0.2162 [0.05, 0.5]
� 0.4964 [0.01, 0.99]
� 0.3544 [0.1, 1.9]
� 6.3698 [1.01, 10]
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one hour. In any of the following tables, z refers to the (average) objective value and 
Time refers to the (average) computational time in seconds.

6.3.1 � Results of ALNS

In Fig.  2, the average relative difference to the best found configuration for both 
configurations is displayed. This means that we computed the relative difference 
of the worse to the better configuration for all 100 tested instances and averaged 
them afterwards. The results for the single tour instances are not shown because of 
the aforementioned changes to the configuration and the separate evaluation in the 
next subsection. In general, both configurations are fairly close to each other with no 
clear apparent winner. Comparing the mean over all instances (again excluding the 
instances with k = 1 ), configuration 2 is on average 0.23% better. Since the results 
between the two configuration are so close, we only report the values for the second 
configuration in the following.

A summary of the results of the second configuration can be found in 
Table  3. The table also states the results of the MIP for comparison. We did not 
attempt to solve the larger instances with the MIP for k = {2, 5, 8} as the larg-
est ones we did run could only be solved to feasibility in rare cases (compare 
(k, n) = (2, 20), (5, 25) and (8, 40) ). Computation times for ALNS increase with a 
higher amount of customers, specifically if there are few vehicles, as longer tours 
prolong the search for a good insertion position in an iteration. Nevertheless, the 
computation times for ALNS are still acceptable in a static setting. The mixed inte-
ger model performs very poorly and can only reliably solve very small instances 
( n = 5 ) to optimality in the time limit of one hour. Additionally, the lower bounds 
for slightly larger instances are very close to 0 which is likely due to a weak LP 
relaxation of the model formulation. In summary, the basic MIP formulation does 

Table 2   Used heuristics of the 
two best configurations found in 
the preliminary tests

1 2

Random removal ∙ ∙

Worst removal (tour) ∙ ∙

Worst removal (individual) ∙ ∙

Related removal distance ∙

Related removal request time ∙

Proximity removal ∙

Cluster removal
Basic greedy insertion ∙

Greedy roulette insertion ∙ ∙

Randomized greedy insertion ∙ ∙

Regret 2 insertion
Regret 3 insertion ∙ ∙

Greedy insertion perturbation ∙ ∙
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not seem suitable to solve the problem which further emphasizes the need for a heu-
ristic like ALNS.

The first part of the objective value for the ALNS results is further visualized 
in a histogram in Fig. 3 where the first part of the objective value is divided by 
the number of passengers. The resulting value is the average relative detour per 
passenger. For the instances where we set qi = 1 for all requests, the first part of 
the objective value is simply divided by n, but for the other half of the instances, 
the total number of passengers varies due to the random generation. It is appar-
ent in Fig.  3 that the detour per passenger is especially high for instances with 
only one vehicle ( k = 1 ). If there is only one tour, the assignment of customers 
to tours is already fixed. Hence, the number of possible solutions is lower. As the 
customer to tour assignment is fixed, the algorithm has no influence on the com-
patibility of the customers, i.e. whether they fit well together or not. In contrast, 
for instances with eight vehicles the relative detour per passenger is even for 20 
requests per vehicle (on average, i.e. 160 requests in total) close to 0, indicating 
reasonable detours that would likely be accepted by consumers in practice.

In a second analysis, we present the maximum relative detour per instance of 
the second configuration in Fig. 4. A similar effect to Fig. 3 can be observed. In 
instances with few vehicles, the maximum relative detour is rather large, particu-
larly if the number of customers is also high. On the other hand, for a larger num-
ber of vehicles ( k = 8 ), the maximum detour is not only lower but also increases 

Fig. 2   A comparison between the two different heuristic configurations for ALNS. Each square shows 
the average relative deviation from the best found solution of 100 instances
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more slowly for increasing n (compare the bottom right square to the top right 
one). Hence, in competition with taxis and private cars, a few further vehicles can 
make the ride-sharing provider significantly more attractive.

The average relative detour per passenger can further be split into the waiting 
time 

(
Bi−ri

ti,i+n

)
 and the ride time detour 

(
Bi+n−Bi−ti,i+n

ti,i+n

)
 . This is visualized in Fig.  5. 

Particularly for instances with few vehicles, the majority of the objective value is 
determined by the customers’ waiting time. As we increase k, the ratio of waiting 
to ride time decreases. In a static setting, the pickup time Bi can be communicated 
to the customer in advance. This can mitigate the negative effect of the high wait-
ing time, as the customers might be able to use the waiting time more effectively 
than the ride time if they know exactly when they will be picked up.

In Fig. 6, we visualize the development of the ride-sharing effect over different 
ratios of customers to vehicles. For the instances with a passenger demand of one on 
the left in Fig. 6, there is little actual ride-sharing when the number of customers per 
vehicle is low. For n∕k = 5 , for example, almost 80% of the ride time is spent with 
at most one customer. So the intended effect of reducing the amount of traffic by 
pooling trips is not actually present. However, the higher pooling rates with a larger 

Table 3   Overview of the performance of the second ALNS configuration on all instances and the MIP 
solved by CPLEX

The MIP was only run for the eight indicated rows. The column #optimal (#feasible) indicates the 
number of instances that CPLEX reported as optimal (feasible). Each row contains the average of 100 
instances
† Average over all feasible instances

k n ALNS MIP

z Time [s] z
† Lower bound Time [s] #optimal #feasible

1 5 32.89 0.26 32.89 32.89 20.59 100 100
1 10 118.20 1.12 123.32 0.29 3600.00 0 100
1 15 235.80 3.23 374.04 0.00 3600.00 0 38
1 20 386.30 6.95 1324.75 0.00 3600.00 0 7
2 10 48.61 0.73 52.80 0.86 3597.12 1 100
2 20 168.01 3.91 1542.12 0.00 3,600.00 0 3
2 30 341.39 12.82 – – – – –
2 40 539.18 30.28 – – – – –
5 25 63.49 3.62 272.91 0.00 3,600.00 0 1
5 50 195.78 26.24 – – – – –
5 75 360.12 103.14 – – – – –
5 100 522.83 276.93 – – – – –
8 40 47.78 8.82 – 0.00 3600.00 0 0
8 80 138.93 74.82 – – – – –
8 120 228.96 290.11 – – – – –
8 160 344.12 851.68 – – – – –
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number of customers per vehicle justify the choice of the objective function. The 
objective function considers exclusively the customer’s detour. The results show that 
a high pooling rate and, hence, a high degree of capacity utilization is accomplished. 
This means that our objective leads further to good results for the provider on the 
economic base. In the instances with the exponentially distributed passenger num-
bers on the right in Fig. 6, the vehicles are more filled on average since even a single 
request can potentially contain six passengers.

In order to better evaluate the impact of the ride sharing, we ran another test 
in which we simulated a more traditional taxi environment in which no rides are 
shared. For this we changed the capacity Q to one for all 800 instances where qi = 1 . 
The results of these instances (when solved with configuration 2 of ALNS) com-
pared to the same instances with the original vehicle capacity of six are shown in 
Fig. 7. Both the detour per customer as well as the maximum detour (and therefore 
the objective value) increase when the vehicle capacity is reduced. This effect is 
more pronounced in the instances with more customers per vehicle which coincides 
with the findings of Fig. 6 that ride sharing has a larger impact when more custom-
ers are present per vehicle.

Fig. 3   A histogram of the first part of the objective value per passenger for ALNS split into the 16 
instance categories, i.e. the average relative detour in each instance. Each square contains 100 instances
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6.3.2 � Results of DP

The restricted DP was run for the 400 instances with k = 1 . We varied the maximum 
number of states B for different DP runs to evaluate how many states we need to pro-
duce good results in a reasonable time. For the instances with 5, 10, and 15 custom-
ers we also provide the optimal solution gained by running the DP without any state 
restrictions. For the instances with 20 customers this was not possible due to the 
exponential increase in both time and memory requirements. The results are sum-
marized in Table 4. We also state the result of the second ALNS configuration for 
comparison. Expectedly, a higher number of states leads to a higher solution quality 
but also to a higher computational effort. For 5 and 10 customers small state sizes 
like 5,000 can already find optimal solutions in almost every instance. For 15 and 
20 customers the solution quality of the smaller numbers of states in relation to the 
optimal solution quickly deteriorates. ALNS’s solutions for these instances in regard 
to the objective value are comparable to the restricted DP with 10,000 to 20,000 
states for n = 15 and 50,000 to 1,000,000 states for n = 20 . In both cases, ALNS’s 
computation times are similar. These results lead us to believe that there is little 
benefit to run the DP within the ALNS algorithm as a local optimization procedure 
since any meaningful improvements to the solution quality of ALNS would require 
a number of states with too much computational effort. In contrast, the results show 
that the ALNS finds optimal or near optimal solutions within seconds. Compared 

Fig. 4   A histogram of the second part of the objective value for ALNS split into the 16 instance catego-
ries, i.e. the maximum relative detour in each instance. Each square contains 100 instances
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to the MIP results of Table 3, the DP can clearly beat the MIP for the single tour 
instances, as the MIP struggles to find optimal solutions for 10 customers or more. 
In Fig. 8, the average relative difference to the best found solution is given for every 
state setting (excluding ALNS and the exact DP runs). This further shows that run-
ning a restricted DP can still lead to a high solution quality if the number of states is 
sufficiently high. This is especially beneficial for larger instances where running the 
exact DP becomes intractable.

7 � Conclusion

The paper presents an ALNS and a dynamic programming algorithm for the 
static dial-a-ride problem with ride and waiting time minimization. Although the 
dynamic program is restricted to small instances, it can be used with a restricted 
number of states and shows that for one vehicle the ALNS approach finds near 
optimal solutions. The results of our computational study relating to the ALNS 
indicate further that ride-sharing proposals can help to solve the trade-off between 
individual transport, profitability of the provider, and traffic and pollution reduc-
tion. Our results show that the presented approaches lead to solutions with only 
small detours while generating a significant pooling effect if the number of used 

Fig. 5   The first part of the objective value per passenger split into waiting and ride time. Each bar is the 
average of 100 instances
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vehicles as well as the number of participating people is not too small. This is a 
promising result for practical tests and further research.

We studied the static problem setting. Further research is necessary to develop 
policies for the dynamic setting since customers get an immediate feedback 
on their request in real applications. Besides, stochastic travel times should be 
included, as travel times, especially in large cities, are highly dependent on the 
current traffic situation. Furthermore, the first part of the objective function 
weights all customers equally while the second part focusses on the maximum 
relative detour. Our results show that the second part of the objective is impor-
tant to punish large relative detours. Further research can adapt the second part 
of the objective to reach more levelled relative detours in the comparison of two 
customers, e.g. by summing up the pairwise absolute differences of customers’ 
relative detours [compare (Schulz 2021)].

Fig. 6   Development of the occupancy rate for all instances with one passenger per request (left) and all 
instances with exponentially distributed passenger demand (right). The bars for each instance group add 
up to 1, each individual bar is the relative share of ride time with that amount of customers. For example, 
in the single passenger instances with n∕k = 5 , 47% of the total ride time a vehicle has a single passenger
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Fig. 7   Comparison of the average detour per customer and the average maximum detour between the 
instances with Q = 6 (Sharing) and Q = 1 (Taxi)

Table 4   Summary of objective values and computational times of the DP with different states and ALNS 
on the instances with one tour

States n = 5 n = 10 n = 15 n = 20

z Time [s] z Time [s] z Time [s] z Time [s]

10 33.82 0.00 140.30 0.00 314.98 0.00 549.61 0.00
25 33.09 0.00 131.01 0.00 290.87 0.00 493.61 0.01
50 32.89 0.00 126.25 0.00 274.87 0.01 472.21 0.02
100 32.89 0.00 122.94 0.01 261.79 0.02 449.16 0.04
500 32.89 0.00 118.80 0.03 246.16 0.09 414.02 0.18
1,000 32.89 0.00 118.36 0.06 241.91 0.19 407.14 0.37
2,500 32.89 0.00 118.31 0.15 239.49 0.46 399.96 0.94
5,000 32.89 0.00 118.18 0.28 237.67 0.93 396.35 1.97
10,000 32.89 0.00 118.18 0.53 236.20 1.93 393.04 4.34
20,000 32.89 0.00 118.18 0.95 235.28 4.13 389.70 9.26
50,000 32.89 0.00 118.18 1.91 235.10 10.67 386.66 23.32
1,000,000 32.89 0.00 118.18 2.73 234.78 172.90 382.79 454.50
Exact 32.89 0.00 118.18 2.66 234.78 1,970.54 – –
ALNS 32.89 0.26 118.20 1.12 235.80 3.23 386.30 6.95
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A Preliminary study to choose a suitable penalty factor

Determining the value for the penalty factor w is of significant importance. On 
the one hand, a small w allows for large maximum detours in optimal solutions 
which are unlikely to be accepted by customers in practice. On the other hand, a 
high w will eventually sacrifice too much of the average solution quality in order 
to reduce the maximum detour. When investigating the influence of the penalty 
factor w on our results, it became apparent that the penalty factor should depend 
on the number of customers n since the first part of the objective function will 
also increase with n and the penalty factor needs to scale accordingly. There-
fore, we ran a series of tests where we varied the penalty factor w and solved the 
instances with our ALNS algorithm (set to the tuned parameters returned by irace 
and with every heuristic enabled). The instances were generated as described in 
Sect. 6.1 with the only difference being that we additionally varied the w between 
0, n, 2n,  and 5n. For each combination of n, k, and w we generated 30 instances, 
resulting in 1920 instances in total. These instances were not reused in any other 
tests.

Figure  9 shows the influence of w in our tests. As can be seen on the right 
in Fig.  9, weighting the maximum detour at all results in a sharp drop of the 

Fig. 8   Relative differences for the restricted DP depending on the maximal number of states to the best 
known solution for the single tour instances. For n ∈ {5, 10, 15} the best known solution is optimal. The 
x-axis is scaled logarithmically
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maximum detour. However, subsequent increases of w only lead to small 
decreases in the maximum detour. On the other hand, the left plot in Fig. 9 shows 
that increasing w increases the average detours rather steadily, particularly in the 
instances with many customers per tour. These results indicate that focusing too 
much on reducing the maximum detour has adverse effects on the length of the 
average detour while having little benefit. As a result, a value of w = n seems to 
strike a good balance between the two objectives.

B Preliminary study to choose good configurations

Prior research has shown that a preliminary selection of heuristics for an ALNS 
implementation is of high importance (François et al. 2016). This means that it might 
be advantageous to only enable a subset of the heuristics. One simple approach to 
determine a good configuration of heuristics is to repeat the following procedure 
for every heuristic: Disable the heuristic and examine whether the algorithm’s per-
formance improves. However, this approach clearly does not take into account the 
interaction effects between the different heuristics. If we have an initial selection 
of heuristics that focus too much on diversification, then the individual tests might 
lead us to remove all the heuristics that diversify. This could result in a configura-
tion with too little diversification. Furthermore, since we examine a new problem, 

Fig. 9   Development of the average relative detour (left) and the maximum detour (right) when varying 
the penalty factor w 
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previous results from the literature in regard to good heuristic configurations are of 
limited use. Therefore, we decided to run a set of tests to evaluate every possible 
configuration. As we utilize seven removal and six insertion ( g = 2 and g = 3 for 
insertion heuristic 4.) heuristics and we always require at least one removal and one 
insertion heuristic to be enabled, we need to test 213 − 27 − 26 + 1 = 8001 configu-
rations. The test bed consists of 24 instances with varied sizes and w = n . These 
instances were only used for the preliminary testing, not for the computational study. 
In order to find “good” configurations, we examined every instance and calculated 
the squared relative difference of the objective values from each configuration to 
the configuration that performed best on the instance. A histogram of the 8001 con-
figurations and their mean squared relative differences can be seen in Fig. 10. The 
figure shows a large cluster of configurations that are all reasonably good. However, 
in order to run tests on more instances and increase the reliability of the results, 
we needed to select a small subset of configurations for further tests. Therefore, we 
selected the 100 configurations with the lowest mean squared relative difference for 
more in-depth tests. This cut-off is also shown in the figure.

In order to further examine these 100 configurations, we generated another, 
larger test bed of instances with different sizes (different from the one before and 
the one in the computational study). We varied the number of vehicles between 2, 
5, and 8 and chose the number of customers such that the number of customers per 

Fig. 10   Histogram of the 8001 configurations’ mean of the squared relative differences to the corre-
sponding best known solution. There are 100 configurations left of the dotted line which were then evalu-
ated in further tests. The x-axis is scaled logarithmically to better display some of the outliers
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vehicle (i.e. n/k) equals 5, 10, and 15. This results in nine parameter configurations 
for which we drew 50 instances each, leading to 450 instances in total. Each con-
figuration was then run on each instance. When evaluating the configurations, we 
focused on two criteria: The first is the mean objective value of each configuration 
over all instances. The second is the aforementioned mean squared relative differ-
ence of each configuration to the best known solution. This second criterion pun-
ishes outliers and, therefore, rewards configurations that perform consistently well 
over all instances. A visualization can be seen in Fig. 11. Each dot represents the 
average results over all 450 instances of one configuration. Further, the regression 
line is included which shows that both evaluation criteria (mean and squared relative 
difference) have a strong positive correlation, which means that configurations with 
a low mean objective value perform consistently well over all instances. No con-
figuration was always the best on every instance, which is why the squared relative 
difference is always positive. The two configurations that performed best are the two 
pareto optimal configurations marked in the figure by numbers 1 and 2. The utilized 
heuristics of these two pareto optimal configurations can be seen in Table 2. Nei-
ther configuration uses Cluster removal nor Regret 2 insertion though in the latter 
case this can likely be explained by the use of the Regret 3 insertion. Interestingly, 
configuration 1 uses all heuristics that configuration 2 uses with the exception of 
Related removal distance. The utilized insertion heuristics for both configurations 

Fig. 11   Evaluation of the 100 configurations according to two criteria. Each point represents a configura-
tion. The two named configurations are the two configurations that are pareto optimal for both criteria
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only differ in the use of Basic greedy insertion which is likely covered by the other 
randomized greedy insertion variants in configuration 2.
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