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Abstract
In this study, we propose a reinforcement learning (RL) approach for minimizing the 
number of work overload situations in the mixed model sequencing (MMS) prob-
lem with stochastic processing times. The learning environment simulates stochastic 
processing times and penalizes work overloads with negative rewards. To account 
for the stochastic component of the problem, we implement a state representation 
that specifies whether work overloads will occur if the processing times are equal to 
their respective 25%, 50%, and 75% probability quantiles. Thereby, the RL agent is 
guided toward minimizing the number of overload situations while being provided 
with statistical information about how fluctuations in processing times affect the 
solution quality. To the best of our knowledge, this study is the first to consider the 
stochastic problem variation with a minimization of overload situations.

Keywords  Scheduling · Mixed model sequencing · Reinforcement learning · 
Metaheuristics · Combinatorial optimization

1  Introduction

In the mixed model sequencing (MMS) problem, different models need to be 
sequenced for production on an assembly line that consists of multiple stations. 
Each station is operated by a human worker that requires specific processing times 
depending on the model. A work overload occurs if a worker cannot complete a 

 *	 Janis Brammer 
	 janis.brammer@volkswagen.de

	 Bernhard Lutz 
	 bernhard.lutz@is.uni-freiburg.de

	 Dirk Neumann 
	 dirk.neumann@is.uni-freiburg.de

1	 Volkswagen AG, Berliner Ring 2, 38440 Wolfsburg, Germany
2	 University of Freiburg, Rempartstr. 16, 79089 Freiburg, Germany

http://orcid.org/0000-0001-6315-1138
http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-021-00652-x&domain=pdf


30	 J. Brammer et al.

1 3

workpiece on time, before it leaves the boundaries of the station. While the deter-
ministic problem is well studied (see e.g., Boysen et al. 2009), little research has 
been done on the problem variation with stochastic processing times. Processing 
times may vary due to, e.g., different worker skills, fluctuations in the accuracy of 
tools, or lower material quality, which can disrupt schedules based on determinis-
tic information.

The few existing studies that have considered MMS problems with stochastic 
processing times have focused on minimizing the expected work overload time. 
“Work overload time” refers to the amount of work that is required by utility 
workers to assist at cycles, for which a work overload is foreseeable. The underly-
ing assumption is that utility workers work side-by-side with regular workers, so 
that the processing speed can be doubled and the cycle is fully processed before it 
leaves the boundaries of the station. However, large European car manufacturers 
often apply a different policy, whereby utility workers exclusively process a cycle 
when a work overload is foreseeable (Boysen et al. 2011). This is due to the fact 
that it is often not possible to perform certain tasks side-by-side as there may not 
be enough space for both workers to process a workpiece. Utility workers may 
also not be flexible enough to instantly assist at the exact right moment that is suf-
ficient to successfully process a cycle. In the alternative policy implemented by 
European car manufacturers, the utility worker first has to walk to the respective 
station, which causes setup costs that dominate the costs of utility work (Boysen 
et  al. 2011). Accordingly, the goal of this problem variation is to minimize the 
number of work overload situations.

To the best of our knowledge, this study is the first to consider the stochas-
tic MMS problem with the objective of minimizing work overload situations. 
We propose a reinforcement learning (RL) approach that generates the sequence 
iteratively, where actions denote the model to be sequenced next. The learning 
environment simulates normally distributed processing times (Dong et al. 2014; 
Mosadegh et  al. 2017, 2020; Özcan et  al. 2011) and penalizes actions that lead 
to work overloads with negative rewards. To make the RL agent account for sto-
chastic processing times, we define a state representation that contains several 
variables which indicate if a work overload occurs given that the processing times 
are equal to their respective 25%, 50%, or 75% quantiles. We find that including 
more quantiles further reduces the number of overload situations, but the mar-
ginal decrease is underproportionate to the number of quantiles, while the time 
required for policy learning increases linearly. The proposed approach can theo-
retically be applied to all mixed model assembly lines provided that the distribu-
tions of the models’ processing times are known.

The remainder of this paper is structured as follows. Section  2 provides an 
overview of related work. Section  3 formalizes the stochastic MMS problem 
and describes the characteristics of suitable solutions. Section  4 describes our 
RL approach by detailing environment, state and action space, reward function, 
and the method for policy learning. Section 5 presents the setup of our numeri-
cal evaluation and Sect. 7 presents the results. Finally, Sect. 8 describes several 
directions for how our approach could be extended.
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2 � Related work

MMS problems have been studied in multiple variations; for instance, with 
U-shaped (instead of straight) assembly lines (Li et al. 2012), two-sided assem-
bly lines (Chutima and Naruemitwong 2014), heterogeneous worker types (Aroui 
et al. 2017; Cortez and Costa 2015), and alternative optimization targets, includ-
ing worker idle times (Bautista et  al. 2016; Mosadegh et  al. 2020) or product 
rate variation (Chutima and Naruemitwong 2014). The MMS problem should be 
distinguished from car sequencing (Parrello et al. 1986), where work overload is 
implicitly minimized by satisfying handcrafted sequencing rules. Each rule has 
the form No ∶ Ho , which stipulates that, among No sequence positions, a maxi-
mum of Ho vehicles with option o may occur. Options can denote, for instance, 
a sun roof, entertainment system, or a specific motor. The more rules are satis-
fied, the lower the work overload. A literature review on car sequencing studies 
is provided by Solnon et al. (2008). Compared to car sequencing, MMS provides 
more flexibility in finding an optimal solution, and, thus, sequences generated 
with MMS cause less work overload (Golle et al. 2014). However, applying MMS 
requires car manufacturers to spend significant effort in collecting the processing 
times for each model and station, but the practicability of MMS in industry has 
already been demonstrated in a case study (Bautista et al. 2012).

Prior research has studied the pure MMS problem and the integrated balancing 
and sequencing problem (Agrawal and Tiwari 2008; Boysen et  al. 2007; Dong 
et al. 2014; Özcan et al. 2011), where the tasks to be performed for each model 
must first be assigned to stations given the precedence relation, such that a given 
criterion is optimized for a (near-)optimal sequence. Both problems exist since 
they are relevant in regard to different time horizons. The balancing decision has 
a mid-term horizon (e.g., several months) as it specifies work content and mate-
rial usage for each station, while the exact daily demands are generally not known 
in advance. The sequencing problem instead has a short-term horizon (e.g., one 
shift) as it specifies the order in which a given demand of models is produced 
(Boysen et  al. 2009). Comprehensive literature reviews of the balancing and 
sequencing problems, including the considered problem variations, are provided 
by Boysen et al. (2007) and Boysen et al. (2009). Boysen et al. (2009) have also 
identified stochastic processing times as a research gap.

So far, only a few studies have relaxed the strict assumption of deterministic 
processing times toward stochastic processing times. Table  1 provides an over-
view of existing studies on the stochastic MMS problem. The seminal study by 
Zhao et al. (2007) proposed an approach based on Markov chains to calculate the 
expected work overload time. In a nutshell, this approach approximates the cur-
rent positions of the workers within their stations by dividing the interval of pos-
sible positions into several subintervals. For each subinterval, the expected over-
load time is calculated as the average of those overload times that would occur 
if the worker was located at the exact lower or upper interval boundaries. Based 
on the method by Zhao et  al. (2007) and Dong et  al. (2014) proposed a simu-
lated annealing approach for the stochastic balancing and sequencing problem 
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with U-shaped lines and a minimization of overload time. Mosadegh et al. (2017) 
developed a method similar to Dijkstra’s algorithm that solves the stochas-
tic MMS problem for one stochastic station. In their recent study, Mosadegh 
et  al. (2020) considered the MMS problem with multiple stochastic stations. 
The authors presented an approach based on simulated annealing, for which the 
parameters are selected with Q-learning.

Studies on the balancing and sequencing problem with stochastic processing 
times generally focus on balancing workload. Agrawal and Tiwari (2008) proposed 
an ant colony algorithm to simultaneously minimize variation of workload and risk 
of line stoppage. The risk of line stoppage for a given station is calculated as the 
probability quantile of the z-normalized processing time with mean and variance 
processing time over all tasks. Özcan et  al. (2011) presented a genetic algorithm 
to minimize the absolute deviation of workloads (ADW), such that ADW is not 
exceeded according to a given confidence level.

This study proposes a RL approach for the stochastic MMS problem with a mini-
mization of overload situations. To the best of our knowledge, our study is the first 
to consider the stochastic problem with the objective of minimizing overload situa-
tions instead of overload time.

3 � Stochastic mixed model sequencing with a minimization 
of overload situations

Mixed model assembly lines allow manufacturers to exploit the advantages of flow-
production, while offering a large diversified product portfolio (Boysen et al. 2009). 
In mixed model assembly lines, the workers process a cycle while walking within 
the boundaries of their station. After a workpiece is completed, the worker walks 
back toward the beginning of the station to process the next cycle. Consequently, the 
starting position of a cycle depends on the processing time of the previous cycle. If 
the processing times are deterministic, the approach used for sequence generation 

Table 1   Existing studies on mixed model sequencing problems with stochastic processing times

Study Problem type Approach Optimization target

 Zhao et al. (2007) Sequencing Markov chain Overload time
 Agrawal and Tiwari 

(2008)
Balancing and sequenc-

ing
Ant colony optimization Workload balance, risk 

of line stoppage
 Özcan et al. (2011) Balancing and sequenc-

ing
Genetic algorithm Workload balance

 Dong et al. (2014) Balancing and sequenc-
ing

Simulated annealing Overload time

 Mosadegh et al. (2017) Sequencing Greedy, modified Dijk-
stra’s algorithm

Overload time

Mosadegh et al. (2020) Sequencing Simulated annealing Overload time, idle time
This study Sequencing Reinforcement learning Overload situations
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can calculate the starting positions of the workers for all stations and cycles exactly 
and without uncertainty. However, processing times in real-world production may 
vary due to, e.g., different skills and experience among the workers, inaccurate 
tools, or faulty materials. Longer processing times increase the probability of work 
overloads for the current and all subsequent cycles at a given station. Therefore, the 
sequence must be generated in a way that accounts for stochastic processing times.

We consider the MMS problem with normally distributed processing times as 
they are a frequent choice in the literature (Dong et al. 2014; Mosadegh et al. 2017, 
2020; Özcan et al. 2011). A normal distribution also reflects our idea that process-
ing times in mixed model assembly lines should be close to their mean with high 
probability, while deviations from the mean are less likely. At the same time, a large 
positive deviation from the mean should have the same probability as a large nega-
tive deviation with the same absolute value.

In the following, we provide a mathematical problem formulation of the stochas-
tic MMS problem with a minimization of overload situations. Subsequently, we 
describe the characteristics of suitable solutions.

3.1 � Problem formulation

The formulation of the stochastic MMS problem with a minimization of overload situa-
tions is based on the deterministic problem introduced by Boysen et al. (2011). Table 2 
provides an overview of all variables. The problem is formalized below from (1) to 
(13). The goal (1) is to minimize the total number of work overloads yk,t over all sta-
tions k = 1,… ,K and sequence positions t = 1,… , T . The sequence is modeled as 
several binary variables xm,t that equal 1 if model m is sequenced at position t. (2) and 
(3) ensure that yk,t and xm,t are binary. (4) ensures that each sequence position is filled 
with exactly one model. (5) ensures that the sequence complies with the demand plan. 
(6) ensures that the starting positions of the workers at the stations are non-negative. 
(7) sets the initial start position of all workers to zero and (8) resets the start position 

Table 2   Variables of problem definition

Variable Description

T Sequence length
K Number of stations
M Number of different models
yk,t Binary variable that equals 1 if an overload occurs at station k for cycle t
xm,t Binary variable that equals 1 if model m is sequenced at position t
d Demand plan [d1,… , dm] that specifies the quantity dm to be produced for model m
wk,t Position of worker at station k before processing cycle t
pk,m Stochastic processing time of model m at station k
lk Length of station k, one unit of station length corresponds to one unit of processing time
bk,t Processing time of the model scheduled at sequence position t for station k
c Cycle time which species that a new cycle enters the conveyor belt every c units of processing 

time
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after the sequence is completed. (9) specifies that the processing times are normally 
distributed with mean �k,m and standard deviation �k,m . (10) enforces that the sampled 
processing times are non-negative and less or equal to the station length lk . The con-
straint pk,m ≤ lk is necessary since we assume closed stations, which implies that it 
must be possible to process each cycle within the boundaries of the respective station. 
One could, for instance, assume that the constraint pk,m ≤ lk has been considered in the 
balancing phase. (11) defines a variable for the processing time of the cycle t at station 
k. (12) and (13) ensure that the workers only move within the boundaries of their sta-
tion. Besides, (13) incorporates the cycle time into the optimization problem, which 
specifies that a new cycle enters the conveyor belt at every c units of processing time. 
If yk,t = 1 , the constraints (12) and (13) are weakened, so that it becomes easier to find 
a solution.

(1)Minimize z =

T∑
t=1

K∑
k=1

yk,t

(2)
Subject to:

yk,t ∈ {0, 1}, ∀ k = 1,… ,K; t = 1,… , T ,

(3)xm,t ∈ {0, 1}, ∀m = 1,… ,M; t = 1,… , T ,

(4)
M∑

m=1

xm,t = 1, ∀ t = 1,… , T ,

(5)
T∑
t=1

xm,t = dm, ∀m = 1,… ,M,

(6)wk,t ≥ 0, ∀ k = 1,… ,K; t = 2,… , T ,

(7)wk,1 = 0, ∀ k = 1,… ,K,

(8)wk,T+1 = 0, ∀ k = 1,… ,K,

(9)pk,m ∼ N(�k,m, �k,m), ∀ k = 1,… ,K;m = 1,… ,M,

(10)0 ≤ pk,m ≤ lk, ∀ k = 1,… ,K;m = 1,… ,M,

(11)bk,t =

M∑
m=1

pk,m ⋅ xm,t, ∀ k = 1,… ,K; t = 1,… , T ,

(12)wk,t + bk,t − lk ⋅ yk,t ≤ lk, ∀ k = 1,… ,K; t = 1,… , T ,

(13)wk,t+1 ≥ wk,t + bk,t − lk ⋅ yk,t − c, ∀ k = 1,… ,K; t = 1,… , T .
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3.2 � Characteristics of suitable solutions

We now explain what characterizes suitable solutions for the stochastic MMS prob-
lem with a minimization of overload situations. If sequences are optimized based on 
deterministic overloads, the resulting sequences entail tight schedules for the work-
ers. The cycles will be completed when the workers are close the boundaries of the 
station, which implies that they can easily be violated if the processing times are 
larger than their mean. A good solution for the stochastic problem instead provides 
more buffer times to account for variations in the processing times. However, such 
buffers come at the cost of a greater number of deterministic overloads.

We provide an example to better illustrate this idea. We consider an assembly 
line that consists of only one station of length 110. Let the demand plan be given 
as d = [2, 2, 2] and the means of the processing times be given as �1,1 = 95, �1,2 = 
105 and �1,3 = 70. The cycle time is set to c = 90 . There are two sequences given as 
seq1 = [1, 2, 3, 1, 2, 3] and seq2 = [2, 2, 1, 1, 3, 3] . Figure  1 plots the movements of 
the workers for a) seq1 and b) seq2 if the processing times are deterministic and equal 
to their means. The x-axis denotes the worker position in the interval [0, 110] and 
the y-axis denotes how much processing time has passed. seq1 causes no determinis-
tic overload, while seq2 causes one deterministic overload as model m = 2 (with �1,2 
= 105) is sequenced twice in a row. In particular, we observe that seq1 always makes 
the worker finish a cycle close to the station boundary, while seq2 leaves more buff-
ers. We now assume that the processing time for model m = 1 increases from 95 to 

(a) Sequence with zero deterministic over-
loads

(b) Sequence with one deterministic over-
load

(c) Sequence with two stochastic overloads (d) Sequence with one stochastic overload

Fig. 1   Worker movements. The x-axis denotes the position of the worker with respect to the processing 
time on the y-axis
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96. As shown in Fig. 1c and d, seq1 now leads to two overloads at cycles 2 and 5, 
while seq2 still causes only one overload at cycle 2.

4 � Reinforcement learning approach

The goal of RL is to learn a policy ��(at|st) with parameters � that specifies which 
action at to perform at state st (Sutton and Barto 1998). For this purpose, the RL 
agent interacts with an environment and maximizes the discounted sum of rewards 
rt over the learning episode. In this study, one episode corresponds to the generation 
of a complete sequence of one problem instance. The discrete time t reflects the cur-
rent sequence position t = 1,… , T  . The RL agent is trained to create the sequence 
incrementally. At each sequence position t, the agent evaluates the current state st 
and decides on the model m ∈ {1,… ,M} to sequence next. Accordingly, the action 
space A is given by the set of models

4.1 � Environment and state representation

The environment simulates the production process, including movements of work-
ers and handling of work overloads. At each sequence position t, the environment 
provides the agent with the current state st . After the agent decided on its next action 
at , the environment simulates this action, updates the current state, and emits the 
reward rt to the agent. This continues until the learning episode is finished. After 
this, the environment is reset and another learning episode starts. The learning pro-
cess is completed when the policy has converged to a stable state.

The generated sequence must comply with the demand plan [d1,… , dM] , i.e., the 
number of cycles where model m is produced must be equal to dm . To guide the 
agent toward generating valid sequences, we include the current remaining quan-
tities d1

t
,… , dM

t
 into the state representation st . If the agent decides to sequence 

model m in state st , then dm
t

 is decreased by one in the next state st+1 . When the 
sequence is empty at t = 1 , the remaining quantities are equal to the demand plan: 
dm
1
= dm, ∀m = 1,… ,M.
The state representation also provides the agent with information about whether 

or not work overloads will occur if the processing times are equal to particu-
lar probability quantiles. For this purpose, we define a deterministic function 
om
t
(q) ∶ [0, 1] → {0, 1} that equals 1 if sequencing model m at sequence posi-

tion t leads to at least one work overload yk,t given that the processing times of 
all stations are equal to their respective q-quantile with q ∈ [0, 1].1 Consider the 

(14)A = {1,… ,M}.

1  We also performed an evaluation where om
t
(q) was defined as the total number of overloads that occur 

at the next sequence position. However, this resulted in inferior performance when compared to an 
approach that defined om

t
(q) as a binary function.
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following example. Let the worker of a station k with length lk = 120 be at position 
wk,t = 30 , and the processing time of model m be distributed as pk,m ∼ N(90, 10) . 
The worker has lk − wk,t = 120 − 30 = 90 units of processing time left to process 
cycle t consisting of model m. The worker will process the cycle in time if the 
processing time is less than or equal to the mean which denotes the 50% quantile: 
om
t
(q) = 0, ∀ q ≤ 0.50 . If the processing time is greater than the mean, a work over-

load will occur as there is not enough time to fully process the cycle, which implies 
om
t
(q) = 1, ∀ q > 0.50.
Based on the function om

t
(q) , we implement and evaluate two environments 

RLsto and RLdet as illustrated in Fig.  3. Both environments include the remaining 
quantities d1

t
,… , dM

t
 in the state representation, but they differ in the reward func-

tion and the number of probability quantiles for which om
t
(q) is provided. The 

Fig. 2   Probability density function of a normal distribution N(90, 10) . The quantiles q0.25 , q0.50 , and q0.75 
are highlighted

Agent

actionrewardstate

Stochastic

Environment

Mean (q0.50)

q0.25

q0.75

Included quantiles

(a) Stochastic environment (RLsto)

Agent

actionrewardstate

Deterministic

Environment

Mean (q0.50)

Included quantiles

(b) Deterministic environment (RLdet)

Fig. 3   Illustration of environments used in this study
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stochastic environment RLsto is illustrated in Fig. 3a. The reward is calculated based 
on stochastic processing times pk,m that are drawn from their respective distribution 
N(�k,m, �k,m) . The state representation of RLsto contains om

t
(q) for the 25%, 50%, and 

75% quantiles.

It should be noted that the state representation does not directly depend on the 
number of stations on the assembly line. Accordingly, a trained policy can also be 
applied to similar production systems with additional stations (we later provide a 
corresponding analysis to assess how this affects the performance).

Figure  2 shows the probability density function of a normal distribution with 
� = 90 and � = 10 . The 50% quantile is equal to the mean, whereas the 25% and 
75% quantiles are equal to 83.25 and 96.75, respectively. We later present an analy-
sis, where we study the effects of including om

t
(q) for more than three quantiles. The 

results show that this additional state information further reduces work overload sit-
uations, but the marginal benefit decreases with the number of quantiles.

As a baseline, we also implement a purely deterministic environment RLdet as 
shown in Fig. 3b. In RLdet , the reward is calculated deterministically based on the 
mean processing times. Accordingly, the state representation of RLdet only contains 
om
t
(q) for the 50% quantile.

4.2 � Reward

The reward signal should guide the RL agent toward generating sequences that mini-
mize the number of work overloads. It thus seems intuitive to reward the agent with 
the negative sum of work overloads at the end of each learning episode. However, 
this implies that the reward had to be discounted over hundreds of actions, which 
results in a less efficient learning process (Sutton and Barto 1998). Instead, we pro-
vide an immediate reward as the negative sum of work overloads yk,t that are caused 
by cycle t.

The agent may decide to sequence a model m, for which the remaining quantity to 
be produced is zero ( dm

t
= 0 ). In this case, the action at = m is invalid and the agent 

is punished with a negative reward of −10 . This value was determined based on a 
pre-study. The results of the pre-study can be found in Appendix 2 of the supple-
mentary material. Handling invalid actions during the training process is still a chal-
lenging problem in RL (Zahavy et al. 2018). The action space cannot be altered as 

(15)

ssto
t

= (d1
t
,… , dM

t
,

o1
t
(0.25),… , oM

t
(0.25),

o1
t
(0.50),… , oM

t
(0.50),

o1
t
(0.75),… , oM

t
(0.75)).

(16)
sdet
t

= (d1
t
,… , dM

t
,

o1
t
(0.50),… , oM

t
(0.50)).
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this would affect the structure of the neural network. For the purpose of this study, 
we handle invalid actions by returning a negative reward of −10 and the same state 
st+1 = st . This will implicitly make the agent avoid invalid actions, yet a full preven-
tion is not guaranteed. An exemplary plot about the number of invalid actions over 
the learning process is provided in Appendix 3 of the supplementary material. Alto-
gether, the reward rt for action at = m is defined as

During real-world application, we can always ensure that the generated sequences 
are valid. If the agent attempts to sequence a model m with dm

t
= 0 , we simply 

choose the next best valid action according to the policy ��(at|st) . Invalid actions 
thus only affect the learning process, but they do not limit the applicability of our 
approach in real-world production.

4.3 � Policy learning

RL alternates between generating trajectories (s1, a1, r1),… , (sT , aT , rT ) in terms of 
state-action-reward tuples with the current policy ��(at|st) , and updating the policy 
parameters � based on the generated data.

In this study, we implement proximal policy optimization (PPO, Schulman et al. 
2017) for policy learning. PPO is a policy gradient method (Williams 1992), where 
the policy �� is learned with a neural network, so that the weights of the network 
denote the policy parameters � . The neural network receives a state st as input and 
outputs a stochastic vector of size |A|. ��(at|st) hence equals the probability that the 
agent will perform action at in state st . During policy learning, actions leading to 
higher rewards will be assigned higher probabilities, whereas actions leading to 
lower rewards will be assigned lower probabilities. PPO is easy to implement and 
tune (Schulman et  al. 2017) and is considered a state-of-the-art policy gradient 
method for RL (Zheng et al. 2018).

We briefly describe the functionality of PPO. All explanations are based on 
Schulman et  al. (2017). Algorithm  1 provides the pseudocode of policy learning 
with PPO. Besides the action probabilities ��(at|st) , the policy network also updates 
a value estimate V�(st) of state st . This value denotes the expected reward that the 
agent will receive from st to the end of the learning episode. Given a trajectory 
(s1, a1, r1),… , (sT , aT , rT ) , PPO first calculates Rt =

∑T

t�=t
� t

�−t rt� as the sum of dis-
counted rewards that the agent will receive between st and sT , where � denotes the 
discount parameter (set to 0.99). In addition, PPO calculates the estimated advantage 
of performing at in st as Ât = Rt − V𝜃(st) . The rationale of the advantage estimate is 
that PPO aims at assigning higher probabilities to actions that lead to higher rewards 
than the current estimate V�(st) . Finally, PPO updates its policy by maximizing the 
loss function L(�).

(17)rt =

⎧
⎪⎨⎪⎩
−

K∑
k=1

yk,t, if dm
t
> 0,

−10, otherwise.
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The loss function L(�) consists of three terms. The first term LCLIP
t

(�) ensures that 
the policy parameters � will be updated such that actions with positive advantage Â 
are assigned higher probabilities, and vice versa. However, PPO limits the extent of 
policy updates by clipping the ratio between new and old probability ��(at|st)

��old
(at|st) to the 

range [1 − �, 1 + �] . � is set to 0.20 per default.

The second term LVF
t
(�) = (Rt − V�(st))

2 denotes the error in predicting the value 
of state st . Including this term with a negative sign ensures that the update of � also 
improves the estimate V�(st).

The third term LH
t
(st) denotes the entropy (Shannon 1948) of the policy in state 

st : LHt (st) = −
∑

at∈A
��(at�st) log2 ��(at�st) . Higher entropy values indicate that the 

probability distribution preserves randomness in the sense that the agent can still 
explore random actions instead of solely relying on the best action according to the 
current policy. The parameters c1 (set to 0.50) and c2 (set to 0.01) indicate the weight 
of the corresponding loss terms. All parameters except the number of time steps are 
set to their default values as stated in Appendix 1 of the supplementary material. We 
implement our RL approach in Python 3.6.8 using the PPO implementation from the 
RL framework “Stable Baselines” in version 2.7.0.

(Schulman et al. 2017)

We train the policies for 50 million time steps, where one time step corresponds 
to one action. This results in a total of approximately 500,000 learning episodes. 
Figure 4 shows the learning curves as the mean overloads per episode for both RL 
approaches RLsto and RLdet on a problem instance with sequence length T = 100 . As 
a baseline, the dashed lines denote the number of overloads for a simple greedy heu-
ristic. Both policies converge to a stable state. After approximately 100,000 learning 
episodes, RLsto and RLdet outperform the greedy heuristic (Boysen et al. 2011). As 
expected, the number of overloads per episode is smaller in the deterministic than 
in the stochastic environment. Recall that in the deterministic environment, the pro-
cessing times always follow the mean, whereas processing times in the stochastic 
environment are drawn from their respective normal distributions.

(18)max
�

L(�) =

T∑
t=1

LCLIP
t

(�) − c1L
VF
t
(�) + c2L

H
t
(�)

(19)LCLIP
t

(𝜃) = min

{
𝜋𝜃(at|st)
𝜋𝜃old (at|st)

Ât, clip

(
𝜋𝜃(at|st)
𝜋𝜃old (at|st)

, 1 − 𝜀, 1 + 𝜀

)
Ât

}
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5 � Numerical evaluation

5.1 � Dataset

We use the dataset created by Boysen et al. (2011) that contains 216 problem lay-
outs. The layouts can be divided into small and large layouts as shown in Table 3. 
The numbers of models and stations range from 5 to 30, while the sequence length 
varies between 15 and 300. The station length is either constant, or drawn from the 
uniform distributions U[85, 125] or U[85, 145] . The cycle time c is fixed to 90, which 
means that a new cycle enters the assembly line at every 90 units of processing time. 
The deterministic processing times of the stations were created in two steps. First, 
an average processing time pm of model m is randomly drawn from the interval 
[0.75 ⋅ c, c] . Second, pm was used to define the uniform interval from which to draw 
the deterministic processing time of each station U[0.5 ⋅ pm,min{lk, 1.5 ⋅ pm}].

Combining all settings from Table 3 yields 216 unique problem layouts with fixed 
deterministic processing times. For each layout, we generate 10 demand plans based 
on a multinomial distribution with T trials and equal probability 1

M
 for each model. 

This results in a total of 2160 deterministic problems.2

5.2 � Evaluation procedure

We train one RL policy for each layout, which results in a total of 216 policies. 
Training one policy requires approximately ten hours on our server infrastructure 
that consists of two Intel(R) Xeon(R) Gold 6150 CPUs and 755 gigabytes of main 
memory. The time needed for policy learning is neglected as this can be done in 
advance for a fixed production system. To assess the performance of our approach 
on unseen problems, we perform three further analyses with variations in the 

(a) Stochastic environment (RLsto) (b) Deterministic environment (RLdet)

Fig. 4   Learning curves for both reinforcement learning environments

2  The dataset can be downloaded from https://​github.​com/​Infor​matio​nSyst​emsFr​eiburg/​stoch​astic_​mms_​
datas​et/.

https://github.com/InformationSystemsFreiburg/stochastic_mms_dataset/
https://github.com/InformationSystemsFreiburg/stochastic_mms_dataset/
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standard deviation of processing times, additional stations on the assembly line, and 
additional models in the demand plan.

For the evaluation, we consider normally distributed processing times (Dong 
et  al. 2014; Mosadegh et  al. 2017, 2020; Özcan et  al. 2011) with means �k,m and 
joint standard deviation �.

The means �k,m are set to the deterministic processing times of the instances in our 
dataset. We require that 0 ≤ pk,m ≤ lk as negative processing times are not possible 
and there are no buffer areas between two adjacent stations. If pk,m > lk , it would 
be impossible to process the affected cycles within the boundaries of the station. 
The standard deviation � is set to 10 in our main analysis, but we later also evaluate 
� ∈ {5.0, 7.5, 12.5, 15} . To calculate the number of stochastic overloads, we evalu-
ate 100 stochastic variations of each (deterministic) problem. In each variation, we 
sample the processing times from their respective distributions.

Algorithm  2 describes the evaluation procedure. We iterate over all competing 
approaches and problem instances. Each approach is provided a fixed cutoff time of 
300 seconds to search for a solution (Boysen et al. 2011; Joly and Frein 2008; Lopes 
et al. 2020; Miltenburg 2002). The generated sequence is then evaluated based on 
100 variations with random processing times. For this purpose, it is crucial that the 
sampled processing times are the same for all sequences. More precisely, if two 
sequences have the same model m at sequence position t, then the processing times 
of this model at all stations must be the same for both sequences. We therefore set a 
random seed (line 6) before evaluating each deterministic instance based on 100 sto-
chastic variations. Work overloads are calculated based on the sampled processing 
times (lines 14, 15). The result of each stochastic variation j = 1,… , 100 is stored 
as a tuple (i,  approach, j, O) (line 16); all results are finally aggregated according to 
the performance metrics (line 17).

To calculate the number of overload situations, we assume that the processing 
times are known before the actual working steps. The number of work overloads 
is then calculated using the method for the deterministic problem by Boysen et al. 
(2011). Once a work overload is foreseeable for cycle t, the worker of the affected 
station walks directly to the beginning of their station to process cycle t + 1 . The 
alternative would be to assume a probability threshold � until which the workers still 

(20)pk,m ∼ N(�k,m, �) with 0 ≤ pk,m ≤ lk.

Table 3   Descriptives about problem layouts

Variable Description Small Large

M Number of models 5, 10, 15 20, 25, 30
K Number of stations 5, 10, 15 20, 25, 30
T Sequence length 15, 20, 25 100, 200, 300
lk Station length constant 110, 150

Station length interval [85, 125], [85, 145]
c Cycle time 90
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try to process the cycle while hoping to be successful in time. However, if a work 
overload is signaled too late, the utility worker may not have enough time remaining 
to process the cycle.

We simulate 100 stochastic variations to ensure that the sample distribution accu-
rately reflects the population distribution. The sample means 𝜇̂k,m and the sample 
standard deviation 𝜎̂ usually vary from the population means �k,m and the popula-
tion standard deviation � . Therefore, we calculate the 95% confidence intervals of 
sample mean and standard deviation for one station based on T ∈ 15, 100, 300 and 
� = 10 . The confidence intervals of the sample mean equal 𝜇̂k,m ± 5.06 for T = 15 , 
𝜇̂k,m ± 1.96 for T = 100 , and 𝜇̂k,m ± 1.13 for T = 300 . When evaluating 100 sto-
chastic variations (i.e., 99 degrees of freedom), the confidence intervals change 
to 𝜇̂k,m ± 0.51 for T = 15 , 𝜇̂k,m ± 0.12 for T = 100 , and 𝜇̂k,m ± 0.11 for T = 300 . In 
addition, we calculate the 95% confidence interval of the sample standard devia-
tion 𝜎̂ . For one stochastic variation, the confidence intervals are [0.73, 1.58] × � 
for T = 15 , [0.89, 1.16] × � for T = 100 , and [0.93, 1.09] × � for T = 300 . Again, 
when evaluating 100 stochastic variations, the confidence intervals narrow down 
to [0.97, 1.04] × � for T = 15 , [0.99, 1.01] × � for T = 100 and [0.99, 1.01] × � for 
T = 300 . Altogether, when performing 100 variations, sample mean and sample 
standard deviation deviate less than one unit of processing time from population 
mean and population standard deviation.

5.3 � Competing approaches

We evaluate our approach against several competing approaches from the literature 
as shown in Table 4. First, we implement several stochastic approaches, including 
the hyper simulated annealing (HSA) approach by Mosadegh et  al. (2020), which 
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was developed for the stochastic MMS problem with a minimization of work over-
load time, and a multiple scenario approach [MSA, (Bent and Van Hentenryck 
2004)]. Second, we evaluate several deterministic approaches based on the mean 
processing times. This includes a genetic algorithm, simulated annealing (Aroui 
et al. 2017), local search (Cortez and Costa 2015), tabu search (Boysen et al. 2011), 
and Gurobi version 8.0.1.

However, simply applying deterministic approaches to stochastic problems is 
likely to result in poor performance (Pinedo and Weiss  1987). We therefore modify 
the deterministic problems by artificially increasing the mean processing times

with � ∈ {0, 0.25, 0.50, 0.75, 1} . This should yield sequences with more determin-
istic overloads, but with less stochastic overloads situations as the increased pro-
cessing times cause larger buffer times between two subsequent cycles. For each 
approach, we report the results of the � value that performed best. Accordingly, 
these approaches have a small advantage in the sense that we perform an ex-post 
selection of parameters.

In the following, we briefly explain each competing approach.

5.3.1 � Greedy heuristic

Several competing approaches (HSA, TS, LS, GA, SA) use the greedy heuristic 
(Boysen et  al. 2011) to create an initial sequence. The greedy heuristic generates 
the sequence incrementally. At each sequence position, the heuristic chooses the 
next model based on the number of work overloads that will occur if this model 
is sequenced next according to the deterministic processing times. Ties are broken 
according to (1) the maximum sum of processing times over all stations, (2) the 
maximum processing time at any station, and (3) the lowest index m.

5.3.2 � Hyper simulated annealing

We implement hyper simulated annealing (HSA) according to Mosadegh et  al. 
(2020). HSA was originally designed to minimize the expected work overload time, 
which does not necessarily also minimize the number of overload situations. How-
ever, we still implement this approach as it provides a state-of-the-art solution for 
mixed model assembly lines with stochastic processing times. The idea of HSA is 
to combine simulated annealing (SA) with Q-learning. The metaheuristic improves 
an initial sequence through a series of mutations. At each sequence position, one out 
of 16 actions is either selected randomly (with probability � ) or based on the current 
Q-learning policy. In this context, an action defines the next three mutation opera-
tors. There is a total of six mutation operators, which range from simple swaps (e.g., 
change models at positions (i, j)) to complex crossover operators (Kim et al. 1996). 
After the sequence is updated, the approach updates the Q-table and lowers the tem-
perature of the SA. A new sequence is accepted if it outperforms the old sequence in 
terms of the performance metric, i.e., expected overload time. In addition, an equal 

(21)�∗
k,m

= �k,m + ��
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or worse sequence can still be accepted with a certain probability that depends on 
the temperature.

We implement HSA with two different fitness criteria. The first variation ( HSAT ) 
minimizes the expected overload time, so that the approach is implemented like in the 
study by Mosadegh et al. (2020). The second variation (HSA) is based on the number 
of deterministic overload situations.

5.3.3 � Multiple scenario approach

We implement a multiple scenario approach (MSA) according to Bent and Van Hen-
tenryck (2004). The idea of MSA is to solve N deterministic instances individually 
within the cutoff time and aggregate the resulting sequences with a consensus function. 
For this purpose, we create a matrix C ∈ ℕ

M×M that stores how often model i is fol-
lowed immediately by model j over all sequences seqn, n = 1,… ,N . Let I(condition) 
denote the indicator function that equals 1 if condition is true, and 0 otherwise. The 
matrix C is defined as

The first sequence position is chosen randomly. All other positions are determined 
based on the consensus function f(t). Ties are broken according to the lower model 
index m.

(22)C[i, j] =

N∑
n=1

T−1∑
t=1

I(seqn[t] = i ∧ seqn[t + 1] = j), ∀i, j = 1,… ,M.

(23)f (t) = argmax m(C[t,m]) with d
m > 0, t = 2,… , T .

Table 4   Overview of all approaches

Initial sequences of metaheuristics are generated with the greedy heuristic (Boysen et al. 2011)

Reinforcement learning approaches
RLsto RL trained in stochastic environment with 25%, 50%, and 75% 

probability quantiles
RLdet RL trained in deterministic environment only with 50% probability 

quantile
Stochastic approaches
HSAT Hyper simulated annealing (Mosadegh et al. 2020) with a minimi-

zation of work overload time
MSA Multiple scenario approach (Bent and Van Hentenryck 2004)
Deterministic approaches
HSA Hyper simulated annealing (Mosadegh et al. 2020)
SA Simulated annealing (Aroui et al. 2017)
GA Genetic algorithm (Aroui et al. 2017)
LS Local search (Cortez and Costa 2015)
TS Tabu search (Boysen et al. 2011)
Gur Mixed-integer linear programming solver Gurobi (version 8.0.1)
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We implement MSA with N = 10 based on four variations. We evaluate Gurobi 
or SA as underlying method to generate sequences for each problem instance. In 
addition, we introduce a flag that indicates whether we allow for one model to be 
sequenced at two subsequent sequence positions. If the flag is active, the sequences 
may exhibit blocks of the same model. Otherwise, the sequences become more 
diverse as two subsequent positions must be different. In a pre-study, we find that 
MSA based on SA and the flag active performs best. The results of the pre-study are 
provided in Appendix 4 of the supplementary material.

5.3.4 � Simulated annealing

We implement simulated annealing according to Aroui et al. (2017). In each iteration, 
the metaheuristic modifies the current sequence with a random flip, swap, or slide oper-
ation, each of which is performed with equal probability. If these operations decrease 
the number of overloads, the modified sequence is accepted as the new best sequence. 
Otherwise, the sequence still has a certain chance to be accepted as the new solution, 
which depends on the current temperature. With each iteration, the temperature “cools 
down” exponentially according to a fixed cooling factor. Therefore, the metaheuristic 
can explore random solutions which appear worse during early iterations but reach a 
better overall solution during later iterations.

5.3.5 � Genetic algorithm

We implement a genetic algorithm according to Aroui et al. (2017). We initialize the 
start population with the initial sequence and nine randomly generated sequences. 
In each iteration, the metaheuristic improves the population by applying crossover 
and mutation operations to the sequences. An elitism procedure sorts the current 
population in ascending order according to the number of overloads. Subsequently, 
it copies the sequence with the fewest overloads to the last five positions of the pop-
ulation. Then, the algorithm performs crossover operations on the first four positions 
of the population to generate four child sequences based on two random pairs of par-
ents. The child sequences are usually invalid in the sense that they no longer comply 
with the demand plan. The metaheuristic, therefore, employs a repair function that 
fixes the child sequences. If a child yields fewer overloads than a parent, the parent 
is replaced by the child.

5.3.6 � Local search

We implement the local search metaheuristic according to Cortez and Costa (2015). 
The idea of local search is to performs swaps around sequence positions that lead 
to a high number of work overloads. In each iteration, the metaheuristic randomly 
selects a sequence position based on a probability distribution � that weights the 
probabilities according to the number of overloads. Subsequently, local search iter-
ates over the sequence positions and evaluates swapping sequence positions (i,  j) 
that contain different models. If a swap yields an improved sequence, the improved 
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sequence becomes the new best sequence, the probability distribution � is updated, 
and the procedure is repeated. Otherwise, the swap is undone.

5.3.7 � Tabu search

We implement the tabu search metaheuristic according to Boysen et  al. (2011). 
In each iteration, the metaheuristic evaluates the neighborhood of the current best 
sequence, which refers to the set of all swaps (i,  j) of different models. For each 
neighbor, the number of overloads is calculated and the neighbor with the lowest 
number of overloads becomes the new best sequence. To prevent back-and-forth 
swaps, the swap that created the next best sequence is added to a tabu list. The tabu 
list is defined as a first-in-first-out (FIFO) queue of capacity (T/16): when the capac-
ity is exceeded, the oldest entry is removed.

5.3.8 � Gurobi

Ultimately, we implement the mixed-integer linear programming solver Gurobi in 
version 8.0.1 based on the problem formulation from Sect. 3.1 but without the con-
straints (9) and (10). Instead, the processing times pk,m are set to their mean values 
�k,m or �k,m + �� to artificially increase the processing times. Gurobi is implemented 
using the Python package “gurobipy” (version 8.0.1). All parameters except the cut-
off time are set to their default values.

6 � Performance metrics

We provide the results based on three performance metrics. First, and as our primary 
metric, we provide the mean number of stochastic work overload situations over all 
problem instances. Let P denote the number of problem instances and Osto

j,a
 the num-

ber of stochastic overloads for approach a on problem j (recall that Osto
j,a

 is calculated 
as the average over 100 stochastic variations of processing times). Our primary met-
ric is defined as

Second, we include the number of deterministic overloads that would occur if the 
processing times were deterministic and equal to the mean of their respective distri-
bution. Let Odet

j,a
 denote the number of work overloads according to the mean pro-

cessing times for approach a on problem instance j. The mean number of determin-
istic overloads is given as

(24)
1

P

P∑
j=1

Osto
j,a
.

(25)
1

P

P∑
j=1

Odet
j,a
.
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Third, we provide the average expected overload time over all instances as calcu-
lated with the method by Zhao et al. (2007). This allows us to assess the robustness 
of our results in regard to how minimizing the number of overload situations influ-
ences the expected overload time. Let OT

j,a
 denote the expected overload time for 

approach a on instance j. The average overload time is given as

We scale the result by 100 in order to facilitate the presentation of results.
In addition, we provide several metrics (mean deviation to best, percentage of 

best solutions, and calculation time) for informational purposes, see Appendix 5 of 
the supplementary material.

7 � Results

We now describe the results of our numerical evaluation. We start with our main 
analysis, after which we provide the results of three analyses based on unseen 
problems with variations in the standard deviation of processing times, additional 
stations on the assembly line, and problems with additional models.3 Finally, we 
analyze the trade-off between the performance of our approach and the required 
time for policy learning when using more probability quantiles for the state 
representation.

7.1 � Main analysis

We first analyze the performance of all approaches on a total of 2160 stochastic 
problem instances. Figure 5 presents the results for small, large, and all instances. 
The black bars denote the number of stochastic overloads, the white bars denote 
the number of deterministic overloads, and the gray bars denote the expected 
overload time (Zhao et al. 2007). The numerical results are provided in Appen-
dix 6 of the supplementary material. The optimal � values are indicated below the 
corresponding approaches.

Figure  5 shows that our approach as trained in the stochastic environment 
( RLsto ) is superior to other methods in regard to the number of stochastic over-
loads. Compared to the best competing approach SA, the relative reduction of sto-
chastic overloads is 7.32−6.58

7.32
≈ 10.11% on the small instances, 117.57−109.11

117.57
≈ 7.20% 

on the large instances, and 62.44−57.84
62.44

≈ 7.37% on all instances. Training the RL 
policy based on the deterministic problems also performs well, but RLdet is out-
performed by LS, GA, and SA on all instances.

(26)
1

100P

P∑
j=1

OT
j,a
.

3  All datasets are provided at https://​github.​com/​Infor​matio​nSyst​emsFr​eiburg/​stoch​astic_​mms_​datas​et/.

https://github.com/InformationSystemsFreiburg/stochastic_mms_dataset/
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The number of stochastic overloads is always significantly greater than the num-
ber of deterministic overloads. All t-tests are statistically significant with p < 0.001 . 
Regarding the approaches that solve modified deterministic problems with artifi-
cially increased processing times, we find a U-shaped relation between � and the 
solution quality. That is, small increases in deterministic processing time have a 
positive impact on the number of stochastic overloads, while large increases have a 
detrimental effect (see Appendix 7 of the supplementary material).

We also consider the expected overload time to assess the amount of utility 
work that is required to resolve work overloads. HSAT should perform best as it is 
the only approach that specifically minimizes the expected overload times. How-
ever, this only holds on the small instances, whereas HSAT achieves larger over-
load time than RLsto on the large instances, and when considering all instances. 
One possible explanation is that Mosadegh et al. (2020) evaluated their approach 
based on comparably smaller problems with up to six models.

So far, we have only considered the expected values. As the results are aggre-
gated over multiple instances of different size, we cannot directly assess the vari-
ation of the stochastic performance metrics. We now consider the variation of 
stochastic overloads and overload time for a fixed medium-sized problem instance 
with 100 cycles, 20 stations, and 20 models. Figure 6 presents the boxplots for a) 
stochastic overloads and b) overload time over 1000 samples of processing times 
for RLsto and the best competing approach SA with � = 0.25 . Compared to SA, 
RLsto achieves a lower average and a better worst-case scenario in the number 
of stochastic overloads. Regarding overload time, the variation is similar but the 
worst-case slightly favors SA.

In summary, our main analysis indicates that RLsto is able to minimize the number 
of overload situations, while keeping the expected overload time similar to compet-
ing approaches.

7.2 � Variation of standard deviation

Next, we study variations in the standard deviations of stochastic processing times. 
We assume that the variations occur during actual production and they are not 
known in advance. For the evaluation, we evaluate all approaches based on the same 
sequences as generated in the main analysis, but we sample the processing times 
based on the altered normal distribution. We specifically do not retrain the RL poli-
cies to ensure that this analysis is based on unseen probability distributions.

Figure 7 presents the results for � ∈ {5.0, 7.5, 12.5, 15.0} . The numerical results 
are provided in Appendix 6 of the supplementary material. As expected, stochas-
tic overloads and expected overload time increase for greater standard deviations. 
For � = 5 , RLsto is outperformed by LS, GA, and, in particular, SA, which per-
forms best. The relative difference of SA over RLsto is 38.52−36.33

38.52
≈ 5.69% . However, 

it should be noted that the evaluation with � = 5 is also the closest to determin-
istic processing times. For all analyses with 𝜎 > 5 , RLsto is superior to the com-
peting approaches. The relative improvements of RLsto over the best competing 
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methods are 48.89−47.04
48.89

≈ 3.78% for � = 7.5 , 75.79−70.44
75.79

≈ 7.06% for � = 12.5 , and 
89.73−84.27

89.73
≈ 6.08% for � = 15.

7.3 � Additional stations

We now perform another analysis, where we evaluate the performance of our 
approach in regard to unseen stations on the assembly line. For this purpose, we 
modify the problem instances to contain up to five additional stations. The process-
ing times of the additional stations have similar processing times to the existing sta-
tions (see Sect. 5.1). All additional stations are added at the end of the assembly line 
without loss of generality. Due to computational constraints, we limit this analysis to 
a subset of 216 problem instances. Again, we do not retrain the RL policies to ensure 
that the problems are truly unseen but we adjust the implementation of om

t
(q) accord-

ing to the new environment to apply the RL policies. All competing approaches are 
directly applied to the modified problems.
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Fig. 5   Main results
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Figure  8 presents the results of RLsto against the best competing approach SA 
(with � = 0.25 ). The numerical values including all approaches are provided in 
Appendix 8 of the supplementary material. Evidently, the outperformance of RLsto 
persists when the assembly line contains up to three additional stations. However, 
RLsto is outperformed by SA on problems with more than three additional stations.

7.4 � Additional models

We also analyze the sensitivity of our approach toward additional but unseen mod-
els. For this purpose, we generate new problem instances with up to five new models, 
which have similar processing times to those of the existing models. Again, all compet-
ing approaches are applied to the new problem instances, but we do not retrain the RL 
policies to ensure that the models are truly unseen. To apply the trained RL policy to 
unseen models, we simplify the new problem to a known problem, where the demand 
plan solely contains known models. For each new model m∗ , the function sim(m∗) 
returns the known model with the lowest Manhatten distance between the vectors of 
processing times. Ties are broken according to the lower index m.

When generating the sequence, we have to decide between sequencing the new 
model m∗ or the known model sim(m∗) whenever the policy wants to sequence 
sim(m∗) . If dm∗

= dm , we alternate between sequencing m∗ and sim(m∗) , starting with 
m∗ . If dm∗

> dm , we first sequence the new models until dm∗

t
= dm

t
 ; then we alternate 

between m∗ and sim(m∗) . And, if dm∗

< dm , we first alternate between both models 
until dm∗

t
= 0 ; then we sequence the remaining known models.

The results of RLsto and SA (with � = 0.25 ) are shown in Fig. 9. The numerical 
values are provided in Appendix 9 of the supplementary material. We find that RLsto 
is superior to SA for up to two additional models.

(27)sim(m∗) = argmin m=1,…,M

K∑
k=1

||pk,m − pk,m∗
||.

(a) Stochastic overloads (b) Overload time

Fig. 6   Variation of stochastic overloads and overload time
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7.5 � Additional state information

Ultimately, we analyze how the performance of our approach changes if we extend 
the state representation by including more probability quantiles of processing times. 
Recall that the function om

t
(q) → {0, 1} indicates if scheduling model m at sequence 

position t will result in a work overload when the processing times of all stations 
are equal to their q-quantile. In the current implementation, we included om

t
(q) for 

q ∈ {0.25, 0.50, 0.75} . However, it seems interesting to analyze how performance 
and policy learning time change if we include om

t
(q) for more than three quantiles. 
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Fig. 7   Analysis with different standard deviations
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Therefore, we retrain the policy in a modified environment, where the state repre-
sentation contains om

t
(q) for 0, 1, 3, 5, 7, or 9 quantiles. The respective quantiles are 

determined through an even split over the interval [0,  1], while ensuring that the 
0.50-quantile (i.e., the mean) is always included. For instance, the environment with 
five quantiles calculates om

t
(q) for q ∈ {0.16, 0.33, 0.50, 0.66, 0.83} . Due to compu-

tational constraints, we limit this analysis to a single instance with sequence length 
100, 20 stations, and 20 models.

Figure 10a plots the stochastic overloads for RLsto depending on the number of 
quantiles. The performance of SA is also indicated as a baseline. As expected, the 
number of overloads decreases with the number of quantiles, but the marginal reduc-
tion of overloads becomes smaller the more quantiles are included. At the same 
time, increasing the dimensionality of the state representation increases the time that 
is required for training the policy. Figure 10b shows that the time for policy learning 
increases linearly with the number of quantiles.

Table 5 presents the numerical values of Fig. 10a and b. We observe that the 
improvement from our current implementation RLsto

3
 to RLsto

5
 is less than one work 

overload. Hence, we argue that including om
t
(q) for three probability quantiles 

provides a reasonable trade-off between performance and the time required for 
policy learning.

8 � Extensibility

The main idea behind our approach is to incorporate deterministic information 
based on several probability quantiles into the state of an RL approach to solve the 
stochastic MMS problem. There appear to be several ways that this approach could 
be extended to similar stochastic problems. First, our method could be generalized 
to stochastic MMS problems with different probability distributions (e.g., uniform). 
For this purpose, the function om

t
(q) must be defined with respect to the quantiles 

Fig. 8   Analysis with additional stations
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of the respective distribution. It also seems straightforward to consider other MMS 
problem variations, e.g., with U-shaped assembly lines or different worker types.

Second, our approach can be applied to stochastic MMS problems with other 
objectives like minimize overload or idle time. For instance, to minimize the 
expected work overload time, the reward function needs to be changed to the nega-
tive sum of work overload times that occurred at cycle t.

Third, the stochastic MMS problem can be considered through the lens of robust 
optimization (e.g., Ben-Tal et al. 2009; Gabrel et al. 2014). Manufacturers may, for 
instance, only be able to handle a given number of overloads simultaneously or a 
maximum number of overloads during one shift. However, such constraints are gen-
erally not considered in the literature as they strongly depend on company-specific 
risk preferences regarding feasibility of solutions. It thus seems interesting to extend 
the problem formulation with additional constraints and combine our approach with 
methods from safe reinforcement learning (see e.g., Garcıa and Fernández 2015).

Fourth, our approach may also be extended to other stochastic scheduling prob-
lems. The main challenge is to find a meaningful output for the function om

t
(q) that 

provides the crucial information for the state. For instance, for stochastic job-shop 

Fig. 9   Analysis with additional models

(a) Policy performance (b) Policy training time

Fig. 10   Stochastic overloads and policy training time for RLsto and different numbers of probability quan-
tiles in the state representation. The dashed lines highlight the number of quantiles that was used for our 
previous analyses
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or flow-shop problems, om
t
(q) could be defined in regard to the number of machines 

that will become idle if job m is sequenced next given that all processing times are 
equal to their q-quantile.
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