
Vol.:(0123456789)

OR Spectrum (2022) 44:29–56
https://doi.org/10.1007/s00291-021-00652-x

1 3

ORIGINAL ARTICLE

Stochastic mixed model sequencing with multiple stations
using reinforcement learning and probability quantiles

Janis Brammer1  · Bernhard Lutz2 · Dirk Neumann2

Received: 13 September 2020 / Accepted: 31 August 2021 / Published online: 28 September 2021
© The Author(s) 2021

Abstract
In this study, we propose a reinforcement learning (RL) approach for minimizing the
number of work overload situations in the mixed model sequencing (MMS) prob-
lem with stochastic processing times. The learning environment simulates stochastic
processing times and penalizes work overloads with negative rewards. To account
for the stochastic component of the problem, we implement a state representation
that specifies whether work overloads will occur if the processing times are equal to
their respective 25%, 50%, and 75% probability quantiles. Thereby, the RL agent is
guided toward minimizing the number of overload situations while being provided
with statistical information about how fluctuations in processing times affect the
solution quality. To the best of our knowledge, this study is the first to consider the
stochastic problem variation with a minimization of overload situations.

Keywords  Scheduling · Mixed model sequencing · Reinforcement learning ·
Metaheuristics · Combinatorial optimization

1  Introduction

In the mixed model sequencing (MMS) problem, different models need to be
sequenced for production on an assembly line that consists of multiple stations.
Each station is operated by a human worker that requires specific processing times
depending on the model. A work overload occurs if a worker cannot complete a

 *	 Janis Brammer
	 janis.brammer@volkswagen.de

	 Bernhard Lutz
	 bernhard.lutz@is.uni-freiburg.de

	 Dirk Neumann
	 dirk.neumann@is.uni-freiburg.de

1	 Volkswagen AG, Berliner Ring 2, 38440 Wolfsburg, Germany
2	 University of Freiburg, Rempartstr. 16, 79089 Freiburg, Germany

http://orcid.org/0000-0001-6315-1138
http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-021-00652-x&domain=pdf

30	 J. Brammer et al.

1 3

workpiece on time, before it leaves the boundaries of the station. While the deter-
ministic problem is well studied (see e.g., Boysen et al. 2009), little research has
been done on the problem variation with stochastic processing times. Processing
times may vary due to, e.g., different worker skills, fluctuations in the accuracy of
tools, or lower material quality, which can disrupt schedules based on determinis-
tic information.

The few existing studies that have considered MMS problems with stochastic
processing times have focused on minimizing the expected work overload time.
“Work overload time” refers to the amount of work that is required by utility
workers to assist at cycles, for which a work overload is foreseeable. The underly-
ing assumption is that utility workers work side-by-side with regular workers, so
that the processing speed can be doubled and the cycle is fully processed before it
leaves the boundaries of the station. However, large European car manufacturers
often apply a different policy, whereby utility workers exclusively process a cycle
when a work overload is foreseeable (Boysen et al. 2011). This is due to the fact
that it is often not possible to perform certain tasks side-by-side as there may not
be enough space for both workers to process a workpiece. Utility workers may
also not be flexible enough to instantly assist at the exact right moment that is suf-
ficient to successfully process a cycle. In the alternative policy implemented by
European car manufacturers, the utility worker first has to walk to the respective
station, which causes setup costs that dominate the costs of utility work (Boysen
et al. 2011). Accordingly, the goal of this problem variation is to minimize the
number of work overload situations.

To the best of our knowledge, this study is the first to consider the stochas-
tic MMS problem with the objective of minimizing work overload situations.
We propose a reinforcement learning (RL) approach that generates the sequence
iteratively, where actions denote the model to be sequenced next. The learning
environment simulates normally distributed processing times (Dong et al. 2014;
Mosadegh et al. 2017, 2020; Özcan et al. 2011) and penalizes actions that lead
to work overloads with negative rewards. To make the RL agent account for sto-
chastic processing times, we define a state representation that contains several
variables which indicate if a work overload occurs given that the processing times
are equal to their respective 25%, 50%, or 75% quantiles. We find that including
more quantiles further reduces the number of overload situations, but the mar-
ginal decrease is underproportionate to the number of quantiles, while the time
required for policy learning increases linearly. The proposed approach can theo-
retically be applied to all mixed model assembly lines provided that the distribu-
tions of the models’ processing times are known.

The remainder of this paper is structured as follows. Section 2 provides an
overview of related work. Section 3 formalizes the stochastic MMS problem
and describes the characteristics of suitable solutions. Section 4 describes our
RL approach by detailing environment, state and action space, reward function,
and the method for policy learning. Section 5 presents the setup of our numeri-
cal evaluation and Sect. 7 presents the results. Finally, Sect. 8 describes several
directions for how our approach could be extended.

31

1 3

Stochastic mixed model sequencing with multiple stations…

2 � Related work

MMS problems have been studied in multiple variations; for instance, with
U-shaped (instead of straight) assembly lines (Li et al. 2012), two-sided assem-
bly lines (Chutima and Naruemitwong 2014), heterogeneous worker types (Aroui
et al. 2017; Cortez and Costa 2015), and alternative optimization targets, includ-
ing worker idle times (Bautista et al. 2016; Mosadegh et al. 2020) or product
rate variation (Chutima and Naruemitwong 2014). The MMS problem should be
distinguished from car sequencing (Parrello et al. 1986), where work overload is
implicitly minimized by satisfying handcrafted sequencing rules. Each rule has
the form No ∶ Ho , which stipulates that, among No sequence positions, a maxi-
mum of Ho vehicles with option o may occur. Options can denote, for instance,
a sun roof, entertainment system, or a specific motor. The more rules are satis-
fied, the lower the work overload. A literature review on car sequencing studies
is provided by Solnon et al. (2008). Compared to car sequencing, MMS provides
more flexibility in finding an optimal solution, and, thus, sequences generated
with MMS cause less work overload (Golle et al. 2014). However, applying MMS
requires car manufacturers to spend significant effort in collecting the processing
times for each model and station, but the practicability of MMS in industry has
already been demonstrated in a case study (Bautista et al. 2012).

Prior research has studied the pure MMS problem and the integrated balancing
and sequencing problem (Agrawal and Tiwari 2008; Boysen et al. 2007; Dong
et al. 2014; Özcan et al. 2011), where the tasks to be performed for each model
must first be assigned to stations given the precedence relation, such that a given
criterion is optimized for a (near-)optimal sequence. Both problems exist since
they are relevant in regard to different time horizons. The balancing decision has
a mid-term horizon (e.g., several months) as it specifies work content and mate-
rial usage for each station, while the exact daily demands are generally not known
in advance. The sequencing problem instead has a short-term horizon (e.g., one
shift) as it specifies the order in which a given demand of models is produced
(Boysen et al. 2009). Comprehensive literature reviews of the balancing and
sequencing problems, including the considered problem variations, are provided
by Boysen et al. (2007) and Boysen et al. (2009). Boysen et al. (2009) have also
identified stochastic processing times as a research gap.

So far, only a few studies have relaxed the strict assumption of deterministic
processing times toward stochastic processing times. Table 1 provides an over-
view of existing studies on the stochastic MMS problem. The seminal study by
Zhao et al. (2007) proposed an approach based on Markov chains to calculate the
expected work overload time. In a nutshell, this approach approximates the cur-
rent positions of the workers within their stations by dividing the interval of pos-
sible positions into several subintervals. For each subinterval, the expected over-
load time is calculated as the average of those overload times that would occur
if the worker was located at the exact lower or upper interval boundaries. Based
on the method by Zhao et al. (2007) and Dong et al. (2014) proposed a simu-
lated annealing approach for the stochastic balancing and sequencing problem

32	 J. Brammer et al.

1 3

with U-shaped lines and a minimization of overload time. Mosadegh et al. (2017)
developed a method similar to Dijkstra’s algorithm that solves the stochas-
tic MMS problem for one stochastic station. In their recent study, Mosadegh
et al. (2020) considered the MMS problem with multiple stochastic stations.
The authors presented an approach based on simulated annealing, for which the
parameters are selected with Q-learning.

Studies on the balancing and sequencing problem with stochastic processing
times generally focus on balancing workload. Agrawal and Tiwari (2008) proposed
an ant colony algorithm to simultaneously minimize variation of workload and risk
of line stoppage. The risk of line stoppage for a given station is calculated as the
probability quantile of the z-normalized processing time with mean and variance
processing time over all tasks. Özcan et al. (2011) presented a genetic algorithm
to minimize the absolute deviation of workloads (ADW), such that ADW is not
exceeded according to a given confidence level.

This study proposes a RL approach for the stochastic MMS problem with a mini-
mization of overload situations. To the best of our knowledge, our study is the first
to consider the stochastic problem with the objective of minimizing overload situa-
tions instead of overload time.

3 � Stochastic mixed model sequencing with a minimization
of overload situations

Mixed model assembly lines allow manufacturers to exploit the advantages of flow-
production, while offering a large diversified product portfolio (Boysen et al. 2009).
In mixed model assembly lines, the workers process a cycle while walking within
the boundaries of their station. After a workpiece is completed, the worker walks
back toward the beginning of the station to process the next cycle. Consequently, the
starting position of a cycle depends on the processing time of the previous cycle. If
the processing times are deterministic, the approach used for sequence generation

Table 1   Existing studies on mixed model sequencing problems with stochastic processing times

Study Problem type Approach Optimization target

 Zhao et al. (2007) Sequencing Markov chain Overload time
 Agrawal and Tiwari

(2008)
Balancing and sequenc-

ing
Ant colony optimization Workload balance, risk

of line stoppage
 Özcan et al. (2011) Balancing and sequenc-

ing
Genetic algorithm Workload balance

 Dong et al. (2014) Balancing and sequenc-
ing

Simulated annealing Overload time

 Mosadegh et al. (2017) Sequencing Greedy, modified Dijk-
stra’s algorithm

Overload time

Mosadegh et al. (2020) Sequencing Simulated annealing Overload time, idle time
This study Sequencing Reinforcement learning Overload situations

33

1 3

Stochastic mixed model sequencing with multiple stations…

can calculate the starting positions of the workers for all stations and cycles exactly
and without uncertainty. However, processing times in real-world production may
vary due to, e.g., different skills and experience among the workers, inaccurate
tools, or faulty materials. Longer processing times increase the probability of work
overloads for the current and all subsequent cycles at a given station. Therefore, the
sequence must be generated in a way that accounts for stochastic processing times.

We consider the MMS problem with normally distributed processing times as
they are a frequent choice in the literature (Dong et al. 2014; Mosadegh et al. 2017,
2020; Özcan et al. 2011). A normal distribution also reflects our idea that process-
ing times in mixed model assembly lines should be close to their mean with high
probability, while deviations from the mean are less likely. At the same time, a large
positive deviation from the mean should have the same probability as a large nega-
tive deviation with the same absolute value.

In the following, we provide a mathematical problem formulation of the stochas-
tic MMS problem with a minimization of overload situations. Subsequently, we
describe the characteristics of suitable solutions.

3.1 � Problem formulation

The formulation of the stochastic MMS problem with a minimization of overload situa-
tions is based on the deterministic problem introduced by Boysen et al. (2011). Table 2
provides an overview of all variables. The problem is formalized below from (1) to
(13). The goal (1) is to minimize the total number of work overloads yk,t over all sta-
tions k = 1,… ,K and sequence positions t = 1,… , T . The sequence is modeled as
several binary variables xm,t that equal 1 if model m is sequenced at position t. (2) and
(3) ensure that yk,t and xm,t are binary. (4) ensures that each sequence position is filled
with exactly one model. (5) ensures that the sequence complies with the demand plan.
(6) ensures that the starting positions of the workers at the stations are non-negative.
(7) sets the initial start position of all workers to zero and (8) resets the start position

Table 2   Variables of problem definition

Variable Description

T Sequence length
K Number of stations
M Number of different models
yk,t Binary variable that equals 1 if an overload occurs at station k for cycle t
xm,t Binary variable that equals 1 if model m is sequenced at position t
d Demand plan [d1,… , dm] that specifies the quantity dm to be produced for model m
wk,t Position of worker at station k before processing cycle t
pk,m Stochastic processing time of model m at station k
lk Length of station k, one unit of station length corresponds to one unit of processing time
bk,t Processing time of the model scheduled at sequence position t for station k
c Cycle time which species that a new cycle enters the conveyor belt every c units of processing

time

34	 J. Brammer et al.

1 3

after the sequence is completed. (9) specifies that the processing times are normally
distributed with mean �k,m and standard deviation �k,m . (10) enforces that the sampled
processing times are non-negative and less or equal to the station length lk . The con-
straint pk,m ≤ lk is necessary since we assume closed stations, which implies that it
must be possible to process each cycle within the boundaries of the respective station.
One could, for instance, assume that the constraint pk,m ≤ lk has been considered in the
balancing phase. (11) defines a variable for the processing time of the cycle t at station
k. (12) and (13) ensure that the workers only move within the boundaries of their sta-
tion. Besides, (13) incorporates the cycle time into the optimization problem, which
specifies that a new cycle enters the conveyor belt at every c units of processing time.
If yk,t = 1 , the constraints (12) and (13) are weakened, so that it becomes easier to find
a solution.

(1)Minimize z =

T∑
t=1

K∑
k=1

yk,t

(2)
Subject to:

yk,t ∈ {0, 1}, ∀ k = 1,… ,K; t = 1,… , T ,

(3)xm,t ∈ {0, 1}, ∀m = 1,… ,M; t = 1,… , T ,

(4)
M∑

m=1

xm,t = 1, ∀ t = 1,… , T ,

(5)
T∑
t=1

xm,t = dm, ∀m = 1,… ,M,

(6)wk,t ≥ 0, ∀ k = 1,… ,K; t = 2,… , T ,

(7)wk,1 = 0, ∀ k = 1,… ,K,

(8)wk,T+1 = 0, ∀ k = 1,… ,K,

(9)pk,m ∼ N(�k,m, �k,m), ∀ k = 1,… ,K;m = 1,… ,M,

(10)0 ≤ pk,m ≤ lk, ∀ k = 1,… ,K;m = 1,… ,M,

(11)bk,t =

M∑
m=1

pk,m ⋅ xm,t, ∀ k = 1,… ,K; t = 1,… , T ,

(12)wk,t + bk,t − lk ⋅ yk,t ≤ lk, ∀ k = 1,… ,K; t = 1,… , T ,

(13)wk,t+1 ≥ wk,t + bk,t − lk ⋅ yk,t − c, ∀ k = 1,… ,K; t = 1,… , T .

35

1 3

Stochastic mixed model sequencing with multiple stations…

3.2 � Characteristics of suitable solutions

We now explain what characterizes suitable solutions for the stochastic MMS prob-
lem with a minimization of overload situations. If sequences are optimized based on
deterministic overloads, the resulting sequences entail tight schedules for the work-
ers. The cycles will be completed when the workers are close the boundaries of the
station, which implies that they can easily be violated if the processing times are
larger than their mean. A good solution for the stochastic problem instead provides
more buffer times to account for variations in the processing times. However, such
buffers come at the cost of a greater number of deterministic overloads.

We provide an example to better illustrate this idea. We consider an assembly
line that consists of only one station of length 110. Let the demand plan be given
as d = [2, 2, 2] and the means of the processing times be given as �1,1 = 95, �1,2 =
105 and �1,3 = 70. The cycle time is set to c = 90 . There are two sequences given as
seq1 = [1, 2, 3, 1, 2, 3] and seq2 = [2, 2, 1, 1, 3, 3] . Figure 1 plots the movements of
the workers for a) seq1 and b) seq2 if the processing times are deterministic and equal
to their means. The x-axis denotes the worker position in the interval [0, 110] and
the y-axis denotes how much processing time has passed. seq1 causes no determinis-
tic overload, while seq2 causes one deterministic overload as model m = 2 (with �1,2
= 105) is sequenced twice in a row. In particular, we observe that seq1 always makes
the worker finish a cycle close to the station boundary, while seq2 leaves more buff-
ers. We now assume that the processing time for model m = 1 increases from 95 to

(a) Sequence with zero deterministic over-
loads

(b) Sequence with one deterministic over-
load

(c) Sequence with two stochastic overloads (d) Sequence with one stochastic overload

Fig. 1   Worker movements. The x-axis denotes the position of the worker with respect to the processing
time on the y-axis

36	 J. Brammer et al.

1 3

96. As shown in Fig. 1c and d, seq1 now leads to two overloads at cycles 2 and 5,
while seq2 still causes only one overload at cycle 2.

4 � Reinforcement learning approach

The goal of RL is to learn a policy ��(at|st) with parameters � that specifies which
action at to perform at state st (Sutton and Barto 1998). For this purpose, the RL
agent interacts with an environment and maximizes the discounted sum of rewards
rt over the learning episode. In this study, one episode corresponds to the generation
of a complete sequence of one problem instance. The discrete time t reflects the cur-
rent sequence position t = 1,… , T  . The RL agent is trained to create the sequence
incrementally. At each sequence position t, the agent evaluates the current state st
and decides on the model m ∈ {1,… ,M} to sequence next. Accordingly, the action
space A is given by the set of models

4.1 � Environment and state representation

The environment simulates the production process, including movements of work-
ers and handling of work overloads. At each sequence position t, the environment
provides the agent with the current state st . After the agent decided on its next action
at , the environment simulates this action, updates the current state, and emits the
reward rt to the agent. This continues until the learning episode is finished. After
this, the environment is reset and another learning episode starts. The learning pro-
cess is completed when the policy has converged to a stable state.

The generated sequence must comply with the demand plan [d1,… , dM] , i.e., the
number of cycles where model m is produced must be equal to dm . To guide the
agent toward generating valid sequences, we include the current remaining quan-
tities d1

t
,… , dM

t
 into the state representation st . If the agent decides to sequence

model m in state st , then dm
t

 is decreased by one in the next state st+1 . When the
sequence is empty at t = 1 , the remaining quantities are equal to the demand plan:
dm
1
= dm, ∀m = 1,… ,M.
The state representation also provides the agent with information about whether

or not work overloads will occur if the processing times are equal to particu-
lar probability quantiles. For this purpose, we define a deterministic function
om
t
(q) ∶ [0, 1] → {0, 1} that equals 1 if sequencing model m at sequence posi-

tion t leads to at least one work overload yk,t given that the processing times of
all stations are equal to their respective q-quantile with q ∈ [0, 1].1 Consider the

(14)A = {1,… ,M}.

1  We also performed an evaluation where om
t
(q) was defined as the total number of overloads that occur

at the next sequence position. However, this resulted in inferior performance when compared to an
approach that defined om

t
(q) as a binary function.

37

1 3

Stochastic mixed model sequencing with multiple stations…

following example. Let the worker of a station k with length lk = 120 be at position
wk,t = 30 , and the processing time of model m be distributed as pk,m ∼ N(90, 10) .
The worker has lk − wk,t = 120 − 30 = 90 units of processing time left to process
cycle t consisting of model m. The worker will process the cycle in time if the
processing time is less than or equal to the mean which denotes the 50% quantile:
om
t
(q) = 0, ∀ q ≤ 0.50 . If the processing time is greater than the mean, a work over-

load will occur as there is not enough time to fully process the cycle, which implies
om
t
(q) = 1, ∀ q > 0.50.
Based on the function om

t
(q) , we implement and evaluate two environments

RLsto and RLdet as illustrated in Fig. 3. Both environments include the remaining
quantities d1

t
,… , dM

t
 in the state representation, but they differ in the reward func-

tion and the number of probability quantiles for which om
t
(q) is provided. The

Fig. 2   Probability density function of a normal distribution N(90, 10) . The quantiles q0.25 , q0.50 , and q0.75
are highlighted

Agent

actionrewardstate

Stochastic

Environment

Mean (q0.50)

q0.25

q0.75

Included quantiles

(a) Stochastic environment (RLsto)

Agent

actionrewardstate

Deterministic

Environment

Mean (q0.50)

Included quantiles

(b) Deterministic environment (RLdet)

Fig. 3   Illustration of environments used in this study

38	 J. Brammer et al.

1 3

stochastic environment RLsto is illustrated in Fig. 3a. The reward is calculated based
on stochastic processing times pk,m that are drawn from their respective distribution
N(�k,m, �k,m) . The state representation of RLsto contains om

t
(q) for the 25%, 50%, and

75% quantiles.

It should be noted that the state representation does not directly depend on the
number of stations on the assembly line. Accordingly, a trained policy can also be
applied to similar production systems with additional stations (we later provide a
corresponding analysis to assess how this affects the performance).

Figure 2 shows the probability density function of a normal distribution with
� = 90 and � = 10 . The 50% quantile is equal to the mean, whereas the 25% and
75% quantiles are equal to 83.25 and 96.75, respectively. We later present an analy-
sis, where we study the effects of including om

t
(q) for more than three quantiles. The

results show that this additional state information further reduces work overload sit-
uations, but the marginal benefit decreases with the number of quantiles.

As a baseline, we also implement a purely deterministic environment RLdet as
shown in Fig. 3b. In RLdet , the reward is calculated deterministically based on the
mean processing times. Accordingly, the state representation of RLdet only contains
om
t
(q) for the 50% quantile.

4.2 � Reward

The reward signal should guide the RL agent toward generating sequences that mini-
mize the number of work overloads. It thus seems intuitive to reward the agent with
the negative sum of work overloads at the end of each learning episode. However,
this implies that the reward had to be discounted over hundreds of actions, which
results in a less efficient learning process (Sutton and Barto 1998). Instead, we pro-
vide an immediate reward as the negative sum of work overloads yk,t that are caused
by cycle t.

The agent may decide to sequence a model m, for which the remaining quantity to
be produced is zero ( dm

t
= 0 ). In this case, the action at = m is invalid and the agent

is punished with a negative reward of −10 . This value was determined based on a
pre-study. The results of the pre-study can be found in Appendix 2 of the supple-
mentary material. Handling invalid actions during the training process is still a chal-
lenging problem in RL (Zahavy et al. 2018). The action space cannot be altered as

(15)

ssto
t

= (d1
t
,… , dM

t
,

o1
t
(0.25),… , oM

t
(0.25),

o1
t
(0.50),… , oM

t
(0.50),

o1
t
(0.75),… , oM

t
(0.75)).

(16)
sdet
t

= (d1
t
,… , dM

t
,

o1
t
(0.50),… , oM

t
(0.50)).

39

1 3

Stochastic mixed model sequencing with multiple stations…

this would affect the structure of the neural network. For the purpose of this study,
we handle invalid actions by returning a negative reward of −10 and the same state
st+1 = st . This will implicitly make the agent avoid invalid actions, yet a full preven-
tion is not guaranteed. An exemplary plot about the number of invalid actions over
the learning process is provided in Appendix 3 of the supplementary material. Alto-
gether, the reward rt for action at = m is defined as

During real-world application, we can always ensure that the generated sequences
are valid. If the agent attempts to sequence a model m with dm

t
= 0 , we simply

choose the next best valid action according to the policy ��(at|st) . Invalid actions
thus only affect the learning process, but they do not limit the applicability of our
approach in real-world production.

4.3 � Policy learning

RL alternates between generating trajectories (s1, a1, r1),… , (sT , aT , rT) in terms of
state-action-reward tuples with the current policy ��(at|st) , and updating the policy
parameters � based on the generated data.

In this study, we implement proximal policy optimization (PPO, Schulman et al.
2017) for policy learning. PPO is a policy gradient method (Williams 1992), where
the policy �� is learned with a neural network, so that the weights of the network
denote the policy parameters � . The neural network receives a state st as input and
outputs a stochastic vector of size |A|. ��(at|st) hence equals the probability that the
agent will perform action at in state st . During policy learning, actions leading to
higher rewards will be assigned higher probabilities, whereas actions leading to
lower rewards will be assigned lower probabilities. PPO is easy to implement and
tune (Schulman et al. 2017) and is considered a state-of-the-art policy gradient
method for RL (Zheng et al. 2018).

We briefly describe the functionality of PPO. All explanations are based on
Schulman et al. (2017). Algorithm 1 provides the pseudocode of policy learning
with PPO. Besides the action probabilities ��(at|st) , the policy network also updates
a value estimate V�(st) of state st . This value denotes the expected reward that the
agent will receive from st to the end of the learning episode. Given a trajectory
(s1, a1, r1),… , (sT , aT , rT) , PPO first calculates Rt =

∑T

t�=t
� t

�−t rt� as the sum of dis-
counted rewards that the agent will receive between st and sT , where � denotes the
discount parameter (set to 0.99). In addition, PPO calculates the estimated advantage
of performing at in st as Ât = Rt − V𝜃(st) . The rationale of the advantage estimate is
that PPO aims at assigning higher probabilities to actions that lead to higher rewards
than the current estimate V�(st) . Finally, PPO updates its policy by maximizing the
loss function L(�).

(17)rt =

⎧
⎪⎨⎪⎩
−

K∑
k=1

yk,t, if dm
t
> 0,

−10, otherwise.

40	 J. Brammer et al.

1 3

The loss function L(�) consists of three terms. The first term LCLIP
t

(�) ensures that
the policy parameters � will be updated such that actions with positive advantage Â
are assigned higher probabilities, and vice versa. However, PPO limits the extent of
policy updates by clipping the ratio between new and old probability ��(at|st)

��old
(at|st) to the

range [1 − �, 1 + �] . � is set to 0.20 per default.

The second term LVF
t
(�) = (Rt − V�(st))

2 denotes the error in predicting the value
of state st . Including this term with a negative sign ensures that the update of � also
improves the estimate V�(st).

The third term LH
t
(st) denotes the entropy (Shannon 1948) of the policy in state

st : LHt (st) = −
∑

at∈A
��(at�st) log2 ��(at�st) . Higher entropy values indicate that the

probability distribution preserves randomness in the sense that the agent can still
explore random actions instead of solely relying on the best action according to the
current policy. The parameters c1 (set to 0.50) and c2 (set to 0.01) indicate the weight
of the corresponding loss terms. All parameters except the number of time steps are
set to their default values as stated in Appendix 1 of the supplementary material. We
implement our RL approach in Python 3.6.8 using the PPO implementation from the
RL framework “Stable Baselines” in version 2.7.0.

(Schulman et al. 2017)

We train the policies for 50 million time steps, where one time step corresponds
to one action. This results in a total of approximately 500,000 learning episodes.
Figure 4 shows the learning curves as the mean overloads per episode for both RL
approaches RLsto and RLdet on a problem instance with sequence length T = 100 . As
a baseline, the dashed lines denote the number of overloads for a simple greedy heu-
ristic. Both policies converge to a stable state. After approximately 100,000 learning
episodes, RLsto and RLdet outperform the greedy heuristic (Boysen et al. 2011). As
expected, the number of overloads per episode is smaller in the deterministic than
in the stochastic environment. Recall that in the deterministic environment, the pro-
cessing times always follow the mean, whereas processing times in the stochastic
environment are drawn from their respective normal distributions.

(18)max
�

L(�) =

T∑
t=1

LCLIP
t

(�) − c1L
VF
t
(�) + c2L

H
t
(�)

(19)LCLIP
t

(𝜃) = min

{
𝜋𝜃(at|st)
𝜋𝜃old (at|st)

Ât, clip

(
𝜋𝜃(at|st)
𝜋𝜃old (at|st)

, 1 − 𝜀, 1 + 𝜀

)
Ât

}

41

1 3

Stochastic mixed model sequencing with multiple stations…

5 � Numerical evaluation

5.1 � Dataset

We use the dataset created by Boysen et al. (2011) that contains 216 problem lay-
outs. The layouts can be divided into small and large layouts as shown in Table 3.
The numbers of models and stations range from 5 to 30, while the sequence length
varies between 15 and 300. The station length is either constant, or drawn from the
uniform distributions U[85, 125] or U[85, 145] . The cycle time c is fixed to 90, which
means that a new cycle enters the assembly line at every 90 units of processing time.
The deterministic processing times of the stations were created in two steps. First,
an average processing time pm of model m is randomly drawn from the interval
[0.75 ⋅ c, c] . Second, pm was used to define the uniform interval from which to draw
the deterministic processing time of each station U[0.5 ⋅ pm,min{lk, 1.5 ⋅ pm}].

Combining all settings from Table 3 yields 216 unique problem layouts with fixed
deterministic processing times. For each layout, we generate 10 demand plans based
on a multinomial distribution with T trials and equal probability 1

M
 for each model.

This results in a total of 2160 deterministic problems.2

5.2 � Evaluation procedure

We train one RL policy for each layout, which results in a total of 216 policies.
Training one policy requires approximately ten hours on our server infrastructure
that consists of two Intel(R) Xeon(R) Gold 6150 CPUs and 755 gigabytes of main
memory. The time needed for policy learning is neglected as this can be done in
advance for a fixed production system. To assess the performance of our approach
on unseen problems, we perform three further analyses with variations in the

(a) Stochastic environment (RLsto) (b) Deterministic environment (RLdet)

Fig. 4   Learning curves for both reinforcement learning environments

2  The dataset can be downloaded from https://​github.​com/​Infor​matio​nSyst​emsFr​eiburg/​stoch​astic_​mms_​
datas​et/.

https://github.com/InformationSystemsFreiburg/stochastic_mms_dataset/
https://github.com/InformationSystemsFreiburg/stochastic_mms_dataset/

42	 J. Brammer et al.

1 3

standard deviation of processing times, additional stations on the assembly line, and
additional models in the demand plan.

For the evaluation, we consider normally distributed processing times (Dong
et al. 2014; Mosadegh et al. 2017, 2020; Özcan et al. 2011) with means �k,m and
joint standard deviation �.

The means �k,m are set to the deterministic processing times of the instances in our
dataset. We require that 0 ≤ pk,m ≤ lk as negative processing times are not possible
and there are no buffer areas between two adjacent stations. If pk,m > lk , it would
be impossible to process the affected cycles within the boundaries of the station.
The standard deviation � is set to 10 in our main analysis, but we later also evaluate
� ∈ {5.0, 7.5, 12.5, 15} . To calculate the number of stochastic overloads, we evalu-
ate 100 stochastic variations of each (deterministic) problem. In each variation, we
sample the processing times from their respective distributions.

Algorithm 2 describes the evaluation procedure. We iterate over all competing
approaches and problem instances. Each approach is provided a fixed cutoff time of
300 seconds to search for a solution (Boysen et al. 2011; Joly and Frein 2008; Lopes
et al. 2020; Miltenburg 2002). The generated sequence is then evaluated based on
100 variations with random processing times. For this purpose, it is crucial that the
sampled processing times are the same for all sequences. More precisely, if two
sequences have the same model m at sequence position t, then the processing times
of this model at all stations must be the same for both sequences. We therefore set a
random seed (line 6) before evaluating each deterministic instance based on 100 sto-
chastic variations. Work overloads are calculated based on the sampled processing
times (lines 14, 15). The result of each stochastic variation j = 1,… , 100 is stored
as a tuple (i, approach, j, O) (line 16); all results are finally aggregated according to
the performance metrics (line 17).

To calculate the number of overload situations, we assume that the processing
times are known before the actual working steps. The number of work overloads
is then calculated using the method for the deterministic problem by Boysen et al.
(2011). Once a work overload is foreseeable for cycle t, the worker of the affected
station walks directly to the beginning of their station to process cycle t + 1 . The
alternative would be to assume a probability threshold � until which the workers still

(20)pk,m ∼ N(�k,m, �) with 0 ≤ pk,m ≤ lk.

Table 3   Descriptives about problem layouts

Variable Description Small Large

M Number of models 5, 10, 15 20, 25, 30
K Number of stations 5, 10, 15 20, 25, 30
T Sequence length 15, 20, 25 100, 200, 300
lk Station length constant 110, 150

Station length interval [85, 125], [85, 145]
c Cycle time 90

43

1 3

Stochastic mixed model sequencing with multiple stations…

try to process the cycle while hoping to be successful in time. However, if a work
overload is signaled too late, the utility worker may not have enough time remaining
to process the cycle.

We simulate 100 stochastic variations to ensure that the sample distribution accu-
rately reflects the population distribution. The sample means 𝜇̂k,m and the sample
standard deviation 𝜎̂ usually vary from the population means �k,m and the popula-
tion standard deviation � . Therefore, we calculate the 95% confidence intervals of
sample mean and standard deviation for one station based on T ∈ 15, 100, 300 and
� = 10 . The confidence intervals of the sample mean equal 𝜇̂k,m ± 5.06 for T = 15 ,
𝜇̂k,m ± 1.96 for T = 100 , and 𝜇̂k,m ± 1.13 for T = 300 . When evaluating 100 sto-
chastic variations (i.e., 99 degrees of freedom), the confidence intervals change
to 𝜇̂k,m ± 0.51 for T = 15 , 𝜇̂k,m ± 0.12 for T = 100 , and 𝜇̂k,m ± 0.11 for T = 300 . In
addition, we calculate the 95% confidence interval of the sample standard devia-
tion 𝜎̂ . For one stochastic variation, the confidence intervals are [0.73, 1.58] × �
for T = 15 , [0.89, 1.16] × � for T = 100 , and [0.93, 1.09] × � for T = 300 . Again,
when evaluating 100 stochastic variations, the confidence intervals narrow down
to [0.97, 1.04] × � for T = 15 , [0.99, 1.01] × � for T = 100 and [0.99, 1.01] × � for
T = 300 . Altogether, when performing 100 variations, sample mean and sample
standard deviation deviate less than one unit of processing time from population
mean and population standard deviation.

5.3 � Competing approaches

We evaluate our approach against several competing approaches from the literature
as shown in Table 4. First, we implement several stochastic approaches, including
the hyper simulated annealing (HSA) approach by Mosadegh et al. (2020), which

44	 J. Brammer et al.

1 3

was developed for the stochastic MMS problem with a minimization of work over-
load time, and a multiple scenario approach [MSA, (Bent and Van Hentenryck
2004)]. Second, we evaluate several deterministic approaches based on the mean
processing times. This includes a genetic algorithm, simulated annealing (Aroui
et al. 2017), local search (Cortez and Costa 2015), tabu search (Boysen et al. 2011),
and Gurobi version 8.0.1.

However, simply applying deterministic approaches to stochastic problems is
likely to result in poor performance (Pinedo and Weiss 1987). We therefore modify
the deterministic problems by artificially increasing the mean processing times

with � ∈ {0, 0.25, 0.50, 0.75, 1} . This should yield sequences with more determin-
istic overloads, but with less stochastic overloads situations as the increased pro-
cessing times cause larger buffer times between two subsequent cycles. For each
approach, we report the results of the � value that performed best. Accordingly,
these approaches have a small advantage in the sense that we perform an ex-post
selection of parameters.

In the following, we briefly explain each competing approach.

5.3.1 � Greedy heuristic

Several competing approaches (HSA, TS, LS, GA, SA) use the greedy heuristic
(Boysen et al. 2011) to create an initial sequence. The greedy heuristic generates
the sequence incrementally. At each sequence position, the heuristic chooses the
next model based on the number of work overloads that will occur if this model
is sequenced next according to the deterministic processing times. Ties are broken
according to (1) the maximum sum of processing times over all stations, (2) the
maximum processing time at any station, and (3) the lowest index m.

5.3.2 � Hyper simulated annealing

We implement hyper simulated annealing (HSA) according to Mosadegh et al.
(2020). HSA was originally designed to minimize the expected work overload time,
which does not necessarily also minimize the number of overload situations. How-
ever, we still implement this approach as it provides a state-of-the-art solution for
mixed model assembly lines with stochastic processing times. The idea of HSA is
to combine simulated annealing (SA) with Q-learning. The metaheuristic improves
an initial sequence through a series of mutations. At each sequence position, one out
of 16 actions is either selected randomly (with probability � ) or based on the current
Q-learning policy. In this context, an action defines the next three mutation opera-
tors. There is a total of six mutation operators, which range from simple swaps (e.g.,
change models at positions (i, j)) to complex crossover operators (Kim et al. 1996).
After the sequence is updated, the approach updates the Q-table and lowers the tem-
perature of the SA. A new sequence is accepted if it outperforms the old sequence in
terms of the performance metric, i.e., expected overload time. In addition, an equal

(21)�∗
k,m

= �k,m + ��

45

1 3

Stochastic mixed model sequencing with multiple stations…

or worse sequence can still be accepted with a certain probability that depends on
the temperature.

We implement HSA with two different fitness criteria. The first variation ( HSAT )
minimizes the expected overload time, so that the approach is implemented like in the
study by Mosadegh et al. (2020). The second variation (HSA) is based on the number
of deterministic overload situations.

5.3.3 � Multiple scenario approach

We implement a multiple scenario approach (MSA) according to Bent and Van Hen-
tenryck (2004). The idea of MSA is to solve N deterministic instances individually
within the cutoff time and aggregate the resulting sequences with a consensus function.
For this purpose, we create a matrix C ∈ ℕ

M×M that stores how often model i is fol-
lowed immediately by model j over all sequences seqn, n = 1,… ,N . Let I(condition)
denote the indicator function that equals 1 if condition is true, and 0 otherwise. The
matrix C is defined as

The first sequence position is chosen randomly. All other positions are determined
based on the consensus function f(t). Ties are broken according to the lower model
index m.

(22)C[i, j] =

N∑
n=1

T−1∑
t=1

I(seqn[t] = i ∧ seqn[t + 1] = j), ∀i, j = 1,… ,M.

(23)f (t) = argmax m(C[t,m]) with d
m > 0, t = 2,… , T .

Table 4   Overview of all approaches

Initial sequences of metaheuristics are generated with the greedy heuristic (Boysen et al. 2011)

Reinforcement learning approaches
RLsto RL trained in stochastic environment with 25%, 50%, and 75%

probability quantiles
RLdet RL trained in deterministic environment only with 50% probability

quantile
Stochastic approaches
HSAT Hyper simulated annealing (Mosadegh et al. 2020) with a minimi-

zation of work overload time
MSA Multiple scenario approach (Bent and Van Hentenryck 2004)
Deterministic approaches
HSA Hyper simulated annealing (Mosadegh et al. 2020)
SA Simulated annealing (Aroui et al. 2017)
GA Genetic algorithm (Aroui et al. 2017)
LS Local search (Cortez and Costa 2015)
TS Tabu search (Boysen et al. 2011)
Gur Mixed-integer linear programming solver Gurobi (version 8.0.1)

46	 J. Brammer et al.

1 3

We implement MSA with N = 10 based on four variations. We evaluate Gurobi
or SA as underlying method to generate sequences for each problem instance. In
addition, we introduce a flag that indicates whether we allow for one model to be
sequenced at two subsequent sequence positions. If the flag is active, the sequences
may exhibit blocks of the same model. Otherwise, the sequences become more
diverse as two subsequent positions must be different. In a pre-study, we find that
MSA based on SA and the flag active performs best. The results of the pre-study are
provided in Appendix 4 of the supplementary material.

5.3.4 � Simulated annealing

We implement simulated annealing according to Aroui et al. (2017). In each iteration,
the metaheuristic modifies the current sequence with a random flip, swap, or slide oper-
ation, each of which is performed with equal probability. If these operations decrease
the number of overloads, the modified sequence is accepted as the new best sequence.
Otherwise, the sequence still has a certain chance to be accepted as the new solution,
which depends on the current temperature. With each iteration, the temperature “cools
down” exponentially according to a fixed cooling factor. Therefore, the metaheuristic
can explore random solutions which appear worse during early iterations but reach a
better overall solution during later iterations.

5.3.5 � Genetic algorithm

We implement a genetic algorithm according to Aroui et al. (2017). We initialize the
start population with the initial sequence and nine randomly generated sequences.
In each iteration, the metaheuristic improves the population by applying crossover
and mutation operations to the sequences. An elitism procedure sorts the current
population in ascending order according to the number of overloads. Subsequently,
it copies the sequence with the fewest overloads to the last five positions of the pop-
ulation. Then, the algorithm performs crossover operations on the first four positions
of the population to generate four child sequences based on two random pairs of par-
ents. The child sequences are usually invalid in the sense that they no longer comply
with the demand plan. The metaheuristic, therefore, employs a repair function that
fixes the child sequences. If a child yields fewer overloads than a parent, the parent
is replaced by the child.

5.3.6 � Local search

We implement the local search metaheuristic according to Cortez and Costa (2015).
The idea of local search is to performs swaps around sequence positions that lead
to a high number of work overloads. In each iteration, the metaheuristic randomly
selects a sequence position based on a probability distribution � that weights the
probabilities according to the number of overloads. Subsequently, local search iter-
ates over the sequence positions and evaluates swapping sequence positions (i, j)
that contain different models. If a swap yields an improved sequence, the improved

47

1 3

Stochastic mixed model sequencing with multiple stations…

sequence becomes the new best sequence, the probability distribution � is updated,
and the procedure is repeated. Otherwise, the swap is undone.

5.3.7 � Tabu search

We implement the tabu search metaheuristic according to Boysen et al. (2011).
In each iteration, the metaheuristic evaluates the neighborhood of the current best
sequence, which refers to the set of all swaps (i, j) of different models. For each
neighbor, the number of overloads is calculated and the neighbor with the lowest
number of overloads becomes the new best sequence. To prevent back-and-forth
swaps, the swap that created the next best sequence is added to a tabu list. The tabu
list is defined as a first-in-first-out (FIFO) queue of capacity (T/16): when the capac-
ity is exceeded, the oldest entry is removed.

5.3.8 � Gurobi

Ultimately, we implement the mixed-integer linear programming solver Gurobi in
version 8.0.1 based on the problem formulation from Sect. 3.1 but without the con-
straints (9) and (10). Instead, the processing times pk,m are set to their mean values
�k,m or �k,m + �� to artificially increase the processing times. Gurobi is implemented
using the Python package “gurobipy” (version 8.0.1). All parameters except the cut-
off time are set to their default values.

6 � Performance metrics

We provide the results based on three performance metrics. First, and as our primary
metric, we provide the mean number of stochastic work overload situations over all
problem instances. Let P denote the number of problem instances and Osto

j,a
 the num-

ber of stochastic overloads for approach a on problem j (recall that Osto
j,a

 is calculated
as the average over 100 stochastic variations of processing times). Our primary met-
ric is defined as

Second, we include the number of deterministic overloads that would occur if the
processing times were deterministic and equal to the mean of their respective distri-
bution. Let Odet

j,a
 denote the number of work overloads according to the mean pro-

cessing times for approach a on problem instance j. The mean number of determin-
istic overloads is given as

(24)
1

P

P∑
j=1

Osto
j,a
.

(25)
1

P

P∑
j=1

Odet
j,a
.

48	 J. Brammer et al.

1 3

Third, we provide the average expected overload time over all instances as calcu-
lated with the method by Zhao et al. (2007). This allows us to assess the robustness
of our results in regard to how minimizing the number of overload situations influ-
ences the expected overload time. Let OT

j,a
 denote the expected overload time for

approach a on instance j. The average overload time is given as

We scale the result by 100 in order to facilitate the presentation of results.
In addition, we provide several metrics (mean deviation to best, percentage of

best solutions, and calculation time) for informational purposes, see Appendix 5 of
the supplementary material.

7 � Results

We now describe the results of our numerical evaluation. We start with our main
analysis, after which we provide the results of three analyses based on unseen
problems with variations in the standard deviation of processing times, additional
stations on the assembly line, and problems with additional models.3 Finally, we
analyze the trade-off between the performance of our approach and the required
time for policy learning when using more probability quantiles for the state
representation.

7.1 � Main analysis

We first analyze the performance of all approaches on a total of 2160 stochastic
problem instances. Figure 5 presents the results for small, large, and all instances.
The black bars denote the number of stochastic overloads, the white bars denote
the number of deterministic overloads, and the gray bars denote the expected
overload time (Zhao et al. 2007). The numerical results are provided in Appen-
dix 6 of the supplementary material. The optimal � values are indicated below the
corresponding approaches.

Figure 5 shows that our approach as trained in the stochastic environment
( RLsto ) is superior to other methods in regard to the number of stochastic over-
loads. Compared to the best competing approach SA, the relative reduction of sto-
chastic overloads is 7.32−6.58

7.32
≈ 10.11% on the small instances, 117.57−109.11

117.57
≈ 7.20%

on the large instances, and 62.44−57.84
62.44

≈ 7.37% on all instances. Training the RL
policy based on the deterministic problems also performs well, but RLdet is out-
performed by LS, GA, and SA on all instances.

(26)
1

100P

P∑
j=1

OT
j,a
.

3  All datasets are provided at https://​github.​com/​Infor​matio​nSyst​emsFr​eiburg/​stoch​astic_​mms_​datas​et/.

https://github.com/InformationSystemsFreiburg/stochastic_mms_dataset/

49

1 3

Stochastic mixed model sequencing with multiple stations…

The number of stochastic overloads is always significantly greater than the num-
ber of deterministic overloads. All t-tests are statistically significant with p < 0.001 .
Regarding the approaches that solve modified deterministic problems with artifi-
cially increased processing times, we find a U-shaped relation between � and the
solution quality. That is, small increases in deterministic processing time have a
positive impact on the number of stochastic overloads, while large increases have a
detrimental effect (see Appendix 7 of the supplementary material).

We also consider the expected overload time to assess the amount of utility
work that is required to resolve work overloads. HSAT should perform best as it is
the only approach that specifically minimizes the expected overload times. How-
ever, this only holds on the small instances, whereas HSAT achieves larger over-
load time than RLsto on the large instances, and when considering all instances.
One possible explanation is that Mosadegh et al. (2020) evaluated their approach
based on comparably smaller problems with up to six models.

So far, we have only considered the expected values. As the results are aggre-
gated over multiple instances of different size, we cannot directly assess the vari-
ation of the stochastic performance metrics. We now consider the variation of
stochastic overloads and overload time for a fixed medium-sized problem instance
with 100 cycles, 20 stations, and 20 models. Figure 6 presents the boxplots for a)
stochastic overloads and b) overload time over 1000 samples of processing times
for RLsto and the best competing approach SA with � = 0.25 . Compared to SA,
RLsto achieves a lower average and a better worst-case scenario in the number
of stochastic overloads. Regarding overload time, the variation is similar but the
worst-case slightly favors SA.

In summary, our main analysis indicates that RLsto is able to minimize the number
of overload situations, while keeping the expected overload time similar to compet-
ing approaches.

7.2 � Variation of standard deviation

Next, we study variations in the standard deviations of stochastic processing times.
We assume that the variations occur during actual production and they are not
known in advance. For the evaluation, we evaluate all approaches based on the same
sequences as generated in the main analysis, but we sample the processing times
based on the altered normal distribution. We specifically do not retrain the RL poli-
cies to ensure that this analysis is based on unseen probability distributions.

Figure 7 presents the results for � ∈ {5.0, 7.5, 12.5, 15.0} . The numerical results
are provided in Appendix 6 of the supplementary material. As expected, stochas-
tic overloads and expected overload time increase for greater standard deviations.
For � = 5 , RLsto is outperformed by LS, GA, and, in particular, SA, which per-
forms best. The relative difference of SA over RLsto is 38.52−36.33

38.52
≈ 5.69% . However,

it should be noted that the evaluation with � = 5 is also the closest to determin-
istic processing times. For all analyses with 𝜎 > 5 , RLsto is superior to the com-
peting approaches. The relative improvements of RLsto over the best competing

50	 J. Brammer et al.

1 3

methods are 48.89−47.04
48.89

≈ 3.78% for � = 7.5 , 75.79−70.44
75.79

≈ 7.06% for � = 12.5 , and
89.73−84.27

89.73
≈ 6.08% for � = 15.

7.3 � Additional stations

We now perform another analysis, where we evaluate the performance of our
approach in regard to unseen stations on the assembly line. For this purpose, we
modify the problem instances to contain up to five additional stations. The process-
ing times of the additional stations have similar processing times to the existing sta-
tions (see Sect. 5.1). All additional stations are added at the end of the assembly line
without loss of generality. Due to computational constraints, we limit this analysis to
a subset of 216 problem instances. Again, we do not retrain the RL policies to ensure
that the problems are truly unseen but we adjust the implementation of om

t
(q) accord-

ing to the new environment to apply the RL policies. All competing approaches are
directly applied to the modified problems.

RLsto RLdet HSAT HSA MSA TS
0.25

LS
0.25

GA
0.25

SA
0.25

Gur
0.25

0

2.5

5

7.5

10

Small instances (1080)

P
er
fo
rm

an
ce

m
et
ri
cs

RLsto RLdet HSAT HSA MSA TS
0.25

LS
0.25

GA
0.25

SA
0.25

Gur
0

0

50

100

150

200

Large instances (1080)

P
er
fo
rm

an
ce

m
et
ri
cs

RLsto RLdet HSAT HSA MSA TS
0.25

LS
0.25

GA
0.25

SA
0.25

Gur
0

0

25

50

75

100

All instances (2160)

P
er
fo
rm

an
ce

m
et
ri
cs

Stochastic overloads Deterministic Overloads Expected overload time

Fig. 5   Main results

51

1 3

Stochastic mixed model sequencing with multiple stations…

Figure 8 presents the results of RLsto against the best competing approach SA
(with � = 0.25 ). The numerical values including all approaches are provided in
Appendix 8 of the supplementary material. Evidently, the outperformance of RLsto
persists when the assembly line contains up to three additional stations. However,
RLsto is outperformed by SA on problems with more than three additional stations.

7.4 � Additional models

We also analyze the sensitivity of our approach toward additional but unseen mod-
els. For this purpose, we generate new problem instances with up to five new models,
which have similar processing times to those of the existing models. Again, all compet-
ing approaches are applied to the new problem instances, but we do not retrain the RL
policies to ensure that the models are truly unseen. To apply the trained RL policy to
unseen models, we simplify the new problem to a known problem, where the demand
plan solely contains known models. For each new model m∗ , the function sim(m∗)
returns the known model with the lowest Manhatten distance between the vectors of
processing times. Ties are broken according to the lower index m.

When generating the sequence, we have to decide between sequencing the new
model m∗ or the known model sim(m∗) whenever the policy wants to sequence
sim(m∗) . If dm∗

= dm , we alternate between sequencing m∗ and sim(m∗) , starting with
m∗ . If dm∗

> dm , we first sequence the new models until dm∗

t
= dm

t
 ; then we alternate

between m∗ and sim(m∗) . And, if dm∗

< dm , we first alternate between both models
until dm∗

t
= 0 ; then we sequence the remaining known models.

The results of RLsto and SA (with � = 0.25 ) are shown in Fig. 9. The numerical
values are provided in Appendix 9 of the supplementary material. We find that RLsto
is superior to SA for up to two additional models.

(27)sim(m∗) = argmin m=1,…,M

K∑
k=1

||pk,m − pk,m∗
||.

(a) Stochastic overloads (b) Overload time

Fig. 6   Variation of stochastic overloads and overload time

52	 J. Brammer et al.

1 3

7.5 � Additional state information

Ultimately, we analyze how the performance of our approach changes if we extend
the state representation by including more probability quantiles of processing times.
Recall that the function om

t
(q) → {0, 1} indicates if scheduling model m at sequence

position t will result in a work overload when the processing times of all stations
are equal to their q-quantile. In the current implementation, we included om

t
(q) for

q ∈ {0.25, 0.50, 0.75} . However, it seems interesting to analyze how performance
and policy learning time change if we include om

t
(q) for more than three quantiles.

RLsto RLdet HSAT HSA MSA TS
0.25

LS
0.25

GA
0.25

SA
0.25

Gur
0.25

0

25

50

75

100

σ = 5.0

P
er
fo
rm

an
ce

m
et
ri
cs

RLsto RLdet HSAT HSA MSA TS
0.25

LS
0.25

GA
0.25

SA
0.25

Gur
0.25

0

25

50

75

100

σ = 7.5

P
er
fo
rm

an
ce

m
et
ri
cs

RLsto RLdet HSAT HSA MSA TS
0.50

LS
0.50

GA
0.50

SA
0.50

Gur
0.25

0

25

50

75

100

σ = 12.5

P
er
fo
rm

an
ce

m
et
ri
cs

RLsto RLdet HSAT HSA MSA TS
0.50

LS
0.50

GA
0.50

SA
0.50

Gur
0.25

0

25

50

75

100

σ = 15.0

P
er
fo
rm

an
ce

m
et
ri
cs

Stochastic overloads Deterministic Overloads Expected overload time

Fig. 7   Analysis with different standard deviations

53

1 3

Stochastic mixed model sequencing with multiple stations…

Therefore, we retrain the policy in a modified environment, where the state repre-
sentation contains om

t
(q) for 0, 1, 3, 5, 7, or 9 quantiles. The respective quantiles are

determined through an even split over the interval [0, 1], while ensuring that the
0.50-quantile (i.e., the mean) is always included. For instance, the environment with
five quantiles calculates om

t
(q) for q ∈ {0.16, 0.33, 0.50, 0.66, 0.83} . Due to compu-

tational constraints, we limit this analysis to a single instance with sequence length
100, 20 stations, and 20 models.

Figure 10a plots the stochastic overloads for RLsto depending on the number of
quantiles. The performance of SA is also indicated as a baseline. As expected, the
number of overloads decreases with the number of quantiles, but the marginal reduc-
tion of overloads becomes smaller the more quantiles are included. At the same
time, increasing the dimensionality of the state representation increases the time that
is required for training the policy. Figure 10b shows that the time for policy learning
increases linearly with the number of quantiles.

Table 5 presents the numerical values of Fig. 10a and b. We observe that the
improvement from our current implementation RLsto

3
 to RLsto

5
 is less than one work

overload. Hence, we argue that including om
t
(q) for three probability quantiles

provides a reasonable trade-off between performance and the time required for
policy learning.

8 � Extensibility

The main idea behind our approach is to incorporate deterministic information
based on several probability quantiles into the state of an RL approach to solve the
stochastic MMS problem. There appear to be several ways that this approach could
be extended to similar stochastic problems. First, our method could be generalized
to stochastic MMS problems with different probability distributions (e.g., uniform).
For this purpose, the function om

t
(q) must be defined with respect to the quantiles

Fig. 8   Analysis with additional stations

54	 J. Brammer et al.

1 3

of the respective distribution. It also seems straightforward to consider other MMS
problem variations, e.g., with U-shaped assembly lines or different worker types.

Second, our approach can be applied to stochastic MMS problems with other
objectives like minimize overload or idle time. For instance, to minimize the
expected work overload time, the reward function needs to be changed to the nega-
tive sum of work overload times that occurred at cycle t.

Third, the stochastic MMS problem can be considered through the lens of robust
optimization (e.g., Ben-Tal et al. 2009; Gabrel et al. 2014). Manufacturers may, for
instance, only be able to handle a given number of overloads simultaneously or a
maximum number of overloads during one shift. However, such constraints are gen-
erally not considered in the literature as they strongly depend on company-specific
risk preferences regarding feasibility of solutions. It thus seems interesting to extend
the problem formulation with additional constraints and combine our approach with
methods from safe reinforcement learning (see e.g., Garcıa and Fernández 2015).

Fourth, our approach may also be extended to other stochastic scheduling prob-
lems. The main challenge is to find a meaningful output for the function om

t
(q) that

provides the crucial information for the state. For instance, for stochastic job-shop

Fig. 9   Analysis with additional models

(a) Policy performance (b) Policy training time

Fig. 10   Stochastic overloads and policy training time for RLsto and different numbers of probability quan-
tiles in the state representation. The dashed lines highlight the number of quantiles that was used for our
previous analyses

55

1 3

Stochastic mixed model sequencing with multiple stations…

or flow-shop problems, om
t
(q) could be defined in regard to the number of machines

that will become idle if job m is sequenced next given that all processing times are
equal to their q-quantile.

Electronic supplementary material  The online version of this article (doi:https://​doi.​org/​10.​1007/​s00291-​
021-​00652-x) contains supplementary material, which is available to authorized users.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Agrawal S, Tiwari M (2008) A collaborative ant colony algorithm to stochastic mixed-model U-shaped
disassembly line balancing and sequencing problem. Int J Prod Res 46:1405–1429

Aroui K, Alpan G, Frein Y (2017) Minimising work overload in mixed-model assembly lines with differ-
ent types of operators: a case study from the truck industry. Int J Prod Res 55:6305–6326

Bautista J, Alfaro R, Batalla-García C (2016) Grasp for sequencing mixed models in an assembly line
with work overload, useless time and production regularity. Prog Artif Intell 5:27–33

Bautista J, Cano A, Alfaro R (2012) Models for MMSP-W considering workstation dependencies: a case
study of Nissan’s Barcelona plant. Eur J Oper Res 223:669–679

Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton
Bent RW, Van Hentenryck P (2004) Scenario-based planning for partially dynamic vehicle routing with

stochastic customers. Oper Res 52:977–987
Boysen N, Fliedner M, Scholl A (2007) A classification of assembly line balancing problems. Eur J Oper

Res 183:674–693
Boysen N, Fliedner M, Scholl A (2009) Sequencing mixed-model assembly lines: survey, classification

and model critique. Eur J Oper Res 192:349–373
Boysen N, Kiel M, Scholl A (2011) Sequencing mixed-model assembly lines to minimise the number of

work overload situations. Int J Prod Res 49:4735–4760
Chutima P, Naruemitwong W (2014) A pareto biogeography-based optimisation for multi-objective two-

sided assembly line sequencing problems with a learning effect. Comput Ind Eng 69:89–104

Table 5   Analysis of additional state information

Best values are highlighted in bold
 Deterministic overloads are equal for RLsto

1
 and RLsto

5
 due to small sample size

RL
sto

0
RL

sto

1
RL

sto

3
RL

sto

5
RL

sto

7
RL

sto

9
SA � = 0.25

Stochastic overloads 72.70 56.52 55.25 54.32 53.89 53.56 60.15
Deterministic overloads 50.90 29.80 31.50 29.80 31.00 30.60 25.90
Overload time 15.95 14.36 13.73 13.77 13.76 13.67 14.22
Policy training time [h] 4.90 6.53 9.80 12.58 15.50 18.50 –

https://doi.org/10.1007/s00291-021-00652-x
https://doi.org/10.1007/s00291-021-00652-x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

56	 J. Brammer et al.

1 3

Cortez PM, Costa AM (2015) Sequencing mixed-model assembly lines operating with a heterogeneous
workforce. Int J Prod Res 53:3419–3432

Dong J, Zhang L, Xiao T, Mao H (2014) Balancing and sequencing of stochastic mixed-model assembly
U-lines to minimise the expectation of work overload time. Int J Prod Res 52:7529–7548

Gabrel V, Murat C, Thiele A (2014) Recent advances in robust optimization: an overview. Eur J Oper Res
235:471–483

Garcıa J, Fernández F (2015) A comprehensive survey on safe reinforcement learning. J Mach Learn Res
16:1437–1480

Golle U, Rothlauf F, Boysen N (2014) Car sequencing versus mixed-model sequencing: a computational
study. Eur J Oper Res 237:50–61

Joly A, Frein Y (2008) Heuristics for an industrial car sequencing problem considering paint and assem-
bly shop objectives. Comput Ind Eng 55:295–310

Kim YK, Hyun CJ, Kim Y (1996) Sequencing in mixed model assembly lines: a genetic algorithm
approach. Comput Oper Res 23:1131–1145

Li J, Gao J, Sun L (2012) Sequencing minimum product sets on mixed-model U-lines to minimise work
overload. Int J Prod Res 50:4977–4993

Lopes TC, Michels AS, Lüders R, Magatão L (2020) A simheuristic approach for throughput maxi-
mization of asynchronous buffered stochastic mixed-model assembly lines. Comput Oper Res
115(104):863

Miltenburg J (2002) Balancing and scheduling mixed-model U-shaped production lines. Int J Flex Manuf
Syst 14:119–151

Mosadegh H, Fatemi Ghomi S, Süer G (2017) Heuristic approaches for mixed-model sequencing prob-
lem with stochastic processing times. Int J Prod Res 55:2857–2880

Mosadegh H, Fatemi Ghomi S, Süer G (2020) Stochastic mixed-model assembly line sequencing prob-
lem: mathematical modeling and Q-learning based simulated annealing hyper-heuristics. Eur J Oper
Res 282:530–544

Özcan U, Kellegöz T, Toklu B (2011) A genetic algorithm for the stochastic mixed-model U-line balanc-
ing and sequencing problem. Int J Prod Res 49:1605–1626

Parrello BD, Kabat WC, Wos L (1986) Job-shop scheduling using automated reasoning: a case study of
the car-sequencing problem. J Autom Reason 2:1–42

Pinedo M, Weiss G (1987) The largest variance first policy in some stochastic scheduling problems. Oper
Res 35:884–891

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algo-
rithms. arxiv:​ 1707.​06347. Accessed 23 September 2020

Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423
Solnon C, Cung VD, Nguyen A, Artigues C (2008) The car sequencing problem: overview of state-of-

the-art methods and industrial case-study of the Roadef’2005 challenge problem. Eur J Oper Res
191:912–927

Sutton RS, Barto AG et al (1998) Introduction to reinforcement learning. MIT Press, Cambridge
Williams RJ (1992) Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Mach Learn 8:229–256
Zahavy T, Haroush M, Merlis N, Mankowitz DJ, Mannor S (2018) Learn what not to learn: action elimi-

nation with deep reinforcement learning. Adv Neural Inform Process Syst 31:3562–3573
Zhao X, Liu J, Ohno K, Kotani S (2007) Modeling and analysis of a mixed-model assembly line with

stochastic operation times. Naval Res Logist 54:681–691
Zheng Z, Oh J, Singh S (2018) On learning intrinsic rewards for policy gradient methods. Adva Neural

Inform Process Syst 31:4644–4654

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/1707.06347

	Stochastic mixed model sequencing with multiple stations using reinforcement learning and probability quantiles
	Abstract
	1 Introduction
	2 Related work
	3 Stochastic mixed model sequencing with a minimization of overload situations
	3.1 Problem formulation
	3.2 Characteristics of suitable solutions

	4 Reinforcement learning approach
	4.1 Environment and state representation
	4.2 Reward
	4.3 Policy learning

	5 Numerical evaluation
	5.1 Dataset
	5.2 Evaluation procedure
	5.3 Competing approaches
	5.3.1 Greedy heuristic
	5.3.2 Hyper simulated annealing
	5.3.3 Multiple scenario approach
	5.3.4 Simulated annealing
	5.3.5 Genetic algorithm
	5.3.6 Local search
	5.3.7 Tabu search
	5.3.8 Gurobi

	6 Performance metrics
	7 Results
	7.1 Main analysis
	7.2 Variation of standard deviation
	7.3 Additional stations
	7.4 Additional models
	7.5 Additional state information

	8 Extensibility
	References

