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Abstract
In commodity transport networks such as natural gas, hydrogen and water networks, 
flows arise from nonlinear potential differences between the nodes, which can be 
represented by so-called potential-driven network models. When operators of these 
networks face increasing demand or the need to handle more diverse transport situ-
ations, they regularly seek to expand the capacity of their network by building new 
pipelines parallel to existing ones (“looping”). The paper introduces a new mixed-
integer nonlinear programming model and a new nonlinear programming model and 
compares these with existing models for the looping problem and related problems 
in the literature, both theoretically and experimentally. On this basis, we give recom-
mendations to practitioners about the circumstances under which a certain model 
should be used. In particular, it turns out that one of our novel models outperforms 
the existing models with respect to computational time, the number of solutions 
found, the number of instances solved and cost savings. Moreover, the paper extends 
the models for optimizing over multiple demand scenarios and is the first to include 
the practically relevant option that a particular pipeline may be looped several times.
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1 Introduction

Operators of commodity transport networks such as natural gas, hydrogen and 
water networks regularly have to face both increasing demand and the need to 
handle more diverse transport situations. To deal with these challenges without 
having to resort to the expensive options of setting up new pipeline corridors or 
of demolishing pipelines and replacing them by larger ones, they must expand the 
capacity of the existing network. Without using compressor stations to increase 
the pressure in the pipelines, this can only be achieved by building pipelines par-
allel to existing ones, a process that is referred to as “looping” in the terminology 
of the industry. Due to the high costs involved, there has long been research about 
finding the cost minimal way of looping an existing network, i.e. of determining 
both the pipelines that are to be looped and the diameters of the pipelines to be 
built.

Commodity flows such as flows in gas and water networks arise from friction-
induced potential differences between the nodes in the network, which leads to a 
type of nonlinear network model that is referred to as potential-driven network in 
the literature (Birkhoff and Diaz 1956; Raghunathan 2013; Robinius et al. 2018). 
Apart from the nonlinear character of potential-driven networks, a specific dif-
ficulty in finding optimal loops arises from the fact that the diameters of the pipe-
lines typically have to be selected from a discrete set of commercially available 
diameters (André et al. 2009; Hansen et al. 1991; Fasold 1999), which addition-
ally imparts to the problem a combinatorial flavour. For these reasons, the prob-
lem of capacity expansion in potential-driven networks belongs to the family of 
mixed-integer nonlinear programming (MINLP) problems.

As a consequence, a large body of the literature on the topic is concerned with 
developing sophisticated special-purpose algorithms geared at finding locally 
optimal solutions or approximating a global optimum, partly based on novel ways 
of modelling the capacity expansion problem. While this research focus has cer-
tainly advanced our ability to solve this problem, it has also led to a variety of 
mathematical models for the looping problem that remain unconnected in the lit-
erature. In view of the recent advances in the development of general-purpose 
solvers for NLP and MINLP problems that allow for an efficient implementa-
tion of models that is significantly faster than implementing one of the special-
purpose algorithms developed, it seems to be useful for practitioners involved in 
the design of networks to shift the research focus to the modelling stage. In fact, 
despite the algorithmic advances in the previous decades, practitioners tackling 
the capacity expansion problem often find it more convenient to resort to simula-
tion studies instead of implementing the complex special-purpose optimization 
models proposed in the literature, thereby not realizing the potential that an opti-
mization-based approach has to offer. For this reason, the present paper discusses 
various models for finding optimal loops in potential-driven networks that can be 
implemented easily by using state-of-the-art MINLP solvers.

In particular, this paper brings together, for the first time, the diversity of 
existing models in the literature and compares these, both theoretically and 
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experimentally. For this comparison, we choose a comprehensive approach that 
includes two different, rather unconnected strands of research on the problem that 
are referred to as the discrete approach and the split-pipe approach (see below), 
and also takes into account literature that does not explicitly focus on the looping 
problem, but addresses closely related problems. Moreover, the present paper also 
introduces two novel models for the looping problem, one of which has turned 
out to outperform the existing models in the literature with respect to computa-
tional time, the number of solutions found, the number of instances solved and 
cost savings. Additionally, we extend our models to include the case of optimiz-
ing capacity expansion across multiple demand scenarios. Finally, in discussing 
these models, the paper goes beyond the existing literature by including, through-
out the paper, the practically highly relevant case that a particular pipeline may 
be looped several times.

Altogether, by focussing on the modelling aspect in conjunction with state-of-
the-art MINLP solvers, the present paper should provide a useful guide for prac-
titioners who look for an optimization-based alternative to simulation studies, but 
do not have the option to implement the special-purpose algorithms suggested in 
the literature. Additionally, our overview and comparison of modelling approaches 
in the literature, as well as our new models, may be interesting for researchers who 
seek to develop new special-purpose algorithms for the capacity expansion problem.

In line with our aim to bring together the diversity of existing approaches in the 
literature, the remainder of this section discusses the literature on the topic rather 
comprehensively before presenting an outline of the structure of the paper.

During the past 40 years of research on capacity problems in potential-driven 
networks, three different modelling approaches have been considered for the loop-
ing problem (cf. Shiono and Suzuki 2016): (1) a direct approach where the optimal 
diameters for the loops are chosen from the set of commercially available diame-
ters (discrete approach), (2) a continuous approach where continuous diameters are 
typically used to approximate the problem and (3) an extended approach where the 
entire length of the pipeline to be looped is split into several segments of variable 
lengths each of which may have its own diameter from the discrete set of available 
diameters (split-pipe approach).

In the following discussion of the literature about these three approaches, we will 
not only look at papers addressing the looping problem (in fact, to the best of our 
knowledge, there are so far, apart from the present paper, only two papers, namely 
André et al. (2009) and Pietrasz et al. (2008), that solely focus on the looping prob-
lem), but will also consider papers about two closely related problems: the network 
design problem, which looks for the optimal diameters of pipelines between given 
unconnected nodes or determines both the location of nodes and the optimal pipe-
lines between these, and the network expansion problem, which is about the optimal 
placement of new network elements of different types (such as pipelines, compres-
sors and valves) at pre-defined (previously connected or unconnected) locations in 
the network.

(1) Discrete diameters One of the first solution approaches using mathemati-
cal optimization techniques for this NP-hard problem (Yates et  al. 1984) has 
been proposed by Jacoby (1968). The author solves a nonlinear model using a 
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gradient approximation method where the resulting continuous diameters are 
finally rounded to the nearest discrete-valued pipe diameters. The approach was 
tested on a small water network that contains seven pipelines and two cycles. 
Other early work where the discrete approach is used for networks with a simple 
structure include Liang (1971), who solved a gunbarrel system using dynamic 
programming, and Rothfarb et  al. (1970), who used a serial and parallel merge 
algorithm to design tree shaped networks. Later, Gessler (1985) applied selective 
enumeration techniques to tackle a small sized network with two cycles. In the 
1990s, a class of approaches was developed that relies on meta-heuristics, such as 
genetic algorithms, see, e.g. Simpson et al. (1994) and Savic and Walters (1997) 
for water networks, and Boyd et al. (1994) and Castillo and González (1998) for 
gas networks.

In the past decade, different papers applied a MINLP formulation to determine 
discrete pipe sizes, e.g. André et al. (2009), Bragalli et al. (2012) and Robinius et al. 
(2018). While André et  al. (2009) solve the problem heuristically in two stages, 
where a first step identifies pipes to be looped by solving the continuous relaxa-
tion and a second step determines discrete-valued diameters for these selected pipes 
using Branch and Bound, Bragalli et  al. (2012) solve the model directly with an 
MINLP solver using a continuous reformulation of the cost function. Robinius et al. 
(2018) determine discrete arc sizes in the context of tree shaped networks, which 
allows flows on arcs to be fixed and thus simplifying the MINLP model to an Mixed 
Integer Programming model.

The nonlinear nature of the problem has led to a number of different MINLP 
models and approaches: Raghunathan (2013) presents a disjunctive program 
together with a convex relaxation, which is then solved to global optimality and 
Borraz-Sánchez et al. (2016) propose a new solution approach by presenting a new 
model together with a second-order cone relaxation. Humpola (2014) formulates 
a model that is solved to global optimality using convex reformulation techniques, 
special tailored cuts.

In this paper, we investigate different existing MINLP approaches and propose a 
new model for the discrete looping problem.

(2) Continuous diameters have been considered e.g. by Bhaskaran and Salzborn 
(1979a), Rowell and Barnes (1982), Bhave (1985), De  Wolf and Smeers (1996), 
De Wolf and Bakhouya (2012), Babonneau et  al. (2012) and André et  al. (2013). 
Continuous diameters typically have been used in the literature to approximate the 
discrete diameters that are commercially available. Hansen et al. (1991), for exam-
ple, use successive linear programming with a trust region strategy, where the algo-
rithm adjusts the continuous diameters in each iteration to elements in the set of 
available discrete diameters. Osiadacz and Górecki (1995) apply sequential quad-
ratic programming to the continuous relaxation of a gas network design problem and 
round the solution to the closest available diameter size. Shiono and Suzuki (2016) 
introduce an analytic approach that calculates the optimal diameter costs for the 
pipe-sizing problem of a tree-shaped gas network with continuous diameters, which 
are then heuristically converted to discrete pipe diameters. As the present paper is 
concerned with models that lead to exact solutions, we will not further consider this 
line of research here.
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(3) Split-pipe approach This approach, where the pipes can be split into several 
segments with different diameters each, combines features of both the discrete and 
the continuous approaches: while the diameters are chosen from the discrete set of 
available diameters, the option to split pipes at arbitrary points into sections of dif-
ferent diameters leads, as we will see in the next section, to a situation that is equiv-
alent to choosing diameters from a continuous set. This concept was first used in 
designing networks with a tree structure, which allows the flows in the pipelines to 
be treated as constants and leads to a linear programming model (e.g. Karmeli et al. 
(1968) and Gupta et al. (1972) for water networks, and, independently, Bhaskaran 
and Salzborn (1979b) for gas networks). The first paper to attempt the split-pipe 
version of the capacity expansion problem as a nonlinear problem for general net-
works was Alperovits and Shamir (1977), who introduced the linear programming 
gradient (LPG) method, a two-stage heuristic that alternates between solving the 
linear program with fixed flows from Karmeli et al. (1968) for obtaining the pipe-
line diameters and modifying these flows on the basis of a sensitivity analysis of 
the solution of the first stage. This idea stimulated a number of subsequent papers 
(e.g. Quindry et al. 1981; Fujiwara and Khang 1990; Kessler and Shamir 1989) that 
improved on the method. Starting with Eiger et  al. (1994), a strand of genuinely 
NLP-based global solution methods emerged, with further contributions by Zhang 
and Zhu (1996) and Sherali et al. (2001), for example. Surprisingly, despite 50 years 
of research on the split-pipe approach, all these contributions proceed from the very 
same basic model that goes back to the linear model by Karmeli et al. (1968). For 
this reason, the present paper presents a novel, alternative model for the split-pipe 
approach and compares it to the split-pipe model in the literature.

We have now sketched the history of research on the three different approaches 
to our looping problem and closely related problems. In the light of the variety of 
models and optimization methods for these problems, it is astonishing that there is 
nearly no research that brings together the discrete and the split-pipe approaches and 
compares the models proposed in the literature. In fact, to the best of our knowledge, 
the very early paper by Bhaskaran and Salzborn (1979b) with its linear model for a 
tree-shaped network is the only paper to compare the split-pipe approach with the 
discrete approach, albeit for very small trees with 9 and 14 nodes. The present paper 
addresses this gap and presents comparisons of all models discussed in the literature.

Another important aspect of the looping problem that has not been addressed in 
the literature is multiple looping, where each pipeline may be reinforced with several 
parallel pipelines of different diameters. This is a practically highly relevant problem 
as multiple looping can first replace large diameters that are commercially not avail-
able; may second lead to cost savings by substituting several parallel pipelines with 
smaller diameters for one pipeline with a large diameter; may third, as we will see in 
Sect. 2.3, allow for pipe characteristics that cannot be realized with single loops; and 
can finally provide a tool for strategic planning where several stages of successively 
looping a given network are to be considered. For these reasons, we will take into 
account multiple looping throughout the paper.

The remainder of the paper is organized as follows: In the next section, we formal-
ize the looping problem in potential-driven networks, show some of its basic proper-
ties and explain our approach of dealing with multiple loops. In Sect. 3, we present a 
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new model for the discrete looping problem and contrast it with the existing models 
in the literature. The subsequent Sect. 4 turns to the split-pipe approach of the looping 
problem. Again we present a new model and address its relationship with the split-
pipe model that can be found in the literature. Moreover, we discuss the way in which 
the feasible regions of all models presented so far are related to each other. Section 5 
extends the models to the case of multi-scenarios. In Sect. 6, we carry out extensive 
computational experiments on instances of both natural gas and water networks that 
allows us to compare the performance of all models and give recommendations regard-
ing their use. The paper ends with some concluding remarks in Sect. 7.

2  The expansion planning problem

Let us begin by formally defining the planning problem that this paper discusses.

2.1  Problem statement

Let G = (V,A, r) be a directed multigraph with node set V , arc set A and a function 
r ∶ A → V × V that maps each arc to its end points. The nodes can be partitioned 
into supply nodes (sources), consumption nodes (sinks) and transshipment nodes. 
In this paper, we restrict to passive and connected networks, where the only arc 
type are pipes that are needed to transport the commodities. We are given a demand 
vector b ∈ ℝ

|V| where bv > 0 denotes injection into the network at source v ∈ V 
and bv < 0 withdrawal at sink v ∈ V . Since we work with stationary and isother-
mal models, the demand vector is balanced, i.e. 

∑
v∈V bv = 0 . With each arc a ∈ A , 

flow variables xa ∈ [x
a
, xa] are associated. Positive values of xa indicate flow along 

the arc a = (v,w) from v to w, whereas negative values indicate flow in the reversed 
direction. As in classical network flow problems, flow conservation is required at 
every node i.e. 

∑
a∈�+(v) xa −

∑
a∈�−(v) xa = bv with �+(v) ∶= {(v,w) ∈ A} and 

�−(v) ∶= {(w, v) ∈ A} . In potential-based networks, the physical state is additionally 
described by nonnegative potential variables �v ∈ [�

v
,�v] at each node v ∈ V.

In applications such as water transport problems, the nodal potentials �v correspond 
to hydraulic heads, i.e. the sum of the elevation head, velocity head and pressure head 
(Walski et al. 2001), while they represent squared pressure variables in gas transport 
problems (Koch et al. 2015).

The flow along a pipe a = (v,w) depends on the potential difference at its adjacent 
nodes, the pipe length La > 0 , a physical parameter Ra > 0 representing phenomena 
such as friction and density and the diameter da > 0 . The potential difference

is given by a function Φ(da, .) ∶ ℝ → ℝ that is strictly increasing, Φ(da, .) ∈ C
1 and 

anti-symmetrical, i.e. Φ(da,−xa) = −Φ(da, xa) , and typically takes the form

(1)�v − �w = Φ(da, xa) ∀a ∈ A and (v,w) = r(a),
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with 𝛼, 𝛽 > 0 . In line with most authors in the literature, we model Ra as a constant 
and assume the pipes to have zero slope, i.e. there is no influence of gravity on the 
potential drop �v − �w (e.g. Zhang and Zhu 1996; André et  al. 2009; Babonneau 
et al. 2012). The value of � depends on the commodity and the type of approxima-
tion used for modelling the commodity flow. In water transport problems, the poten-
tial loss function is typically given by the equations of Darcy–Weisbach with � = 2 
or Hazen–Williams with � = 1.852 (Walski et  al. 2001), whereas in gas transport 
problems Eq. (2) takes the shape of the Weymouth equation with � = 2 ( Weymouth 
(1912)). In the approximations proposed by Darcy–Weisbach and Weymouth, the 
exponent of the diameter is � = 5 , while it is � = 4.87 in the case of the approxima-
tion by Hazen–Williams.

The solution of the capacity expansion problem involves two decisions: (a) which 
pipelines a ∈ A should be looped? and (b) what pipeline diameters da should be used 
for the loops? As we wish to solve the problem to global optimality and any pre-selec-
tion of certain pipes are looping candidates would be a heuristic procedure, we will 
allow all pipes to be looped.

For the diameters da , we have in the discrete case da ∈ Da ∶= {Da,0,Da,1, ..., Da,ka
} , 

where da,0 refers to the diameter of the already existing pipe and da,ka denotes the maxi-
mal possible diameter when looping. In the continuous case the domain of the diameter 
is given by da ∈ Da ∶= [Da,0,Da,ka

] . While the present paper is not concerned with the 
continuous looping problem due to its approximative nature, we will see in Sect. 2.3 
that a continuous interval of diameters can also be interpreted as representing diameters 
in the split-pipe problem.

The general looping problem then reads 

Note that even when no particular bounds x
a
 and xa on the flow variables xa are 

given, flow bounds are implied by the bounds on �v and da by virtue of Eq. (1).

(2)Φ(da, xa) =
LaRa

d
�
a

sgn (xa)|xa|� .

(3a)min
xa, da, �v

∑

a∈A

c(da)La

(3b)s.t. �v − �w = Φ(da, xa) ∀ a ∈ A and (v,w) = r(a)

(3c)
∑

a∈�+(v)

xa −
∑

a∈�−(v)

xa = bv ∀ v ∈ V

(3d)�
v
≤ �v ≤ �v ∀ v ∈ V

(3e)x
a
≤ xa ≤ xa ∀ a ∈ A

(3f)da ∈ Da ∀ a ∈ A.
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To provide the reader with some intuition for the problem statement of the expan-
sion planning problem, let us briefly demonstrate that we can always find a solution 
to the problem provided that there is no flow bound (3e), that the intersection of the 
bounds of the potential variables is non-empty, i.e. ∩v∈V [�v

,�v] = [�,�] with � ≤ � 
and that we can choose sufficiently large pipeline diameters.

Let b the overall network inflow, i.e. the sum of all flows that enter the net-
work at the entry nodes, which is clearly an upper bound on any flow along any 
arc in the network. We now select for each arc a ∈ A a diameter d̃a such that 
LaRa∕d̃

𝛽
a
sgn (b)|b|𝛼 ≤ (𝜋 − 𝜋)∕|A|.

Let (�v, xa)v∈V,a∈A be a corresponding solution of Problem (3a–c) where the val-
ues for d̃a are fixed. The solution has unique flow values and the potential values are 
uniquely determined up to a constant shift (cf. Collins et al. 1978; Humpola 2014 for 
the existence of such a solution), which obviously satisfies

Summing up these inequalities along any path ������⃗v0vk between two connected nodes v0 
and vk yields:

We now choose a node v0 with the highest potential in our solution and shift this 
node’s potential by a constant r ∈ ℝ such that it is equal to the upper bound � , i.e. 
such that we have �̃�v0 ∶= 𝜋v0 + r = 𝜋 for the new potential of the node v0 . If we 
shift the potentials �v of all other nodes by the same constant r, all our potentials are 
guaranteed to satisfy (3d).

2.2  Convexity analysis

In the previous section, we have seen that we can model the expansion planning 
problem as a Mixed-Integer Nonlinear Program (MINLP) for discrete looping deci-
sions and we will see in Sect. 2.3 that the split-pipe approach leads to a Nonlinear 
Program (NLP). We will now show that the feasible regions of the discrete and con-
tinuous (or split-pipe) capacity expansion planning problem are non-convex.

When neglecting loop expansions, i.e. da = da,0 for all pipes a ∈ A , the continu-
ous and the discrete problems (3) reduce to the same existence problem of validating 
a given demand scenario for feasibility. The feasible region of the resulting prob-
lem is convex (Maugis 1977; Collins et al. 1978), even though it comprises nonlin-
ear nonconvex constraints of type  (3b). However, the following proposition shows 
that this property does not hold for the feasible region of the expansion planning 
problem.

𝜋
v
− 𝜋

w
=

L
a
R
a

d̃
𝛽
a

sgn (x
a
)|x

a
|𝛼 ≤

L
a
R
a

d̃
𝛽
a

b
𝛼
≤

𝜋 − 𝜋

|A|
∀a ∈ A and (v,w) = r(a).

|𝜋v0 − 𝜋k| = |
∑k−1

i=0
𝜋vi − 𝜋vi+1 | = |

∑k−1

i=0

Li,i+1Ri,i+1

d̃
𝛽

i,i+1

sgn (xi,i+1)|xi,i+1|𝛼|

≤
∑k−1

i=0

Li,i+1Ri,i+1

d̃
𝛽

i,i+1

b
𝛼
≤
∑k−1

i=0

𝜋 − 𝜋

|A|
k≤ |A|
≤ 𝜋 − 𝜋.
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Proposition 1 There exist instances, such that the continuous and discrete expansion 
planning problems are nonconvex.

Proof The discrete expansion planning problem is trivially nonconvex. Regarding the 
continuous (and split-pipe) problem, we consider a network of two pipes a1, a2 in paral-
lel with adjacent nodes v and w. For given � = 2 and � = 5 , let a demand situation 
bv = 10 = −bw , pipe properties La,Ra = 1 and diameters da ∈ [1, 2] for both pipes 
a ∈ {a1, a2} be given. Then, the flow distribution among the parallel pipes is unique, 
where both pipes have the same flow direction, i.e. sgn (xa1 ) = sgn (xa2) , and thus (2) 
reduces to �v − �w = LaRa∕d

5
a1
x2
a1
= LaRa∕d

5
a2
x2
a2

 . Then, s ∶= (xa1 , xa2 , da1 , da2 ,�v,�w) 

≈ (10∕31(4
√
2 − 1),−40∕31(

√
2 − 8), 1, 2, 100, 97.743362) is a solution of problem (3), 

and by symmetry another solution exits when swapping the diameters of both  
pipes, i.e. s̃ ∶= (x̃

a1
, x̃

a2
, d̃

a1
, d̃

a2
, �̃�

v
, �̃�

w
) ≈ (−40∕31(

√
2 − 8), 10∕31(4

√
2 − 1), 2, 1, 100,

97.743362) . But there exists an infeasible convex combination of both solutions, 
namely s∗ ∶= 0.5(s + s̃) = (x∗

a1
, x∗

a2
, d∗

a1
, d∗

a2
,𝜋∗

v
,𝜋∗

w
) ≈ (5, 5, 1.5, 1.5, 100, 97.743362) , 

because s∗ violates Eq. (3b), i.e.

  ◻

2.3  Loop diameters

After our general outline of the extension planning problem and some of its basic 
characteristics, we will now describe how the diameters used for looping pipelines 
are represented in the discrete and the split-pipe models to be discussed in the pre-
sent paper. In doing so, we will go beyond the existing literature and allow that each 
pipeline a may be looped several times. Our starting point is a finite set {d1,… , dn} 
of commercially available diameters for looping. These diameters are associated 
with costs c1 < ⋯ < cn per unit of pipeline length, see left Fig. 1.

It is well known in the literature (see Katz 1959; André et al. 2009 for the case of 
gas networks and Bragalli et al. (2012) for the case of water networks, for example) 
that two parallel pipelines with diameters d1 and d2 can be replaced, without chang-
ing any physical properties of the network, by a single pipeline with diameter Dd1,d2

 
(called equivalent diameter) by virtue of

It is easy to see that for looping an arc a of length L with existing diameter da mul-
tiple (k) times with (not necessarily distinct) diameters di1 , di2 , ..., dik ∈ D , this rela-
tionship can be extended to

�∗
v
− �∗

w
≠ LaRa∕(d

∗
a1
)5(x∗

a1
)2 = LaRa∕(d

∗
a2
)5(x∗

a2
)2

since �∗
v
− �∗

w
≈ 2.256638 and LaRa∕(d

∗
a1
)5(x∗

a1
)2 = 1∕(1.5)5 × 52 ≈ 3.292181.

D
�∕�

d1,d2
= d

�∕�

1
+ d

�∕�

2
.
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where this multiple loop is associated with costs

This equation implies that when allowing for multiple loops, we cannot only choose 
among the discrete set of commercially available diameters, but we have at our dis-
posal the much larger discrete set of equivalent diameters that result from all pos-
sible combinations of available loops. This is the approach that we choose in our 
discrete models.

A type of equivalent diameter also exists for the case of two serial pipelines with no 
source or sink inbetween. Assume we have two pipelines, one from node v to node w 
and the other one from w to z, with diameters d1 and d2 , the same physical parameter 
R ∶= R1 = R2 , a total length of L from v to z, and with �L being the length of the first 
pipeline from v to w, where 0 < 𝜆 < 1 . Then, due to (1) and (2), the total potential loss 
along the flow x from v to z is given by

The same potential loss can be achieved with a single pipeline of length L when its 
diameter D is given by �v − �z = LR∕D� sgn (x)|x|� . This and the previous equation 
imply that the equivalent diameter satisfies D−� = �d−�

1
+ (1 − �)d−�

2
. Analogously, 

we have for the case of k serial pipeline segments with diameters d1, d2,… , dk and 
lengths �1L, �2L,… , �kL , where 

∑k

i=1
�i = 1 with �i ≥ 0:

(4)D
�∕�

da,di1
,....,dik

= d�∕�
a

+ d
�∕�

i1
+ ... + d

�∕�

ik
,

(5)
∑k

j=1
cijL.

(�v − �w) + (�w − �z) =
�LR1

d
�
1

sgn (x)|x|� +
(1 − �)LR2

d
�
2

sgn (x)|x|� .

(6)D−� =
∑k

j=1
�id

−�
i

with associated costs L
∑k

j=1
�ici.

Fig. 1  Available diameters {d1,… , d
n
} with cost factors (left). On the right: construction of the efficient 

frontier of dominating equivalent diameters. Note that the cost components of the points (d
i
, c

i
) on the 

left side correspond with those of the points (D−�
d
a
,d

i

, c
i
) on the right side
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For practical purposes, relationship (6) implies that, when looping pipelines, we are 
not restricted to the discrete set of equivalent diameters that results from multiple 
loops with the commercially available diameters according to (4). Instead, we can 
decide to split a pipeline into several segments of lengths �iL and have different, pos-
sibly multiple loops, i.e. loops with different equivalent diameters, on all segments. 
In this way, (6) allows us to realize in the network all diameters in the (continuous) 
interval between the smallest and the largest possible equivalent diameters. This is 
the approach that our split-pipe models use and it enables us to benefit, despite the 
limited number of commercially available pipeline diameters, from having the flex-
ibility of a continuous set of equivalent diameters at our disposal.

We will allow a single pipe a to be looped up to r times, i.e. in the capacity 
expansion problem we have to pick up to r diameters for each existing pipeline of 

the network. With 
(
n + k − 1

k

)
 being the number of k-combinations with repeti-

tions from the diameter set D , we obtain 
∑r

k=0

�
n + k − 1

k

�
 equivalent diameters 

for each pipe. To avoid a factorial growth of the number of variables in our models, 
we apply a model reduction technique to our split-pipe models that has been intro-
duced in the literature for the case of single looping several times (e.g. Bhaskaran 
and Salzborn 1979b; Fujiwara and Dey 1987; Zhang and Zhu 1996). We will briefly 
outline this method for the general case of multiple loops.

Our aim is to compare all potential equivalent diameters resulting from both par-
allel pipelines (multiple loops) and serial pipelines (split-pipe setting) with respect 
to their costs and to incorporate into our models only those equivalent diameters that 
are not dominated by equivalent diameters with lower costs. To this end, we place 
all pairs of equivalent diameters D generated according to (4) and their correspond-
ing costs per unit of pipeline length cD according to (5) into a coordinate system 
where the horizontal axis depicts the exponentiated equivalent diameter D−� and the 
vertical axis the cost cD , i.e. we consider the points (D−� , cD) . In this coordinate sys-
tem, the D−� coordinate of each convex combination of points (D−�

i
, cDi

) represents, 
due to (6), an equivalent diameter that results from splitting a looped pipe into sev-
eral sections with equivalent diameters Di each, while the cD coordinate of such a 
convex combination indicates, also due to (6), the corresponding cost of such a split-
pipe arrangement. This is illustrated on the right side of Fig. 1. It shows for an arbi-
trary pipeline the original diameter d−�

a
 of the pipeline, which has zero cost (solid 

circle); all equivalent diameters D−�
da,di

 that result from looping the existing pipeline 
once at cost ci (dots in our diagram); all equivalent diameters D−�

da,di1
,di2

 that result 
from looping the existing pipeline twice at cost ci1 + ci2 (plus signs in the diagram); 
and finally, all equivalent diameters D−�

da,di1
,di2

,di3
 that result from triple looping at cost 

ci1 + ci2 + ci3 , which are represented by crosses in the diagram.
This setting allows us to identify those equivalent diameters among the equivalent 

diameters generated by (4) that are crucial for our models, namely those equivalent 
diameters that are represented by the extreme points of the “efficient frontier” on the 
right side of Fig. 1 (circled in the diagram). All points on the line that represent the 
efficient frontier in our figure correspond to convex combinations of two equivalent 



190 R. Lenz, K. H. Becker 

1 3

diameters, i.e. a split-pipe setting where the pipeline is split into two segments, and 
these points represent the cost minimal ways of equipping a particular arc of the net-
work with a certain equivalent diameter. As a consequence, for finding an optimal 
solution to the capacity extension problem, it suffices to incorporate into our split-
pipe models only the equivalent diameters that correspond to the extreme points of 
the efficient frontier and to discard all others. As we will see when introducing the 
models, this will greatly reduce the number of variables.

In the case of the discrete capacity extension problem, we cannot use convex 
combinations of equivalent diameters and have to get along with the equivalent 
diameters given by (4). Unfortunately, however, we cannot possibly use all equiva-
lent diameters depicted on the right of Fig. 1 for all arcs of the network as this would 
make the problem computationally intractable. For this reason, in our computational 
experiments in Sect. 6 we will restrict our models to the equivalent diameters that 
result from looping an existing pipeline once and, additionally, to those equivalent 
diameters that result from looping an existing pipeline several times and are extreme 
points of the efficient frontier described above. In this way, we may have to do with-
out some potentially cost-minimal diameters, but will keep our models at a reason-
able size and will, due to having incorporated the option of multiple looping, still 
achieve better results than the approaches presented in the literature.

In the following, we denote the set of equivalent extension diameters of pipe a 
that we use in our models by {Da,0, ...,Da,ka

} (sorted in ascending order), where Da,0 
represents the (unlooped) original diameter da of the existing pipe, and the corre-
sponding cost factors by ca,0 < ⋯ < ca,ka . Moreover, for the sake of convenience we 
write [ka] ∶= {0, 1, ..., ka}.

3  Discrete loop expansions

In this section, we present different approaches to model discrete loop expansions. 
We will begin with the model that is closest to our generic formulation of the capac-
ity expansion problem (3).

3.1  Discrete looping with potential function constraints (model A)

To formulate a MINLP on the basis of our generic formulation (3) of the looping 
problem, which can be found, in its discrete version, in several recent papers (e.g. 
André et al. (2009); Bragalli et al. (2012); Robinius et al. (2018)), we have to specify 
the way in which the discrete values of the diameter variables are selected. Here this 
happens in a straight-forward way by means of binary variables �a,i each of which 
represents one diameter Da,i ∈ {Da,0,… ,Da,ka

} . Constraint (7c) ensures that exactly 
one diameter is chosen for each arc a ∈ A , and in constraint (7b) the potential func-
tion has been rewritten in a way such that the chosen diameter is used for modelling 
the potential loss. With these variables �a,i , the objective function is a direct conse-
quence of (5) in conjunction with the generic objective function (3a), while all other 
constraints are identical with the generic model. 
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3.2  Discrete looping with flow direction variables (model B)

This model is based on an approach by Raghunathan (2013) to tackle the network 
design problem. The main difference to the previous model is that we split the flow 
variable xa into two sets of variables x+

a,i
 and x−

a,i
 , which represent the flow on arc a 

with diameter Da,i in forward and backward direction, respectively (see constraint 
(8e)), and correspondingly, variables Δ+

a
,Δ−

a
 that describe the potential drop along 

the arcs according to the flow direction (see constraints (8b) and (8c)). The idea 
behind this formulation is that constraint (7b) uses two nonlinear functions, namely 
the power function and the sign function, and by splitting the variable xa into a part 
for a forward flow and a part for a backward flow, we are able to do without the latter 
function. This comes at a price, however, as we have to introduce additional binary 
variables za to choose between the two flow directions (8g, h).

In his paper, Raghunathan (2013) develops his own solution algorithm to the net-
work design problem, where he uses a convex relaxation of the problem by relaxing 
the potential constraint function  (1) to Δ+

a
≤ Φ(Da,i, x

+
a,i
) and Δ−

a
≤ Φ(Da,i, x

−
a,i
)  for 

all a ∈ A, i ∈ [ka] . In our context here, to model the expansion problem in an exact 
way, our aim is to enforce these equations with equality. In general, this can be 
done in different ways, such as using big-M constraints for modelling the disjunc-
tions ∨ka

i=0
Δ+

a
= Φ(Da,i, x

+
a,i
) and ∨ka

i=0
Δ−

a
= Φ(Da,i, x

−
a,i
) or introducing the following 

constraints: Δ+
a
=
∑ka

i=0
Φ(Da,i, x

+
a,i
) and Δ−

a
=
∑ka

i=0
Φ(Da,i, x

−
a,i
) for all a ∈ A . Pre-

liminary computational tests by the authors of the present paper revealed that the 

(7a)min �,x,�

∑

a∈A

La

ka∑

i=0

�a,ica,i

(7b)s.t. �v − �w = LaRa

(
ka∑

i=0

�a,i

D
�
a,i

)
sgn (xa)|xa|� ∀a ∈ A, (v,w) = r(a)

(7c)
ka∑

i=0

�
a,i = 1 ∀ a ∈ A

(7d)
∑

a∈�+(v)

x
a
−

∑

a∈�−(v)

x
a
= b

v
∀ v ∈ V

(7e)�
v
≤ �

v
≤ �

v
∀ v ∈ V

(7f)x
a
≤ x

a
≤ x

a
∀ a ∈ A

(7g)�
a,i ∈ {0, 1} ∀ a ∈ A, ∀i ∈ [k

a
]
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best performance is achieved with Balas’s convex hull formulation (Balas 1985), i.e. 
when resolving these disjunctions by explicitly modelling the potential drop along 
arc a for diameter Da,i with the variables Δ+

a,i
,Δ−

a,i
 . The model then reads as follows: 

with Δ
+

a
∶= �v − �

w
 and Δ

−

a
∶= �w − �

v
 . Equations (8f–h) model that a non-neg-

ative flow of arc a takes only place along a given direction for the selected diameter 
Da,i inducing the corresponding potential drop. To provide another upper bound on 
the potential loss on the arcs, Raghunathan (2013) introduces further constraints, 
which in our case read Δ−

a,i
≤ LaRa∕D

�
a,i
(xa,i)

�−1
x−
a,i

 and Δ+
a,i

≤ LaRa∕D
�
a,i
(xa,i)

�−1
x+
a,i

.

3.3  Discrete looping with potential difference variables (model C)

The model presented in this section is a novel approach to tackle the nonlineari-
ties of the problem. Instead of introducing variables for the flow direction as in the 
previous model, the idea here is to reduce the two-dimensional function Φ(da, xa) to 

(8a)min �,x,�,Δ,z

∑
a∈A

La

∑ka

i=0
�a,ica,i

(8b)s.t. �
v
− �

w
=
∑

i∈[ka]

(
Δ+

a,i
− Δ−

a,i

)
∀a ∈ A, (v,w) = r(a),

(8c)Δ+
a,i

=
L
a
R
a

D
�
a,i

(x+
a,i
)
�
, Δ−

a,i
=

L
a
R
a

D
�
a,i

(x−
a,i
)� ∀ a ∈ A, ∀i ∈ [k

a
],

(8d)
∑ka

i=0
�
a,i = 1 ∀ a ∈ A, ∀i ∈ [k

a
],

(8e)
∑

a∈�+(v)

∑

i∈[ka]

(x+
a,i
− x

−
a,i
) −

∑

a∈�−(v)

∑

i∈[ka]

(x+
a,i
− x

−
a,i
) = b

v
∀ v ∈ V,

(8f)0 ≤ x
+
a,i

≤ x
a
�
a,i, 0 ≤ x

−
a,i

≤ x
a
�
a,i ∀ a ∈ A, ∀i ∈ [k

a
],

(8g)x
+
a,i

≤ x
a
z
a
, x

−
a,i

≤ x
a
(1 − z

a
) ∀ a ∈ A,

(8h)0 ≤ Δ+
a,i

≤ Δ
+

a
z
a
, 0 ≤ Δ−

a,i
≤ Δ

−

a
(1 − z

a
) ∀ a ∈ A, ∀i ∈ [k

a
],

(8i)z
a
∈ {0, 1} ∀ a ∈ A,

(8j)�
v
≤ �

v
≤ �

v
∀ v ∈ V,

(8k)�
a,i ∈ {0, 1} ∀ a ∈ A, ∀i ∈ [k

a
],
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a one-dimensional function �(xa) . This is achieved by shifting the loop diameters 
from the term that represents the flow towards the potential loss term (see Eq. 9b). 
To this end, we introduce variables Δa,i to model the potential loss that corresponds 
to the loop diameter chosen (constraint 9c) and use the binary variables �a,i not to 
choose the diameters, but to select the potential loss. As a trade-off we have to intro-
duce big-M constraints  (9d) to determine the potential loss variables Δa,i . 

where M(1)

a,i
∶= Φ(Da,i, xa),M

(2)

a,i
∶= Φ(Da,i, xa).

3.4  Further approaches for discrete looping in the literature

There are two further models in the literature for the network design problem, both 
of which are not intended as “stand-alone models”, but as starting points for solu-
tion algorithms. While we will not go into the details of the models here because 
preliminary computational experiments have demonstrated that they do not perform 
particularly well (see Sect. 6.2), the approaches still deserve mentioning.

Borraz-Sánchez et al. (2016) present an MINLP formulation that is similar to the 
model developed by Raghunathan (2013) (Sect. 3.2) in the sense that it distinguishes 

(9a)min �,x,�,Δ

∑
a∈A

La

∑ka

i=0
�a,ica,i

(9b)s.t. sgn (xa)|xa|� −
∑ka

i=0

D
�
a,i

LaRa

Δa,i = 0 ∀ a ∈ A,

(9c)
∑ka

i=0
Δa,i = �v − �w ∀a ∈ A, (v,w) = r(a),

(9d)M
(1)

a,i
�a,i ≤ Δa,i ≤ M

(2)

a,i
�a,i ∀a ∈ A, ∀i ∈ [ka],

(9e)
∑ka

i=0
�a,i = 1 ∀ a ∈ A,

(9f)
∑

a∈�+(v)

xa −
∑

a∈�−(v)

xa = bv ∀ v ∈ V,

(9g)�
v
≤ �v ≤ �v ∀ v ∈ V,

(9h)�
v
− �w ≤ Δa,i ≤ �v − �

w
∀a ∈ A, ∀i ∈ [ka],

(9i)x
a
≤ xa ≤ xa ∀ a ∈ A,

(9j)�a,i ∈ {0, 1} ∀a ∈ A, ∀i ∈ [ka],
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between forward and backward flow directions. Here, however, this is achieved by 
binary variables z+

a
, z−

a
 that are then used to model the potential loss function in 

product form �a,i(z+a − z−
a
)(�v − �w) = LaRa∕D

�
a,i
x�.

Humpola (2014) uses indicator constraints to select arcs a in the network design 
problem (or diameters Da,i in the context of our expansion problem), i.e. constraints 
of the form �a,i = 1 ⇒ �v − �w = Φ(da,i, xa) and �a,i = 0 ⇒ xa,i = 0 , which may be 
represented by big-M constraints in a MINLP model.

3.5  Equivalence of the discrete models

To finish our section on discrete models for the capacity expansion problem, we 
show that the three models presented so far are equivalent. More precisely, we show 
that for each solution to one of the models, there exist solutions to the other two 
models such that all of them represent the (1) same physical network state in terms 
of flow and pressure, (2) same decisions on loop extensions, and (3) same objec-
tive function values. To this end, we use the standard projection to map the feasible 
regions of the discrete models onto the space of their common variables, i.e. onto 
the 

(
(�v, �a,i)v∈V ,a∈A,i∈[ka]

)
-space: In this context we denote the feasible regions of the 

discrete models as: XA for Model A, XB for Model B and XC for Model C.

Proposition 2 The discrete Models A, B and C are equivalent, i.e.

Proof “XA ⊆ XC ”: Let (x̃a, �̃�v, �̃�a,i)a∈A,v∈V,i∈[ka]
 be a solution of Model  A, i.e. 

(�̃�v, �̃�a,i)a∈A,v∈V,i∈[ka]
∈ XA . Then (9e–g) and (9i,j) follow right away with 

(x̃a, �̃�v, �̃�a,i)a∈A,v∈V,i∈[ka]
 . For pipe a, let ǐa ∈ [ka] be such that �̃�a,ǐa = 1 and define

Then Eq.  (9b) follows by construction, (9c) equals (7b) and (9d) holds by virtue 
of M(1)

a,i
= Φ(Da,ǐa

, x
a
),M

(2)

a,i
= Φ(Da,ǐa

, xa) and (9h) follows from (9c) and (9g). Thus, 
(x̃a, �̃�v, �̃�a,i,Δa,i)a∈A,v∈V,i∈[ka]

 is a solution of Model C, and (�̃�v, �̃�a,i)v∈V,a∈A,i∈[ka]
∈ XC.

“XC ⊆ XA ”: Let 
(
xa,�v, �a,i,Δa,i

)
a∈A,v∈V,i∈[ka]

 be a solution of Model  C, i.e. 
(
�v, �a,i

)
v∈V,a∈A,i∈[ka]

∈ XC . With 
(
xa,�v, �a,i,Δa,i

)
a∈A,v∈V,i∈[ka]

 , Eq. (7b) follows from 
(9b–d) and (7c–g) equals (9e–g), (9j–i). Hence, 

(
�v, �a,i

)
v∈V,a∈A,i∈[ka]

∈ XA.

XA = Proj �v,�a,i

{(
�v, �a,i, xa

)
|
(
�v, �a,i, xa

)
satisfy Eqs. (7b) − (7g)

}
,

XB = Proj �v,�a,i

{(
�v, �a,i, x

+
a,i
, x−

a,i
,Δ+

a,i
,Δ−

a,i
, za

)
|
(
�v, �a,i, x

+
a,i
, x−

a,i
,Δ+

a,i
,Δ−

a,i
, za

)

satisfy Eqs. (8b) − (8k)},

XC = Proj �v,�a,i

{(
�v, �a,i, xa,Δa,i

)
|
(
�v, �a,i, xa,Δa,i

)
satisfy Eqs. (9b) − (9j)

}
.

XA = XC = XB.

Δa,i ∶=

{
0 ∀i ∈ [ka] ⧵ {ǐa}
LaRa

D
𝛽
a,i

sgn (x̃a)|x̃a|𝛼 i = ǐa.
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“XA ⊆ XB ”: Let (�̃�v, �̃�a,i, x̃a)v∈V,a∈A,i∈[ka]
 be a solution of Model  A, that is, 

(�̃�v, �̃�a,i)v∈V,a∈A,i∈[ka]
∈ XA . For pipe a let ǐa ∈ [ka] be such that �̃�a,ǐa = 1 . We set 

x+
a,i
, x−

a,i
,Δ+

a,i
,Δ−

a,i
∶= 0 for all i ∈ [ka] ⧵ {ǐa} . 

Case 1:  if x̃a ≥ 0 , define x+
a,ǐa

∶= x̃a, x
−

a,ǐa
= 0 and Δ+

a,ǐa
∶= �̃�v − �̃�w and za ∶= 1.

Case 2:  if x̃a < 0 , define x+
a,ǐa

= 0, x−
a,ǐa

∶= −x̃a and Δ−

a,ǐa
∶= �̃�w − �̃�v and za ∶= 0 . 

Then in both cases (8b) – (8k) hold. Hence, (�̃�v, �̃�a,i)v∈V,a∈A,i∈[ka]
∈ XB.

“XB ⊆ XA”:

Let 
(
x+
a,i
, x−

a,i
, za,�v, �a,i,Δ

+
a,i
,Δ−

a,i

)

a∈A,v∈V,i∈[ka]
 be a solution of Model  B, i.e. 

(�v, �a,i)v∈V,a∈A,i∈[ka]
∈ XB . Set x̃a ∶=

∑
i∈ka

(x+
a,i
− x−

a,i
) for all a ∈ A , then the equa-

tions of Model A are satisfied. Hence, (�v, �a,i)v∈V,a∈A,i∈[ka]
∈ XA .   ◻

4  Split‑pipe loop expansions

In this section, we present two equivalent modelling approaches for continuous loop 
expansions. The first one is a model common in the literature (e.g. Alperovits and 
Shamir 1977; Zhang and Zhu 1996), while the second one is a novel approach.

4.1  Split‑pipe looping with length variables (Model D)

This split-pipe model is identical to the first discrete Model  A, except that the 
indicator variables �a,i ∈ {0, 1} have been relaxed to continuous length variables 
�a,i ∈ [0, 1] here, turning the MINLP of Sect.  3.1 into a NLP. As explained in 
Sect. 2.3, these length variables denote the proportion of pipe a that is looped with 
diameter Da,i , i.e. for each arc a, the pipeline consists of segments of those equiva-
lent diameters Da,i for which 𝜆a,i > 0 . 

4.2  Split‑pipe looping with efficient frontier constraints (Model E)

In the previous section, we modelled the efficient frontier of equivalent diam-
eters using length variables �a,i to express convex combinations of the equivalent 

(10a)minimize �,x,�

∑
a∈A

La

∑ka

i=0
�a,ica,i

(10b–f)s.t. (7b) − (7f )

(10g)�a,i ∈ [0, 1] ∀ a ∈ A, ∀i ∈ [ka]
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diameters Da,i that are the extreme points of the frontier. In the present section, the 
efficient frontier is modelled explicitly by using linear constraints.

As the efficient frontier consists of points (D−� , c) (cf. Sect. 2.3), we introduce new 
continuous variables ya to model the exponentiated diameter (see constraints(11b, g) 
and variables ca that represent the costs per unit length of pipe a for the equivalent 
diameters (see (11h) and the objective function). On this basis, the efficient frontier 
can be represented by linear constraints  (11d), each of which models the frontier 
between a pair of adjacent extreme points (cf. the right side of Fig. 1). The param-
eters sa,i and ta,i can be calculated in advance as sa,i = (ca,i − ca,i+1)∕(D

−�
a,i

− D
−�
a,i+1

) 
and ta,i = −sa,iD

−�
a,i+1

+ ca,i+1 . 

Note that the bounds in (11g) can be calculated as y
a
= D

−�
a,ka

 and ya = D
−�
a,0

.

4.3  Equivalence of the split‑pipe models

To compare the feasible regions of the split-pipe Models D and E, we use the stand-
ard projection to map their feasible regions onto the space of their common vari-
ables, i.e. onto the 

(
(�v, xa)v∈V,a∈A

)
-space:

(11a)min y,c,x,�

∑
a∈A

Laca

(11b)s.t. �v − �w = LaRaya sgn (xa)|xa|� ∀a ∈ A, (v,w) = r(a)

(11c)
∑

a∈�+(v)

xa −
∑

a∈�−(v)

xa = bv ∀ v ∈ V

(11d)ca ≥ sa,iya + ta,i ∀a ∈ A, ∀i ∈ [ka − 1]

(11e)�
v
≤ �

v
≤ �

v
∀ v ∈ V

(11f)x
a
≤ x

a
≤ x

a
∀ a ∈ A

(11g)y
a
≤ y

a
≤ y

a
∀ a ∈ A

(11h)c
a
≥ 0 ∀ a ∈ A

XD = Proj �v,xa

{(
�v, xa, �a,i

)
|
(
�v, xa, �a,i

)
satisfy Eqs. (10b) − (10g)

}
,

XE = Proj �v,xa

{(
�v, xa, ya, ca

)
|
(
�v, xa, ya, ca

)
satisfy Eqs. (11b) − (11h)

}
.
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The feasible region of Model D is a subset of the feasible region of Model E due to 
the inequality constraints (11d), i.e. XD ⊆ XE . But since the objective is to minimize 
the cost for building loops, solutions of both models are forced to be on the efficient 
frontier. The proof of the following proposition formalizes this argument.

Proposition 3 Each optimal solution to Model D is an optimal solution to Model E, 
and vice versa.

Proof (i) Let (x∗
a
,�∗

v
, �∗

a,i
)a∈A,v∈V,i∈[ka]

 be an optimal solution of Model  D, i.e. (
x∗
a
,�∗

v

)
a∈A,v∈V,i∈[ka]

∈ XD . According to Fujiwara and Dey (1987), an optimal solu-
tion has the property that each arc consists of at most two pipe segments, where the 
corresponding equivalent diameters correspond to adjacent extreme points of the 
efficient-frontier {(D−�

a,0
, ca,0),… , (D

−�
a,ka

, ca,ka )} . Hence, for all a ∈ A there exists a 
unique i0 ∈ [ka − 1] such that 0 ≤ �∗

a,i0
, �∗

a,i0+1
≤ 1 with �∗

a,i0
+ �∗

a,i0+1
= 1 and 

�∗
a,i

= 0 ∀i ∈ [ka] ⧵ {i0, i0 + 1} . Define

Then, (x∗
a
,𝜋∗

v
, ỹa, c̃a)a∈A,v∈V,i∈[ka]

 obviously fulfils the variable bounds  (11e–g) and 
Eq. (11c). From (10b) and the definition of ỹ follows (11b). We now show that (11d) 
holds: From our definition of ỹa , we obtain

Since the objective is to minimize and the slopes sa,i in (11d) are decreasing for 
increasing i, we have c̃a = sa,i0 ỹa + ta,i0 = maxi∈[ka−1] sa,iỹa + ta,i which implies 
c̃a ≥ sa,iỹa + ta,i for all a ∈ A and for all i ∈ [ka − 1] , and hence, the solution of 
Model D satisfies (11d). Therefore, all optimal solutions of Model D are feasible for 
Model  E, i.e. 

(
x∗
a
,�∗

v

)
a∈A,v∈V,i∈[ka]

∈ XE . The optimal objective function value of 
Model D is 

∑
a∈A La(�

∗
a,i0

ca,i0 + �∗
a,i0+1

ca,i0+1) and equals 
∑

a∈A Lac̃a by construction.
(ii) Let 

(
x∗
a
,�∗

v
, y∗

a
, c∗

a

)
a∈A,v∈V

 be an optimal solution of Model  E, that is, (
x∗
a
,�∗

v

)
a∈A,v∈V

∈ XE . Consider i0 ∈ [ka − 1] such that D−�
a,i0+1

≤ y∗
a
≤ D

−�
a,i0

 . Then, 
there exist unique 0 ≤ �a,i0 , �a,i0+1 ≤ 1 with �a,i0 + �a,i0+1 = 1 such that 

ỹa ∶= 𝜆∗
a,i0

D
−𝛽
a,i0

+ 𝜆∗
a,i0+1

D
−𝛽
a,i0+1

and c̃a ∶= 𝜆∗
a,i0

ca,i0 + 𝜆∗
a,i0+1

ca,i0+1.

(12)ỹa = 𝜆a,i0 (D
−𝛽
a,i0

− D
−𝛽
a,i0+1

) + D
−𝛽
a,i0+1

(13)⇔ 𝜆a,i0 (ca,i0 − ca,i0+1) =
ca,i0 − ca,i0+1

D
−𝛽
a,i0

− D
−𝛽

a,i0+1

(ỹa − D
−𝛽

a,i0+1
)

(14)⇔ 𝜆a,i0ca,i0 + 𝜆a,i0+1ca,i0+1 =
ca,i0 − ca,i0+1

D
−𝛽
a,i0

− D
−𝛽

a,i0+1

(ỹa − D
−𝛽

a,i0+1
) + ca,i0+1

(15)⇔ c̃a = sa,i0 ỹa + ta,i0 .
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y∗
a
= �a,i0D

−�
a,i0

+ �a,i0+1D
−�
a,i0+1

 for all a ∈ A . We set �a,i ∶= 0 for all 
i ∈ [ka] ⧵ {i0, i0 + 1} ; then, (x∗

a
,�∗

v
, �a)a∈A,v∈V,i∈[ka]

 fulfils (10b–g). Hence, (
x∗
a
,�∗

v

)
a∈A,v∈V,i∈[ka]

∈ XD . Therefore, all optimal solutions of Model E are feasible 
for Model D, i.e. 

(
x∗
a
,�∗

v

)
a∈A,v∈V,i∈[ka]

∈ XD.
From (11d), we have c∗

a
= sa,i0y

∗
a
+ ta,i0 . However, rearranging 

y∗
a
= �a,i0D

−�
a,i0

+ �a,i0+1D
−�
a,i0+1

 as in (12) to (14) yields �a,i0ca,i0 + �a,i0+1ca,i0+1 = sa,i0y
∗
a
+ ta,i0

 ; 
hence, 

∑
a∈A La (�a,i0ca,i0 + �a,i0+1ca,i0+1) =

∑
a∈A Lac

∗
a
 .   ◻

4.4  Comparison of relaxations

In this section, we consider the continuous relaxations of the discrete models. As 
solvers relax the combinatorial part during the solution procedure, the tightness of 
the continuous relaxation plays a major role for the performance of the models. To 
this end, we use the standard projection to map their feasible regions onto the space 
of their common variables, i.e. onto the 

(
(�v, xa)v∈V,a∈A

)
-space: In the following, we 

denote the feasible regions of the continuous relaxations of the discrete Models A, B 
and C by XA, rel , XB, rel and XC, rel , respectively (Fig. 2).

XA,rel = Proj �v ,�a,i

{(
�v, �a,i, xa

)
|
(
�v, �a,i, xa

)
satisfy Eqs. (7b) − (7f )

and �a,i ∈ [0, 1] ∀a ∈ A,∀i ∈ [ka]
}
,

XB,rel = Proj �v ,�a,i

{(
�v, �a,i, x

+
a,i
, x−

a,i
,Δ+

a,i
,Δ−

a,i
, za

)
|
(
�v, �a,i, x

+
a,i
, x−

a,i
,Δ+

a,i
,Δ−

a,i
, za

)

satisfy Eqs. (8b) − (8h), (8j) and za, �a,i ∈ [0, 1] ∀a ∈ A,∀i ∈ [ka]
}
,

XC,rel = Proj �v ,�a,i

{(
�v, �a,i, xa,Δa,i

)
|
(
�v, �a,i, xa,Δa,i

)
satisfy Eqs. (9b) − (9i)

and �a,i ∈ [0, 1] ∀a ∈ A,∀i ∈ [ka]
}
.

Fig. 2  Relation of feasible regions. The highlighted relations in grey are proved as propositions. The 
other relations X

A
⊆ X

A,rel , XC
⊆ XC, rel and X

B
⊆ XB, rel are the canonical continuous relaxations of the 

corresponding discrete models. Proposition 2 also implies X
C
,X

B
⊆ X

A,rel . Since X
D
= X

A,rel , the split-
pipe model can be seen as a relaxation of Models A, B and C
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Proposition 4 Let � ≠ 1 . Then, the following relationships hold for the continuous 
relaxation of Models A, B and C: 

1. XA,rel ⊆ XC, rel but XC, rel ≠ XA,rel,
2. XA,rel ⊈ XB, rel and XB, rel ⊈ XA,rel,
3. XC,rel ⊈ XB, rel and XB, rel ⊈ XC,rel.

Proof “XA,rel ⊆ XC, rel”:

Let (x̃a, �̃�v, �̃�a,i)a∈A,v∈V,i∈[ka]
 be a solution to the continuous relaxation of Model A, 

i.e. (�̃�v, �̃�a,i)a∈A,v∈V,i∈[ka]
∈ XA,rel . We show that it can be transformed to a point in 

XC, rel . First, (x̃a, �̃�v, �̃�a,i)a∈A,v∈V,i∈[ka]
 satisfy Eqs. (9e–g) and (9i). By defining

the potential loss constraint (9c) and the bounds of Δa,i (9h) are satisfied. With 
M

(1)

a,i
= Φ(Da,i, xa) , M

(2)

a,i
= Φ(Da,i, xa) , the big M-formulation  (9d) holds by con-

struction. Equation (9b) also holds, since

hence, (x̃a, �̃�v, �̃�a,i,Δa,i)a∈A,v∈V,i∈[ka]
 is a solution of the continuous relaxation of 

Model C, i.e. XA,rel ⊆ XC, rel.
The remaining relations between the continuous relaxations of the discrete mod-

els are shown by counter examples. Throughout we consider a single pipe a = (v,w) 
with LaRa = 1,D

�
a,0

= 1,D
�
a,1

= 2 for given 𝛼 > 0 and 𝛽 > 0.
“XC, rel ⊈ XA,rel and XB, rel ⊈ XA,rel”:

Let bv =
�
√
100 , bw = −

�
√
100 and �v,�w ∈ [0, 3600] be given. Then, (�a,0, �a,1 , 

�v,�w) ∶= (0.5, 0.5, 3600, 3500) ∈ XB,rel,XC,rel , where the the remaining vari-
ables of Model B are given by e.g. x+

a,0
=

�
√
100, x+

a,1
= 0, x−

a,0
= 0, x−

a,1
= 0, za = 1 , 

Δ+
a,0

= 100,Δ+
a,1

= 0,Δ−
a,0

= 0,Δ−
a,1

= 0 , and of Model  C by xa =
�
√
100 and 

Δa,0 = 100,Δa,1 = 0 . However, (�a,0, �a,1,�v,�w) ∶= (0.5, 0.5, 3600, 3500) ∉ XD , 
where the remaining variable xa =

�
√
100 is uniquely determined by Eq. (7d), which 

contradicts Eq. (7b), i.e.
�v − �w = 100 ≠ 0.75

�
�
√
100

��

=
∑ka

i=0
(�a,i∕D

�
a,i
) sgn (xa)�xa��.

“XA,rel ⊈ XB, rel and XC, rel ⊈ XB, rel”:
Now slightly change the above example to bv = 1000 = −bw . Moreover, we set 

xa = 1000 . Then (�a,0, �a,1, �v,�w) ∶= (0.5, 0.5, 3∕4 × 1000� , 0) ∈ XA,rel,XC,rel , 

(16)Δ
a,i ∶= �

a,i sgn (xa)|xa|�LaRa
D

−�
a,i

∀a ∈ A, ∀i ∈ [k
a
]

⇒

∑ka

i=0
Δ

a,i

(16)
= sgn (x

a
)|x

a
|�
∑ka

i=0
�
a,iLaRa

D
−�
a,i

(10b)
= �

v
− �

w
∀a ∈ A,

(16)

⇒�a,i sgn (xa)|xa|� =
D

�
a,i

LaRa

Δa,i ∀a ∈ A, ∀i ∈ [ka],

⇒

ka∑

i=0

�a,i sgn (xa)|xa|� =

ka∑

i=0

D
�
a,i

LaRa

Δa,i

(9e)

⇒ sgn (xa)|xa|� =

ka∑

i=0

D
�
a,i

LaRa

Δa,i ∀a ∈ A,
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where the remaining variables of the continuous relaxation of Model  A 
are given by xa = 1000 and of the continuous relaxation of Model  C 
by Δa,0 = 1∕2 × 1000� , Δa,1 = 1∕4 × 1000� and xa = 1000 . However, 
(�a,0, �a,1,�v,�w) = (0.5, 0.5, 0.75 × 1000� , 0) ∉ XB, rel , because it  fol-
lows from Eqs.  (8e–f) that x+

a,0
= x+

a,1
= 500 = 0.5 xa and x−

a,0
= x−

a,1
= 0 , 

and from (8c, g)  it follows  that za = 0.5 and Δ+
a,0

= 500� and 
Δ+

a,1
= 0.5 × 500� and Δ−

a,0
,Δ−

a,1
= 0 . With these values, (8b) implies ∑

i∈[ka]
(Δ+

a,i
− Δ−

a,i
) = 3∕2 × 500� ≠ 3∕4 × 1000� = �v − �w for � ≠ 1.

“XB, rel ⊈ XC, rel”:

We now choose bv =
�
√
75 = −bw and set x

a
> 0 . Then (�a,0, �a,1,�v,�w, 

x+
a,0
, x+

a,1
, x−

a,0
, x−

a,1
, za, Δ+

a,0
,Δ+

a,1
,Δ−

a,0
,Δ−

a,1
) ∶= (0.75, 0.25, 3600, 3525,

�
√
75, 0, 0, 0, 1, 

75, 0, 0, 0) ∈ XB, rel . However, (�a,0, �a,1,�v,�w) = (0.75, 0.25, 3600, 3525) ∉ XC, rel , 
since xa =

�
√
75 follows uniquely from (9f), which together with Eq.  (9b) leads to 

Δa,0 + 2Δa,1 = 75 . Moreover, from Eq. (9d) it follows that Δa,0,Δa,1 > 0 , since 
𝜆a,0, 𝜆a,1 > 0 and  M(1)

a,i
= Φ(Da,i, xa) > 0 holds by virtue of x

a
> 0 .  But then, Eqs. 

(9b) and (9c) cannot be satisfied simultaneously, because (9c) yields Δa,0 + Δa,1 = 75.

5  Multi‑scenario modelling

Expansion planning is a long-lasting process that involves high investment costs. 
Hence, practitioners seek network extensions that enable feasible operations even 
for different possible future demand scenarios. In practice, this process is typically 
approached as follows: Firstly operators typically identify multiple “bottleneck sce-
narios” that stress the network. Afterwards, they run simulations in order to decide 
on network expansions that ideally resolve all bottlenecks at once.

For the problem of finding optimal gas network extensions for multiple demand scenar-
ios, a model formulation and an algorithmic solution approach based on scenario decom-
position has already been developed in the literature, see e.g. Schweiger (2016); Schweiger 
and Liers (2018). While these authors consider general new pipelines as extension candi-
dates, we focus on loops in this paper. More precisely, we extend the formulations of the 
Models A, D and E from Sects. 3 and 4 to the case of multiple scenarios, which we simply 
denote as Models A-MS, D-MS and E-MS. These three models have been chosen on the 
basis of our computational results in the single-scenario case (see Sects. 6.2–6.4).

It is well known that network expansions might worsen the flow situation and might 
allow for less network throughput or might render previously feasible instances as infea-
sible. This phenomenon is known as Braess’s paradox (Braess 1968) and has been 
shown to appear in nonlinear potential-driven networks, too, see Calvert and Keady 
(1993). To prevent the Braess phenomenon, most authors in the literature equip pipe-
line extensions with valves to allow for the flow and pressure patterns that were possible 
prior to the extension. Similarly, our modelling approaches in the following are equipped 
with binary variables that enable the model to switch off loops in individual scenarios.
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5.1  Discrete looping with length variables (model A‑MS)

The expansion planning problem for multiple demand scenarios � ∈ Ω concerns the 
cost-minimal selection of pipes to be looped such that the corresponding network ena-
bles feasible operation for each single scenario involved. For this purpose, we present a 
two-stage stochastic program, where the first-stage variables �a,i denote whether exten-
sions are built. All remaining variables of the original model A have become scenario-
dependent recourse variables. As we would like to allow the model to switch off loops 
in individual scenarios, we modify the potential loss function to 
�v,� − �w,� = LaRa

�
�a,�

∑ka
i=0

�a,iD
−�
a,i

+ (1 − �a,�)D
−�
a,0

�
sgn (xa,�)�xa,��� , where the 

newly introduced binary variable �a,� indicates whether a loop extension of pipe a ∈ A 
is used in scenario � ∈ Ω . This happens if �a,� = 1 and 𝜆a,i > 0 for some i ∈ [ka] ⧵ {0} 
is satisfied. In the case that an extension is not used, i.e. �a,� = 0 , the potential loss 
function reduces to its original form as given in Eq. (7b). Moreover, to avoid the result-
ing nonlinear product of binary variables, we introduce a continuous variable 
�a,� = �a,�

∑ka
i=0

�a,iD
−�
a,i

 and linearize the product by virtue of Constraints (17–f). 

(17a)min �,x,�,�

∑

a∈A

La

ka∑

i=0

�a,ica,i,

(17b)

s.t. �v,� − �w,� =

LaRa

(
�a,� +

1 − �a,�

D
�

a,0

)
sgn (xa,�)|xa,�|� ∀a ∈ A, (v,w) = r(a),∀� ∈ Ω,

(17c)
ka∑

i=0

�a,i = 1 ∀ a ∈ A,

(17d)�a,� ≤ D
−�
a,0
�a,� ∀a ∈ A, ∀� ∈ Ω,

(17e)�a,� ≤
∑

i∈[ka]

�a,i

D
�
a,i

∀a ∈ A, ∀� ∈ Ω,

(17f)
∑

i∈[ka]

�a,i

D
�
a,i

≤
1 − �a,�

D
�

a,0

+ �a,� ∀a ∈ A, ∀� ∈ Ω,

(17g)
∑

a∈�+(v)

xa,� −
∑

a∈�−(v)

xa,� = bv,� ∀ v ∈ V , ∀� ∈ Ω,

(17h)�
v
≤ �v,� ≤ �v ∀ v ∈ V, ∀� ∈ Ω,
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5.2  Split‑pipe looping with length variables (model D‑MS)

As it is the case with Models A and D, the following split-pipe looping model D-MS is 
identical to the discrete Model A-MS with the only difference being that the variables 
�a,i ∈ {0, 1} are relaxed to continuous variables �a,i ∈ [0, 1] . 

5.3  Split‑pipe looping with efficient‑frontier constraints (model E‑MS)

In our extension of Model E to a two-stage stochastic program, the first-stage variables 
are given by the ya-variables, whereas the remaining variables are scenario-dependent 
second-stage variables. To indicate whether a loop extension of pipe a ∈ A is used in 
scenario � ∈ Ω and to represent the corresponding impact of the loop extension on the 
pressure loss, we introduce a binary variable �a,� and a continuous variable ya,� . Then, 
Constraints  (19j–m) guarantee that ya,� = ya holds if the loop extension of pipe a is 
used, i.e. if �a,� = 1 . Accordingly, if the loop extension is not used, i.e. �a,� = 0 , then 
ya,� = ya is satisfied, which guarantees that the pressure loss Constraint (19b) reduces 
to the original form as given in (11b).

The model then reads as follows: 

(17i)x
a
≤ xa,� ≤ xa ∀ a ∈ A, ∀� ∈ Ω,

(17j)�a,� ∈ ℝ≥0 ∀ a ∈ A,∀� ∈ Ω,

(17k)�a,� ∈ {0, 1} ∀ a ∈ A, ∀� ∈ Ω,

(17l)�a,i ∈ {0, 1} ∀ a ∈ A, ∀i ∈ [ka].

(18a)min �,x,�,�

∑

a∈A

La

ka∑

i=0

�a,ica,i,

(18b–18k)s.t. (17b) − (17k)

(18l)�a,i ∈ [0, 1] ∀ a ∈ A, ∀i ∈ [ka]

(19a)min y,c,x,�,�

∑
a∈A

Laca

(19b)
s.t. �v,� − �w,� = LaRaya,� sgn (xa,�)|xa,�|� ∀a ∈ A, (v,w) = r(a),∀� ∈ Ω,

(19c)
∑

a∈�+(v)

xa,� −
∑

a∈�−(v)

xa,� = bv,� ∀ v ∈ V,∀� ∈ Ω,
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6  Computational study

In this computational study, we first investigate the performance of the discrete mod-
els and then compare the split-pipe models. In a third step, we analyse the difference 
in the performance of the discrete versus the split-pipe models. Especially from the 
point of view of practical applications, it is important to see whether the split-pipe 
approach can lead to significant cost-savings when compared to the discrete looping 
approach. Finally, we evaluate the models in multiple-scenario cases. As this paper 
is primarily focussed on providing useful results for practitioners, all test instances 
used in the following have been designed to be as close to real-world scenarios as 
possible. This includes, for example, the network data, the cost function for loops 
and the number of parallel loops and scenarios considered.

6.1  Experimental setup

The experiments were conducted on a cluster of 64-bit Intel Xeon CPU E5-2670 v2 
CPUs at 2.5GHz with 25MB cache and 128GB main memory. In order to safeguard 
against a potential mutual slowdown of parallel processes, we bind the processes to 

(19d)ca ≥ sa,iya + ta,i ∀a ∈ A, ∀i ∈ [ka − 1],

(19e)�
v
≤ �v,� ≤ �v ∀ v ∈ V,∀� ∈ Ω,

(19f)x
a,�

≤ xa,� ≤ xa,� ∀ a ∈ A,∀� ∈ Ω,

(19g)y
a
≤ ya ≤ ya ∀ a ∈ A,

(19h)ca ≥ 0 ∀ a ∈ A,

(19i)�a,� ∈ {0, 1} ∀a ∈ A,∀� ∈ Ω,

(19j)y
a
≤ ya,� ≤ ya ∀a ∈ A,∀� ∈ Ω,

(19k)ya ≤
(
ya − y

a

)
�a,� + ya,� ∀a ∈ A,∀� ∈ Ω,

(19l)ya ≤ ya
(
1 − �a,�

)
+ ya,� ∀a ∈ A,∀� ∈ Ω,

(19m)ya,� ≤ ya
(
1 − �a,�

)
+ ya ∀a ∈ A,∀� ∈ Ω.
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specific cores and run at most 4 jobs per node. We solve the split-pipe and discrete 
expansion planning problems to global optimality using the nonconvex MINLP 
solver SCIP version 5.0.1 with CPLEX 12.7.1 as LP solver and Ipopt 3.12.6 as NLP 
solver. In all experiments, we ran SCIP with default settings and set a time limit of 
four hours. This time limit seems reasonable for practical purposes since expansion 
planning is carried out with a long-term perspective and decisions on short notice 
are not required as in daily operations. We solve the instances to �-global optimal-
ity with a gap limit of � = 10−4 . As performance measure, we use the number of 
solved instances, the runtime and the number of Branch-and-Bound nodes. In order 
to reduce the impact of very easy or hard instances in the mean values, we report the 
shifted geometric mean ( n

√∏
(ti + s) − s) for values t1, ..., tn with a shift of s = 10 for 

the runtime in [sec] and s = 100 for the number of branch and bound nodes. Addi-
tionally, we report the arithmetic mean of the computation time to indicate the time 
required for applications in practice.

The computational study was carried out on different data sets that vary in size 
and structure and are based on two major types of potential-driven networks: gas 
networks and water networks. As the starting point, we used the Belgian gas net-
work from the GAMS model library, which has a simple, almost tree-shaped struc-
ture (with the only exception being 5 arcs that have 2 parallel pipelines) and is of a 
rather smaller size. We continued our computational experiments on the GasLib-40 
network (Schmidt et al. 2017), to test the models on a network that is considerably 
larger and more complex. As the basis for our water instances, the well-known New 
York network (library of instances at the operations research group in Bologna) was 
employed. Finally, to focus not only on computational difficulties that arise from the 
size of the network, we systematically investigate the impact of cycles on the model 
performance and generated extended versions of the Belgian networks by adding 2 
to 10 additional arcs. The details about different networks are found in Table 1 and 
Fig.  3. We note that originally the Belgian and the GasLib-40 network contain a 
small number of compressor stations the treatment of which is outside the scope of 
this paper. In the case of the Belgian network, we used data available in the GAMS 
model library to model these as normal pipelines, while arcs representing compres-
sor stations had to be contracted in the case of the GasLib-40 network due to lack of 
available data.

For each network, we generated instances that cover a wide range of possible net-
work demands. It is known in practice that increasing the overall network demand 
typically results in more complex transport situations that stress the networks. Prac-
titioners therefore use the so-called transport moment to detect severe demand situ-
ations by approximating the transport load in the network (cf. Hiller et  al. 2018). 
It can even be observed in many computational experiments that higher network 
demands tend to slow down the model performance, provided that the transport 
situations are not trivially infeasible. Hence, to test the performance of the mod-
els in diverse and severe situations, we consider different demand loads that repre-
sent the whole spectrum from “easier” instances with lower demands up to “harder” 
instances with higher demands for each network.

Throughout, we randomly generated scenarios for each given total network 
demand B according to a random uniform distribution of the demand at sources 
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and sinks. More precisely speaking, for all sources and for all sinks we generated 
uniformly distributed independent random numbers rv ∈ [0, 1) and then normalized 
the source and sink flows to calculate the demand as Xv = B rv∕

∑
v∈W rv . For each 

given total demand and for each network, we generated 500 scenarios because pre-
liminary tests indicated that this sample size leads to sufficiently stable results for 
the given distribution with respect to model performances. Including preliminary 
tests, we calculated about 300000 instances. Due to this large number and variety 
of instances, we can assume that the results provide us with a representative picture 
for model comparisons. Here, we present a selection of 5500 different demand sce-
narios and a total of 40000 instances that represent the major effects observed (for 
further results see Lenz 2021).

Throughout the data sets, the expansion capacities of all instances are given by 
the diameter candidates {Da,0,… ,Da,ka

} resulting from at most triple loops, i.e. in 
the discrete case each arc of the network may consist of up to three pipelines in par-
allel, while in the split-pipe case up to three parallel pipelines are possible for each 
arc segment.

In our experiments, we use a quadratic cost function as this is the most common 
form in practical applications, (see e.g. De Wolf and Smeers 1996; Parker 2005). The 
data points for the cost function used for the gas related instances are shown on the 
left in Fig. 1 and were provided to us by practitioners, and for the water instances, it 
was part of the New York network data. (Cost functions from linear to cubic can also 
be found in the literature, see Osiadacz and Górecki (1995) and Babonneau et  al. 
(2012), for example, and were used as part of our preliminary tests.)

Summarizing, with the maximum number of parallel loops fixed to 3 and the 
quadratic cost function being given, one instance is characterized by the choice of 
network and demand scenario.

The computational results for the comparison of the discrete models are found in 
Tables 2,  3, 4 and 5 and for the comparison of the split-pipe models in Tables 6, 7 
and 8. The tables are structured as follows: each column contains the results of 500 
instances with the only variable parameter being the total network demand B . The 
computational results within a column are grouped into three categories: (1) In the 

Source

Sink

Transshipment node

Original pipe

Additional pipe

+2

+2

+4

+4

+6

+6

+8

+8

+10

+10

Belgium GasLib-40 New York(a) (b) (c)

Fig. 3  Belgian (a) and GasLib-40 (b) and New York networks (c) in schematic view, being illustrated by 
the bold lines. Dotted lines indicate the Belgian network with +2,+4,+6,+8,+10 additional arcs
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section All instances, we provide a summary of the results of all 500 instances and 
indicate the number of solved instances ( 

∑
 # solved), which includes the optimal 

solved instances (# opt) and the instances that were detected as infeasible (# infeas). 
Moreover, we state the number of instances, where at least one feasible solution was 
found within the time limit (# sol found), no matter whether optimality was shown 
for this solution. For all remaining instances, no feasible solution was found within 
the time limit nor was infeasibility proved. (2) The section All opt reports data for all 
instances for which all models under comparison have found an optimal solution. (3) 
In the section Only opt by, we compare the models with respect to the instances that 
they alone were able to solve to global optimality.

In all three cases, we report computational time by means of the shifted geomet-
ric mean (sgm) and the arithmetic mean (amm). For instances that are solved to 
optimality by all models, we additionally present the sgm of the number of Branch-
and-Bound nodes.

6.2  Comparison of discrete models (Models A, B and C)

We begin our computational experiments with the Belgian gas network, which 
has frequently been used as a tool in research about network optimization (see e.g. 

Table 4  Comparison of discrete models

New York network

Test set Demand 100 Demand 200 Demand 500

Models A B C A B C A B C

All instances
# opt 0 142 0 9 412 58 0 0 0
# infeas 0 0 0 36 79 73 500 500 500
∑

 # solved 0 142 0 45 491 131 500 500 500
# sol found 500 500 500 384 421 348 0 0 0
Time (amm) 14400.0 12781.4 14400.0 13227.5 1768.0 11639.1 0.0 0.3 0.0
Time (sgm) 14400.0 12183.0 14400.0 8759.6 1000.0 7465.9 0.0 0.3 0.0

All opt

# opt 0 8 0
Time (amm) – – – 2917.1 734.3 1470.1 – – –
Time (sgm) – – – 563.3 537.6 881.1 – – –
Nodes (sgm) – – – 126220 8918 109148 – – –

Only opt by

# opt 0 142 0 0 355 0 0 0 0
Time (amm) 14400.0 8903.2 14400.0 14400.0 2190.2 14400.0 – – –
Time (sgm) 14400.0 8185.9 14400.0 14400.0 1570.5 14400.0 – – –
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De  Wolf and Smeers (1996), De  Wolf and Smeers (2000) and Babonneau et  al. 
(2012)). Our computational results for the network are found in Table 2. Demands 
are given in 106 m3∕day and computational time in seconds. We first consider the 
performance of our models as depending on the demand. For the lowest demand 
B = 100 about all instances are solved to optimality within a couple of minutes. 
With increasing demand, computational time increases and the number of instances 
solved to optimality decreases. However, at a demand of B = 1000 , we have reached 
a point where an optimum has been found for less than a quarter of the  instances 
and more of 60 % of the instances are detected as infeasible. As a consequence of 
the high number of infeasibilities, the number of solved instances has increased and 
computational time decreased. This pattern suggests that the range of demand used 
here is sufficient to obtain an overview of the general behaviour of the models and 
that it is not necessary to test the models for a demand of less than B = 100 and 
greater than B = 1000 . Due to this typical pattern, which was frequently observed 
also during our preliminary computational experiments, we will generally use a test 
range from a low demand to a high demand with a large number of infeasibilities.

We observe that, with respect to the sgm, Model A is the fastest model through-
out, up to a factor 4.3 faster than Model B for a demand of B = 100 , while B is the 
fastest with respect to the amm. This is due to the fact that Model B has a high num-
ber of instances that were solved fast (see e.g. those instances that were only solved 
by B). Model B also solves the largest number of instances. We note though that 
here Model B does not stand out with respect to the infeasible instances discovered 
and instances for which a feasible solution has been found.

Let us remark in passing that during our preliminary tests of the two models men-
tioned in Sect. 3.4, which were carried out on the rather simple Belgian network, 
the model in Humpola (2014) ran into the time limit at a demand of B = 200 with 
about 2/3 of all instances, while the model in Borraz-Sánchez et al. (2016) exceeded 
the time limit in all cases for the same demand. (In contrast with this, the three 
models considered here ran into the time limit only with 0.8% to 6.6% of the same 
instances.)

We now turn our attention to GasLib-40 (see Table  3). Again we can see that 
Model A is the fastest model, with B only having an advantage at a demand of 
B = 1000 with respect to the amm. This time Model A also tends to be better with 
respect to the number of instances solved. Finally note, that a demand of B = 500 
is too difficult for all three models, i.e. for unfavourable demand situations we have 
reached the limits of what is computational tractable. (But obviously, this does not 
impply that expansion problems on more complex networks cannot be solved for 
favourable demand situations.) 

The famous New York network is of particular interest for the capacity expansion 
problem as it is the only network in the water library where the arcs are already laid 
out with given diameters. Introduced by Schaake and Lai (1969), this instances has 
been used extensively (see e.g. Quindry et al. (1981), Bhave (1985), Bragalli et al. 
(2012)). On this network, Model B clearly performs best, both regarding the number 
of instances solved and the runtime (Table 4). We note that we have instances here 
where Model C performs better than Model A in terms of both solved instances and 
runtime ( B = 200 m3∕s).
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It is well known that optimization problems on potential-driven networks get 
more difficult to solve the more cycles they contain because the existence of cycles 
leads to more complex patterns of flow directions (cf. the literature review in Shiono 
and Suzuki (2016)). To systematically test our models also with respect to this type 
of difficulty, we successively increase the circuit rank by adding up to ten new pipe-
lines to the Belgian network, which results in five new networks Belgium + (2, 4, 
6, 8, 10) arcs, see Fig. 3. Here, the intention was to add arcs that connect different 
regions of the network and have a high impact on the network topology. For the 
new pipelines we use in our data set an original diameter Da,0 that is equal to the 
average diameter of the existing pipelines in the network and use moderate demand 
scenarios with B = 200.

We observe (see Table 5) that for increasing circuit rank the number of instances 
solved to optimality at first decreases and then increases again for Models A and C, 
while it continues to decrease for Model B. A similar pattern applies with respect 
to computational time, where the runtime at first increases for Models A and C and 
then decreases for the instances with 6 or more additional arcs, while the runtime of 
Model B increases nearly throughout. This leads to a situation where Model A turns 
out to have the best sgm runtime for all circuit ranks, B solves the most instances 
for smaller circuit ranks, and A solves the most instances for larger circuit ranks. 
Finally, while Model C shows poor results for small circuit ranks, it gains ground 

Table 6  Comparison of split-pipe models

Belgian network with different demand scenarios

Test set Demand 100 Demand 200 Demand 500 Demand 1000

Models D E D E D E D E

All instances
# opt 500 500 494 496 318 315 77 82
# infeas 0 0 0 0 5 5 310 310
∑

 # solved 500 500 494 496 323 320 387 392
# sol found 500 500 500 500 495 495 189 189
Time (amm) 1.0 0.7 256.2 169.9 5850.9 5891.4 3655.4 3533.2
Time (sgm) 1.0 0.6 7.0 4.8 676.1 640.9 80.3 79.1

All opt

# opt 500 492 269 60
Time (amm) 1.0 0.7 84.0 42.0 841.4 951.2 1903.4 1657.4
Time (sgm) 1.0 0.6 5.5 3.8 80.0 78.3 205.0 196.8
Nodes (sgm) 24 21 240 197 16381 15153 50809 53529

Only opt by

# opt 0 0 2 4 49 46 17 22
Time (amm) – – 9662.2 5916.3 8554.7 8457.3.1 10335.6 9148.2
Time (sgm) – – 3106.3 415.1 4037.7 3234.6 6748.7 6067.2
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with increasing circuit ranks and performs second best for the instances with Bel-
gium + 10 arcs.

In sum, we can state that overall Models A and B perform better than Model C, 
with Model A clearly outperforming Model B on problems with a higher circuit 
rank (including GasLib-40). The performance of Model C may partly be a conse-
quence of the fact that Model A, as we have shown in Sect. 4.4, has a tighter relaxa-
tion than Model C, even though there are a smaller number of entire data sets and 
a larger number of individual instances where Model C outperforms both Model A 
and Model B, in particular instances with a higher circuit rank. Model C is therefore 
a valuable alternative in cases where Models A and B require too much computa-
tional time to prove infeasibility or solve an instance to optimality.

6.3  Comparison of split‑pipe models (models D and E)

Again we start with the Belgian network (Table 6) and proceed from easily solved 
instances to scenarios with a large number of infeasible instances. It turns out that 
both models solve a comparable number of instances, with the new Model E being 
somewhat faster. It is worth noting that for a demand of B = 500 , i.e. for more dif-
ficult instances, 10% of the instances are solved to optimality by only one of the two 
models, i.e. in this case both models complement each other well.

To compare the performance on gas networks of larger sizes with a more com-
plex cyclic structure, we turn to the GasLib-40 network (Table 7 on the left). Here, 
Model  E performs clearly better: it solves up to 11 % more instances (demand 
B = 100, 1000 ) and requires less runtime (up to a factor of 2.5 in the case of 
B = 50 ). To further test the performance of the split-pipe models, we consider the 
New York water network again (Table 7 on the right). Here the results are balanced: 
both models solve the majority of instances in at most 3 s (sgm). 

Finally, we investigate the performance of the models for increasing circuit rank. 
We observe (Table 8) that our novel Model E consistently outperforms D, with the 
ratio of the runtimes of the model becoming the more favourable for E the higher 
the circuit rank, up to a factor of 13.9 for 10 additional arcs. Similarly, Model E 
performs significantly better with respect to the number of solved instances, with 
the best ratios of solved instances reached at 16.2 for Belgium + 8 arcs and 10.0 for 
Belgium + 10 arcs.

On the basis of our computational experiments for the split-pipe case, we can 
clearly recommend the use of our novel model instead of the model from the litera-
ture, particularly for networks with a more complex cyclic structure, even though 
one will, of course, encounter instances where the other model is more successful.

6.4  Comparison of discrete and split‑pipe models

Let us now compare the discrete with the split-pipe approaches. As mentioned 
in the introduction, this is the first time that such a comparison is carried out for 
networks of a practically relevant size and complexity. Of course, one may expect 
that the split-pipe model will perform better on average, but as our computational 
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experiments show (compare the results for Belgium +4, +6, and +8 arcs in 
Tables 5 and 8, for example), there are data sets where the discrete approach yields 
more optimal solutions within the time limit of 4 hours than the split-pipe approach. 
For this reason it is unclear what size the performance gap may actually take.

In the following, we will look at two criteria: (a) potential cost savings and (b) 
computational time.

Concerning cost savings, Table 9 shows the average gain of the best known solu-
tions of the split-pipe models over the discrete models. Here, we consider only those 
instances where an expansion actually takes place and where either at least one split-
pipe and at least one discrete model have been solved to optimality (column Opti-
mal) or where both approaches provide at least one solution (column Feasible). For 
these instances, we then consider the average gain of the best known split-pipe over 
the best-known discrete one. The column Feasible additionally shows the percent-
age of instances where the best-known solution is provided by the split-pipe models.

As Table  9 demonstrates, the split-pipe approach yields cost savings on all data 
sets. While the results for the comparably simple networks of Belgium and New York 
are rather low, the benefit of realizing a split-pipe solution can be considerable for 
networks with a complex cyclical structure. Moreover, Fig. 4 shows that for all feasi-
ble instances with non-zero objective function value, the best solutions were practi-
cally always found by the split-pipe models, with our novel Model E delivering the 
best results. Even more, further analysis of the data presented in Tables 2,  3, 4, 5, 
6, 7 and 8 reveals that the split-pipe models optimally solve or detect (in)feasibil-
ity in all cases except 1 (Model E) or 2 (Model D) instances, whereas the number 
of instances with unknown status is much higher for the discrete models, namely 
318 (Model A), 578 (Model B) and 348 (Model C) out of the 8000 instances we 
have calculated per model. Therefore, in view of the much larger number of feasible 
solutions by the split-pipe models, the economic benefit of these models goes well 
beyond the cost savings and the percentage of instances depicted in Table  9 and 
Fig.  4.

To compare the overall runtime performance of all discrete and split-pipe models, 
we use a performance profile  (Dolan and Moré (2002)). It is based on the perfor-
mance ratio, i.e. the runtime of a particular data set with the model under consid-
eration divided by the best runtime for that data set with any of the five models. 
The performance profile describes on the y-axis the fraction of instances among all 
solved (i.e. optimal or infeasible) instances that the model could solve with a per-
formance ratio of up to the corresponding number on the x-axis. Clearly, models 
are to be preferred when their profile shows higher y-values for fixed x-values and 
lower x-values for fixed y-values. To exclude trivial cases, we disregard instances 
that were not solved by any model and those that were solved by all models in less 
than 1 s CPU time. 

As we can see, the runtime of Model E dominates the runtime of all other models 
across the spectrum of performance ratios (Fig. 5). Further insights about the model 
performances for different data sets are gathered from Fig. 6, which depicts the sgm 
of the runtime of all instances for different network types and confirms the domi-
nance of the split-pipe models. Again Model E turns out to perform best.
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6.5  Outlook: comparison of multi‑scenario models

To conclude our computational experiments and provide an outlook on potential 
future applications, we study the behaviour of Models A, D and E in the multi-
ple-scenario case (Models A-MS, D-MS and E-MS). Models B and C have been 
left out here due to their comparably weak performance as seen in Sect. 6.2, 6.4. 
In particular, we present the test results of the multiple-scenario models on the 
(original) Belgian network and on its extended versions with additional arcs (cir-
cuit rank). These networks have been chosen because we have seen in the previ-
ous sections that on these networks all three models were able to find feasible 
solutions for a similar number of instances and the networks are sufficiently small 
to suggest that the models may be able to deal with the additional complexity 
resulting from the multiple-scenario setting.

When evaluating potential pipeline expansions, practitioners typically look 
at about 5–10 scenarios. For this reason, all instances considered here will con-
sist of 10 scenarios each. Each instance was constructed by combining 10 of the 
demand scenarios previously used in the single-scenario case in Sects. 6.2, 6.3. 
More precisely, for the Belgian network each of the 125 instances used here has 
been composed of two scenarios with a total demand of B = 100 , three scenarios 
with B = 200 , three scenarios with B = 500 , and two scenarios with B = 1000 . 
In the circuit rank experiment, the previously 500 demand scenarios with 
B = 200 in Sects. 6.2–6.3 were grouped into 50 multiple-scenario instances with 
10 demand scenarios each. As preliminary computational tests showed that the 

Table 9  Gain of split-pipe over discrete problem

Network Test set Optimal Feasible

Gain (%) # instances Gain (%) # instances SP better on # 
instances [%]

Belgium Demand 100 2.2 500 2.2 500 100.0
Belgium Demand: 200 1.6 498 1.6 500 100.0
Belgium Demand: 500 1.1 332 1.2 495 100.0
Belgium Demand: 1000 1.3 74 1.4 189 100.0
GasLib-40 Demand: 50 321.5 147 321.5 147 100.0
GasLib-40 Demand 100 2.1 326 3.7 500 100.0
GasLib-40 Demand: 500 – 0 10.7 498 100.0
GasLib-40 Demand: 1000 0.7 2 8.0 175 100.0
New York Demand: 100 1.0 142 1.1 500 100.0
New York Demand: 200 0.8 413 0.8 415 100.0
New York Demand: 500 – 0 – 0 –
Belgium+2 arcs Cycle rank 1.6 268 1.5 500 99.8
Belgium+4 arcs Cycle rank 8.2 151 5.3 499 96.4
Belgium+6 arcs Cycle rank 14.1 169 12.1 498 98.8
Belgium+8 arcs Cycle rank 17.4 185 14.5 498 99.6
Belgium+10 arcs Cycle rank 71.0 284 50.7 490 100.0
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additional complexity of the multiple-scenario setting led to a rather small num-
ber of instances for which the models could find feasible solutions, we will pro-
vide in the following the results of computational experiments where the demand 
data from Sects.   6.2–6.3  was scaled down by a factor of 0.4 for all instances. 
(Note though that this does not mean that our demand sets are just scaled versions 
of each other. The data sets used in the previous sections and here were generated 
independently for each given total network demand B.)

Let us first look at the instances on the Belgian network. As shown in Table 10 
none of the models was able to solve any of the 125 instances to optimality or prove 
infeasibility. Clearly, the additional complexity of the multiple-scenario setting is 
taking its toll and we can only evaluate the models by looking at the instances for 
which feasible solutions have been found. Here Model E-MS takes the lead by find-
ing solutions for 119 out of 125 instances, with 68 of these being better than the 
solutions found by the other two models. Model D-MS has found the best solution 
for another 60 instances, while the discrete Model A-MS can only offer best solu-
tions for 3 instances.

A similar pattern can be observed in the case of the circuit rank experiment 
(Table 11) where Model E-MS was able to provide solutions for all but 2 instances 
of the 300 = 6 ×  50 instances, while the next best Model D did so for all but 22 
instances. Moreover, again Model E turns out to have found the largest number of 
best solutions among the three models, namely for 245 out of the 300 instances. This 
time, however, in contrast with the situation in the previous experiment (Table 10), 
optimal solutions were found, and interestingly so mainly by Model A. It should be 
noted though that there are only 3 out of 300 instances for which Model A has found 
a better solution than the two split-pipe models, which again demonstrates the supe-
riority of the split-pipe approach.

Even though the split-pipe models cannot be solved to proven optimality, the 
authors of the present paper strongly assume on the basis of their experience with 
solving capacity expansion models that a considerable number of instances is 
actually solved to optimality by both D-MS and E-MS. This assumption rests on 
the observations that (a) we know from the discrete model in the case of several 

Fig. 4  Percentage of instances 
for which the best solution was 
found
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instances that the optimal solution to the split-pipe models must include network 
extensions and (b) when trying to solve the split-pipe models the solver often makes 
no progress on the dual bound, while showing strong performance on the primal 
side of the algorithm that (c) frequently results in solutions to the split-pipe models 
that are identical. Accordingly, the feasible solutions found by D-MS and E-MS may 
very well be highly relevant to practitioners.

Summing up, our computational experiments in this section show that the mul-
tiple-scenario case reaches the limits of what can currently be achieved by solving 
models with general-purpose solvers. In view of both the algorithmic and the hard-
ware progress made in the previous decades, however, these limits are not unlikely 
to be overcome in the near future, in particular as we have reasons to assume, as 
explained above, that the solutions provided by Models E and D are often not too far 
from optimality. Further, our results suggest that for finding feasible solutions the 
split-pipe model E-MS should be used in conjunction with D-MS.

Fig. 5  Performance Profile
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6.6  Recommendations

To conclude this section, our computational experiments suggest the following rec-
ommendations for practitioners: 

1. In view of the advantages of the split-pipe approach discussed in the previous 
subsection, practitioners should use the split-pipe approach whenever possible.

2. Our novel Model E should be the model of choice as it leads to more instances 
that are solved, to more instances for which feasible solutions are found, to a 
higher percentage of instances with a better objective function value and cost 
savings, and performs better with respect to computational time.

3. When the split-pipe approach is not possible, Models A or B are likely to be the 
most useful.

4. Among these two models, Model A should be tried out first on networks with a 
more complex cyclical structure.

5. Models C and D may be useful complements when dealing with instances that 
happen to be particularly hard for the other models.

6. The case of optimizing over multiple scenarios reaches the limits of what is cur-
rently achievable with state-of-the-art solvers, but Model E in conjunction with 
Model D may be useful for finding reasonably good feasible solutions in some 
applications.

7  Conclusion

We studied the problem of capacity expansion of potential-driven networks using 
loops. We showed properties of the looping problem, such as its nonconvexity 
in the general case, and, building on an existing method of selecting cost-mini-
mal loop diameters a priori, we presented a model reduction approach for mul-
tiple loops. On this basis, we introduced new models for both discrete and split-
pipe looping and contrasted these with existing models for the looping problem 
and related problems in the literature, both theoretically and empirically. This 
was also the first time that discrete and split-pipe approaches were compared 

Table 10  Comparison of multi-
scenario models

Belgian network

Models A-MS D-MS E-MS

All instances
# opt 0 0 0
# infeas 0 0 0
∑

 # solved 0 0 0
# sol found 103 111 119
# best sol found by 3 60 68
Time (amm) 14400.0 14400.0 14400.0
Time (sgm) 14400.0 14400.0 14400.0
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Table 11  Comparison of multi-scenario models

Test set +0 Arcs +2 Arcs +4 Arcs

Models A-MS D-MS E-MS A-MS D-MS E-MS A-MS D-MS E-MS

All instances
# opt 4 9 1 6 0 0 0 0 0
# infeas 0 0 0 0 0 0 0 0 0
∑

 # solved 4 9 1 6 0 0 0 0 0
# sol found 50 50 50 40 50 50 4 42 49
# best sol 

found by
0 49 37 0 43 45 0 18 39

Time (amm) 13248.48 12344.65 14112.07 12698.48 14400.0 14400.0 14400.0 14400.0 14400.0
Time (sgm) 8340.38 7455.85 12524.22 8180.13 14400.0 14400.0 14400.0 14400.0 14400.0

All opt
# opt 0 0 0
Time (amm) – – – – – – – – –
Time (sgm) – – – – – – – – –
Nodes (sgm) – – – – – – – – –

Only opt by
# opt 0 5 0 6 0 0 0 0 0
Time (amm) – 2785.40 – 220.63 – – – – –
Time (sgm) – 591.10 – 119.98 – – – – –

Test set +6 Arcs +8 Arcs +10 Arcs

Models A-MS D-MS E-MS A-MS D-MS E-MS A-MS D-MS E-MS
All instances
# opt 14 1 1 15 1 1 23 1 1
# infeas 0 0 0 0 0 0 0 0 0
∑

 # solved 14 1 1 15 1 1 23 1 1
# sol found 40 47 50 34 46 50 43 43 49
# best sol 

found by
1 40 41 1 39 42 1 42 41

Time (amm) 11418.26 14113.20 14112.02 10712.88 14112.94 14112.02 8630.46 14130.35 14112.02
Time (sgm) 7539.80 12943.29 12466.09 5745.38 12889.64 12468.41 3126.26 13630.74 12468.41

All opt
# opt 1 1 1
Time (amm) 59.9 1.2 0.7 1.3 46.8 0.8 1.4 917.6 0.8
Time (sgm) 59.9 1.2 0.7 1.3 46.8 0.8 1.4 917.6 0.8
Nodes (sgm) 1 21 1 1 46 1 1 4328 1

Only opt by
# opt 13 0 0 14 0 0 22 0 0
Time (amm) 4039.38 – – 2260.19 – – 1941.90 – –
Time (sgm) 2070.30 – – 895.64 – – 613.07 – –

Increasing the circuit rank of the Belgian network
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for networks of a practically relevant size and complexity. The performance of 
the models was analysed in an extensive computational study with a large set of 
demand vectors and diverse networks of different sizes and topologies, including 
network variations for different circuit ranks, and led to recommendations regard-
ing the use of different models. In particular, our experiments showed that overall 
our novel Model E outperforms the existing models with respect to computational 
time, the number of solutions found, the number of instances solved and cost 
savings. We also provided an outlook for the case of multiple scenarios, thereby 
reaching the limits of what can currently be achieved with state-of-the art solvers, 
but further future improvements on both the solver and the hardware side may 
well overcome these limits.

An interesting avenue for further research would be to improve our split-pipe 
Model E by generating the efficient frontier dynamically. Instead of adding all 
constraints for the frontier globally to the model, they could be generated dynam-
ically during the solving process whenever the frontier is violated by the current 
LP solution. This could drastically reduce the model size, depending on the num-
ber of arcs and extreme points of the efficient frontier.

Moreover, while we allowed all arcs to be looped, we could reduce the model 
size by a heuristic pre-selection of the arcs that are most likely to be looped. Such 
an approach could gather the pipes that have a higher expected potential loss 
along the pipe, which could be determined by simple auxiliary models.

Finally, further work could also include loop expansion planning in the context 
of time-dynamic commodity transport.
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