
Vol.:(0123456789)

OR Spectrum (2020) 42:901–933
https://doi.org/10.1007/s00291-020-00595-9

1 3

REGULAR ARTICLE

The multi‑mode resource investment problem:
a benchmark library and a computational study of lower
and upper bounds

Patrick Gerhards1

Received: 10 April 2019 / Accepted: 25 June 2020 / Published online: 21 July 2020
© The Author(s) 2020

Abstract
The multi-mode resource investment problem (MRIP) is the multi-mode extension
of the resource investment problem, which is also known under the name resource
availability cost problem. It is a project scheduling problem with a given due date
as well as precedence and resource constraints. The goal is to find a precedence
feasible schedule that minimises the resource costs of the allocated resources. To
compute these costs, the maximum resource peak is considered regarding renewable
resource types, whereas the sum of allocated nonrenewable resource units is used in
the case of nonrenewable resources. Many practical and complex project schedul-
ing settings can be modelled with this type of problem. Especially with the usage
of different processing modes, time and cost compromises can be utilised by the
project manager. In the literature, some procedures for the MRIP have been inves-
tigated; however, the computational experiments in these studies have not been car-
ried out on common benchmark instances. This makes a fair comparison of meth-
ods difficult. Therefore, we generated novel instances specifically designed for this
problem and published them on the website https ://ripli b.hsu-hh.de. On this website,
the instances as well as best-known solution values are available and researchers
can also contribute their findings. We investigate these novel instances by proposing
and evaluating lower bounds for the MRIP. Additionally, we analyse the proposed
instances by applying heuristic as well as exact methods. These experiments suggest
that most of the instances are challenging and further research is needed. Finally, we
show some computational complexity properties of the NP-hard MRIP.

Keywords Project scheduling · Resource investment problem · Multi-mode ·
Benchmark instances · Mixed-integer programming

 * Patrick Gerhards
 patrick.gerhards@hsu-hh.de

1 Helmut Schmidt University, Hamburg, Germany

http://orcid.org/0000-0002-3769-5438
https://riplib.hsu-hh.de
http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-020-00595-9&domain=pdf

902 P. Gerhards

1 3

1 Introduction

Project scheduling is an important part of project management. Often, projects
have a deadline or a due date and the tasks of the project compete against each
other in the use of scarce resources. In the resource investment problem (RIP),
the decision maker can determine how many units of each resource are allocated
to the project in order to find a schedule that meets the due date. This schedule
needs to respect the allocated resources as well as the precedence relations among
the activities of the project. The goal is to minimise the project costs that are
defined by the allocated units of resources. In this work, we consider two types
of resources: renewable and nonrenewable resources. The amount of available
renewable resource units is replenished after each time period. So, for the cost
calculation of the renewable resource costs, the maximum resource usage peak
is multiplied with a cost factor. This cost factor defines the costs of adding an
extra resource unit to the project that is available in each period of the project
horizon. Nonrenewable resource units are consumed for the entire project horizon
and their resource costs are calculated by considering the total sum of consumed
resource units.

The resource investment problem was firstly introduced by Möhring (1984) and
is also known as the resource availability cost problem (RACP) in the literature.
Möhring (1984) describes it as a “problem of scarce time” in contrast to the well-
known and related resource-constrained project scheduling problem (RCPSP) which
is a “problem of scarce resources”. With the RIP, it is possible to model a wide
range of applications such as the construction or dismantling of buildings or soft-
ware development projects, just to name a few (e.g. Bartels 2009). Several exten-
sions of the problem were introduced in the literature. In this work, we consider
the multi-mode resource investment problem (MRIP), which was firstly introduced
by Hsu and Kim (2005). Here, each activity can be processed in multiple modes
which vary in the resource consumption and the processing duration. For the RCPSP
and its multi-mode extension, several benchmark instance libraries, such as the
Boctor datasets (Boctor 1993), the PSPLIB (Kolisch and Sprecher 1997), or the
MMLIB (Van Peteghem and Vanhoucke 2014), exist. Yet, for the MRIP, no bench-
mark instances are available to the public which makes the comparison of solution
procedures hard. For this reason, we designed a set of benchmark instances and
made them available to the public on the website https ://ripli b.hsu-hh.de.

The contributions of this work are the following:

• We show that it is sufficient to consider only one nonrenewable resource in the
MRIP and provide a transformation for instances with multiple nonrenewable
resources.

• We describe and compare different approaches to compute lower bounds for
the MRIP.

• We have set-up and maintain a website https ://ripli b.hsu-hh.de. Here, research-
ers can access a new set of benchmark instances for the MRIP and share their
results with others.

https://riplib.hsu-hh.de
https://riplib.hsu-hh.de

903

1 3

The multi-mode resource investment problem: a benchmark library…

• We use different exact and heuristic procedures to solve the novel benchmark
instances. This enables us to gain insights into which characteristics lead to
“easy” and “hard” instances.

This paper is organised as follows: In Sect. 2, we give a formal definition of the
problem and show that we can aggregate multiple nonrenewable resources into a
single one. Section 3 provides an overview of the existing literature concerning the
RIP or extensions of it. Next, we present several lower bound procedures as well as
different optimisation techniques to generate upper bounds for the MRIP in Sect. 4.
We applied mixed-integer programming (MIP), constraint programming (CP), simu-
lated annealing (SA) and a multi-start local search (MLS). In Sect. 5, we explain
which parameters we used for generating benchmark instances and what difficul-
ties we encountered in the process of doing so. Sect. 6 contains a computational
study with our findings considering the performance of the procedures presented in
Sect. 4. Finally, in Sect. 7, we finish this work with a critical appraisal and an out-
look for further research.

2 Problem statement

An instance of the MRIP is defined by the following properties: a set of activi-
ties A = {0,… , n + 1} , a set of precedence relations E ⊆ A × A , a set of renewa-
ble resources R and a set of nonrenewable resources Rn . For each activity, i ∈ A , a
set of modes Mi exists and for each mode m ∈ Mi , the duration dim ∈ ℤ

+
0
 is given.

Activity 0 and n + 1 are dummy activities that mark the beginning and end of the
project and their duration and resource requirements are equal to 0. In this work, we
consider only finish-to-start precedence constraints among activities which are rep-
resented by the set E. So, if (i, j) ∈ E for activities i, j ∈ A this means that there is a
minimum time lag of 0 between the finish of activity i and the start of activity j, i.e. j
can only start after i is finished.

The due date D ∈ ℤ
+ is fixed and defines the maximum project duration. The

resource requirement rimk ∈ ℤ
+
0
 (rn

imk
∈ ℤ

+
0
) of each non-dummy activity i depends

on the mode m and the renewable resource k ∈ R (nonrenewable resource k ∈ R
n).

For each renewable resource k ∈ R (nonrenewable resource k ∈ R
n) a resource cost

factor ck ∈ ℤ
+
0
 (cn

k
∈ ℤ

+
0
) defines the price of allocating one unit of the resource to

the project. For renewable resources, the allocated amount of the resource is replen-
ished after each time period. A schedule is resource feasible with respect to the
renewable resources if the amount of allocated resource units is larger than or equal
to the maximum resource peak usage. That means that for each period of the pro-
ject horizon, the sum of resource requirements of activities that are in process in
this period has to be smaller than or equal to the allocated amount. To calculate the
renewable resource costs, we multiply the allocated amount that corresponds with
the maximum resource peak with the resource cost factor. The renewable resource
type is useful to model for example workers or machines.

The amount of allocated nonrenewable resources, however, is consumed by
the activities over the whole project and they are not replenished. To calculate the

904 P. Gerhards

1 3

nonrenewable resource costs, we sum up the nonrenewable resource requirements of
all activities and multiply them with the respective cost factor (i.e. no peak usage is
considered as the resource units do not replenish here). Resources of this type can
represent budgets or rare materials. The nonrenewable resources are also useful to
model outsourcing certain activities to external contractors.

A small example of an MRIP instance is depicted in Fig. 1. Here, we have five activ-
ities with activities 0 and 4 being the dummy start and dummy end activity of the pro-
ject, respectively. The arcs in the network represent the precedence relations among
activities. So, e.g. activity 2 can only start after activity 1 is finished. For each activity,
there is only one mode available except for activity 3. Fig. 1b depicts the duration of
each mode as well as the renewable resource consumption ri,m,1 and the nonrenewable
resource consumption rn

i,m,1
 . Hence, we consider only one renewable and one nonrenew-

able resource in this example. The unit cost factors are c1 = 2 and cn
1
= 1 and there is

no upper bound on the capacity of each resource. The due date of the project is D = 4 .
In Fig. 2a, we show a Gantt chart, where each activity is processed in mode 1. Since
there is a renewable resource usage of 3 units in period 1 and 2, we need to allocate 3
units of the renewable resource to the project. Because of the mode choice, 0 units of
the nonrenewable resource are utilised, and thus, the schedule has a cost value of 6. The
precedence relations as well as the due date are respected. By switching the mode of
activity 3 (mode 2 instead of mode 1), we obtain a better solution (Fig. 2b). Here, only
2 units of the renewable resource are allocated to the project since the peak resource

0

1 2

3

4

(a) Example activity-
on-the-node network

i m dim ri,m,1 rni,m,1

0 1 0 0 0
1 1 2 1 0
2 1 1 2 0
3 1 2 2 0

2 3 1 1
4 1 0 0 0

(b) Duration and resource consump-
tion

Fig. 1 Illustrative example data

1

2

3

t

a1

D = 4

(a) Example schedule for D = 4

1

2

3

t

a1

D = 4

(b) Example schedule with different mode for
activity 3

Fig. 2 Example schedule

905

1 3

The multi-mode resource investment problem: a benchmark library…

usage is now 2 instead of 3, but also 1 nonrenewable resource unit is needed. Therefore,
the cost of the schedule depicted in Fig. 2b is 5.

In equations (1)–(7), we display a mathematical model formulation for the MRIP,
which is also used in Sect. 4 in a MIP procedure. It is an adaptation of the model of Tal-
bot (1982) for the multi-mode extension of the RCPSP. We use two types of decision
variables in the mathematical model: real-valued variables ak and an

k
 for the resource

allocation of resource k ∈ R ∪R
n and binary variables ximt for the mode and schedul-

ing choice. The variable ximt takes a value of 1 if and only if activity i is processed in
mode m ∈ Mi and starts at period t. For the start period, we compute lower (and upper)
bounds called ESi (LSi) using forward and backward calculation (FBC, similar to Kel-
ley 1963). Here, we use the minimum duration of each activity and the due date D
acts as an upper bound of the latest start time of the project dummy end activity n + 1
(i.e. LSn+1 = D). We also compute an upper bound LFi on the latest finish period with
respect to the due date D using backward calculation, and hence, LFi − dim is the latest
possible start of activity i if it is processed in mode m.

In the objective function (1), the resource costs are minimised. Constraints (2)
enforce that for each activity i exactly one mode and one start period is chosen. The
inequalities (3) represent the precedence relations: if (i, j) ∈ E , then the finish period
of activity i (left side of the inequality) has to be lower than or equal to the start period
of activity j (right side). Inequalities (4) and (5) make sure that the amount of allocated
resources an

k
 and ak is as least as high as the consumption of the nonrenewable and

renewable resources, respectively. Finally, in terms (6) and (7), the two different types
of decision variables are depicted. According to Artigues (2017), the binary variables
are so-called pulse variables over discrete time periods and inequalities (3) are the so-
called aggregated precedence constraints. Hence, we call the formulation displayed in
(1)–(7) the “aggregated discrete time formulation based on pulse variables” (PDT). In
Sect. 4, we will use this formulation and others (using the disaggregated version of the
precedence constraints and/or other decision variable types) in a MIP.

(1)min
∑
k∈R

ck ⋅ ak +
∑
k∈Rn

cn
k
⋅ an

k

(2)s.t.
∑
m∈Mi

LFi−dim∑
t=ESi

ximt = 1 ∀i ∈ A

(3)
∑
m∈Mi

LFi−dim∑
t=ESi

ximt(t + dim) ≤
∑
m∈Mj

LFj−djm∑
t=ESj

xjmt ⋅ t ∀(i, j) ∈ E

(4)
∑
i∈A

∑
m∈Mi

LFi−dim∑
t=ESi

ximt ⋅ r
n
imk

≤ an
k

∀k ∈ R
n

906 P. Gerhards

1 3

Since the resource investment problem with a single mode per activity is NP-hard
(cf. Möhring 1984), the multi-mode extension is also NP-hard. This is still true if we
extend the problem setting with nonrenewable resources. However, it is sufficient to
consider only a single nonrenewable resource since we can aggregate multiple non-
renewable resources into a single one. We compute the novel resource requirement
of an activity i and a mode m to be the sum of the old resource requirements times
the respective resource cost factor:

The cost factor of this single nonrenewable resource is equal to 1. Note that this is
possible since there is no upper bound on the resource use and the resource con-
sumption is not time dependent for nonrenewable resources. For this aggregated
nonrenewable resource, we can set the allocation to be an

1
=
∑

k∈Rn cn
k
⋅ an

k
 based

on allocations an
k
 of the former resources. Obviously, the objective value does not

change by this aggregation and also all constraints such as precedence relations and
renewable resource constraints are not changed. This transformation is the reason
why we consider only instances with a single nonrenewable resource in this study
and it can be used to convert instances with multiple nonrenewable resources into
the single resource case.

3 Literature review

The RIP is closely related to other project scheduling problems such as the RCPSP
or the resource levelling problem (RLP). However, the goal of the RCPSP and its
multi-mode extension (MRCPSP) is the minimisation of the makespan with fixed
resource availabilities. Several heuristic and exact procedures have been proposed
for the MRCPSP (e.g. Geiger 2017 and Schnell and Hartl 2016, respectively). In the
RLP, also a due date for the latest project completion is given, yet the objective func-
tion often differs. Several resource levelling objective functions are known in the
literature such as the total squared utilisation cost or the total overload cost (Rieck
and Zimmermann 2015). Bianco et al. (2016) extended the RLP setting with gener-
alised precedence relations and variable intensities in the execution of the activities.
Another closely related problem to the RIP is the time-constrained project schedul-
ing problem (TCPSP). It can be seen as a combination of the RIP and the RCPSP
since there is a given due date as well as resource capacities. However, additional

(5)
∑
i∈A

∑
m∈Mi

min(t,LFi−dim)∑
q=max(ESi,t−dim+1)

ximq ⋅ rimk ≤ ak ∀k ∈ R, t = 0,… ,D

(6)ak ≥ 0, an
k
≥ 0 ∀k ∈ R

n

(7)ximt ∈ {0, 1} ∀i ∈ A,∀m ∈ Mi, t = ESi,… , LSi.

(8)r
n

i,m,1
=

∑
k∈Rn

cn
k
⋅ rn

imk
.

907

1 3

The multi-mode resource investment problem: a benchmark library…

capacities can be temporarily allocated to the project at a certain cost. So, it has to
be decided in which periods extra resource units are added. The goal is to minimise
the cost for additional resources under the given due date. This problem was firstly
proposed by Deckro and Hebert (1989), and lately, Verbeeck et al. (2017) proposed
an artificial immune system (AIS) implementation for the TCPSP.

Next, we give a brief literature overview on the existing work for the RIP and
some of its extensions. Several exact solution methods for the RIP exist. Möhring
(1984) was the first to use the RIP to model a bridge construction project. He pro-
posed an exact method using graph theoretical algorithms to solve the problem.
Another exact algorithm, called minimum bounding algorithm (MBA), was intro-
duced by Demeulemeester (1995), where a branch-and-bound procedure for the
RCPSP is applied iteratively. Improving this procedure, Rodrigues and Yamashita
(2010, 2015) proposed the modified minimum bounding algorithm by utilising a
feasible initial solution that is found heuristically. Lately, Kreter et al. (2018) studied
the RIP as well as an extension with general temporal constraints and one with cal-
endar constraints. They provided mixed-integer linear programming formulations as
well as constraint programming (CP) implementations for the problems. With their
CP procedure, they were able to close all available instances from the literature for
these single-mode problems. The authors also give an overview on previous work
on the RIP with generalised precedence constraints (RIP/max). On their website, the
authors provide instances for the single-mode RIP as well as the RIP/max with up to
500 activities per project.

Drexl and Kimms (2001) studied the computation of lower bounds (LB) for the
RIP. They proposed two procedures: one using Lagrangian relaxation and the other
based on column generation techniques. Both procedures also yield feasible solu-
tions for the problem as a by-product. The authors conducted computational experi-
ments on project instances with up to 30 activities and up to 8 resources.

The initial application of a metaheuristic for the RIP was proposed by Yamashita
et al. (2006). They implemented a scatter search (SS) which is a population-based
metaheuristic and it outperformed two simple multi-start heuristics as well as the
upper bounds obtained by Drexl and Kimms (2001) on instances with up to 120
activities. Ranjbar et al. (2008) also implemented population-based metaheuristics:
path relinking (PR) and genetic algorithm (GA). Here, the PR achieved slightly bet-
ter results than the GA on the instances generated in Yamashita et al. (2006), but due
to different hardware they did not compare their results directly to the SS mentioned
above. An implementation of the AIS metaheuristic as well as a benchmark set
with 30 activities and 4 resources (called RACP30) is presented by Van Peteghem
and Vanhoucke (2013). They show that their approach outperforms the GA for the
tardiness permitted extension presented by Shadrokh and Kianfar (2007) and the
proposed instances are also used in Van Peteghem and Vanhoucke (2015). Meng
et al. (2016) proposed a hybrid metaheuristic by combining the tabu search (TS)
metaheuristic with the SS metaheuristic. They tested their procedure, called tabued
scatter search (TSS), on 48 adapted RCPSP instances from the PSPLIB. Experi-
ments showed that on average TSS is able to obtain better solutions than the SS
of Yamashita et al. (2006), but by spending a higher computational time. A novel
heuristic approach called multi-start iterative search heuristic (MSIS) is proposed

908 P. Gerhards

1 3

by Zhu et al. (2017). Here, the authors combine local search techniques with path
relinking and show that their method outperforms the PR, the GA and the SS proce-
dures presented earlier. The computational experiments were performed on adapted
PSPLIB instances and newly generated ones.

Shadrokh and Kianfar (2007) began studying the extension of the RIP, where
exceeding the due date (tardiness) is permitted but penalised in the objective func-
tion. The penalty costs rise for each time period that the project finishes later than
its specified due date by a fixed tardiness cost factor. It is called resource invest-
ment problem with tardiness (RIPT) and the authors applied a GA to tackle this
novel problem. Van Peteghem and Vanhoucke (2015) apply a metaheuristic proce-
dure called invasive weed optimisation algorithm (IWO) to the RIP as well as the
RIPT. Computational experiments performed on the RACP30 instance set as well as
on 30 activity projects adapted from the PSPLIB indicate that the IWO outperforms
both the AIS from Van Peteghem and Vanhoucke (2013) and the GA from Shadrokh
and Kianfar (2007). Recently, Yuan et al. (2017) use the so-called moving block
sequence (MBS) representation in an evolutionary algorithm (EA) for the RIPT. The
authors conducted experiments on instances with up to 20 activities and results indi-
cated that their procedure outperforms the GA of Shadrokh and Kianfar (2007).

The multi-mode extension of the RIP was firstly studied Hsu and Kim (2005).
They proposed a heuristic procedure that combines two priority rules: one regard-
ing the increase in costs when adding an activity to a partial schedule and the other
considering how the finish time of the current activity affects its successors’ remain-
ing start times. They tested different weight combinations of this combined prior-
ity rule heuristic against heuristics that applied different priority rules sequentially
(one to select the next activity and another one to select the mode and start time).
For the experiments, they used MRCPSP instances from the PSPLIB with 12 to 30
activities, but treated the nonrenewable resources as renewable resources. Another
heuristic procedure for the MRIP was presented by Qi et al. (2015). The authors
proposed a novel schedule generation scheme as well as the modified particle swarm
optimisation (MPSO) metaheuristic, which is a combination of particle swarm opti-
misation (PSO) and SS. They also adapted PSPLIB instances for the MRCPSP with
12–30 activities to test their MPSO heuristic against a PSO implementation and
an adaptation of the GA of Ranjbar et al. (2008). Colak and Azizoglu (2014) pro-
posed a heuristic procedure for the special case of the MRIP with a single renewable
resource. Their approach uses different construction procedures and tries to improve
a solution using several neighbourhood search strategies. The authors performed
experiments on instances with up to 100 activities and up to 10 modes per activity.

For the MRIP, two exact procedures are known. Yamashita and Morabito (2009)
combined the MBA of Demeulemeester (1995) with an exact branch-and-bound
algorithm for the MRCPSP of Sprecher and Drexl (1998). In order to compute time/
cost trade-off curves, they investigated several different due dates per instance.
Since the procedure relies on solving multiple MRCPSP exactly, they solved only
small instances with 15 activities per project. The other exact procedure was pre-
sented by Coughlan et al. (2015). The authors also added calendar constraints to
the MRIP setting, making some resources not available at certain times. They pro-
posed a Dantzig–Wolfe reformulation in combination with a column generation

909

1 3

The multi-mode resource investment problem: a benchmark library…

and a branch-and-price algorithm, where they heavily utilise the calendar structure
of the resource availability. In computational experiments, Coughlan et al. (2015)
compared their approach to a standard MIP implementation in CPLEX 12.2. Their
approach was able to close several 50 activity instances, while a normal MIP imple-
mentation in CPLEX often failed to solve the instance.

Another extension of the MRIP with generalised temporal constraints and so-
called cumulative resources was proposed by Bartels (2009). Cumulative resources
are similar to renewable resources but are used to model storage. The start and fin-
ish of an activity can change the resource level in a positive or negative way. Bar-
tels proposed two application cases where one considers the dismantling of nuclear
power plants (RBP). There, at most two modes are available for each activity but
only the resource usage can vary and not the activity processing time. The author
used projects with 20 − 60 activities and 6 renewable resources in the computational
study. The objective is to minimise the net present value associated with mode-
dependent costs (which is similar to the nonrenewable resource in the MRIP set-
ting but time dependent). The second area of application models is the scheduling
of testing in the automotive industry (VTP). Here, tests (modelled as activities) are
assigned to experimental vehicles (represented by cumulative resources) through
different modes and the goal is to minimise the total number of utilised experimental
vehicles. Again, the processing time does not vary with the mode choice as only
resource utilisation is affected by the mode. In Bartels and Zimmermann (2009,
2015), this problem type is further analysed and a priority rule-based schedule gen-
eration scheme as well as a GA are utilised. The authors applied these procedures
to instances with 20 and 600 activities. Each instance incorporates one renewable
resource to model the construction of the experimental vehicles and a cumulative
resource for each experimental vehicle.

The problem extension with both a tardiness penalty and multiple modes
(MRIPT) was studied by Gerhards and Stürck (2018). They proposed a hybrid large
neighbourhood search (LNS) procedure that uses MIP techniques to solve sub-
problems exactly. They carried out experiments on adapted 30 activity MRCPSP
instances of the PSPLIB.

Several other extensions of the resource investment problem exist, where the
authors adapted the objective function. In the work of Najafi and Niaki (2006), a
RIP extension with discounted cash flows and net present value maximisation is pro-
posed and a GA was applied to the problem. Najafi et al. (2009) extend this set-
ting further by adding generalised precedence constraints to the problem and also
applied a GA. A RIP extension with net present value maximisation and tardiness
penalty was studied by Najafi and Azimi (2009) and a priority rule-based heuristic
was proposed. Yamashita et al. (2007) added uncertainty to the activity durations in
the RIP. The authors applied a SS with PR to different scenarios to obtain a robust
solution.

In Table 1, we give an overview of the instance properties used in multi-mode
RIP studies. Here, |M| is the maximum number of modes per activity. It is clear
that most of the studies only address small projects with rather few activities. The
majority of the instances are based on MRCPSP instances and only the work of
Gerhards and Stürck (2018) used nonrenewable resources (when nonrenewable

910 P. Gerhards

1 3

resources were available in the original MRCPSP instance, the other authors
treated them as renewable resources). Hence, it is desirable to have a more chal-
lenging and publicly available benchmark set of instances for future studies.

4 Lower and upper bounds

Next, we present several procedures to obtain lower (Sect. 4.1) and upper bounds
(Sect. 4.2) for the MRIP. We apply these methods in Sect. 6 to evaluate the novel
set of benchmarks instances.

4.1 Lower bounds

In order to obtain lower bounds, we use four formulae as well as the linear pro-
gramming relaxations of different mathematical formulations and the destructive
improvement approach. Two rather simple lower bounds for the minimum
resource level for the renewable resources in the RIP presented by Drexl and
Kimms (2001) can be adapted for the multi-mode setting (a1

k
 and a2

k
). We calcu-

late how many units for a resource k ∈ R are needed so that every activity can be
performed in its least resource consuming mode (with rmin

ik
= min

m∈Mi

rimk we denote
the minimum resource demand of activity i for resource k). Hence, the minimum
resource level for the first method is as follows.

As a second way to compute a lower bound on the minimal consumption, we can
distribute the required resources equally over the planning horizon. Hence, we
divide the sum of the minimal products of the resource consumption and the dura-
tion of all activities by the due date D.

(9)a1
k
= max

i∈A

{
rmin

ik

}
k ∈ R.

Table 1 Instances used in the existing studies of the MRIP

References Problem n |M| |R| |Rn|
Hsu and Kim (2005) MRIP 10–30 3 4 0
Yamashita and Morabito (2009) MRIP 15 3 4 0
Colak and Azizoglu (2014) MRIP 10–100 10 1 0
Qi et al. (2015) MRIP 10–30 3 4 0
Coughlan et al. (2015) MRIP calendars 50 3 2 0
Bartels (2009) (RBP) MRIP/max with cumulative resources 20, 40, 50, 60 2 6 1
Bartels (2009) (VTP) MRIP/max with cumulative resources 20, 600 – 1 –
Gerhards and Stürck (2018) MRIPT 30 3 2 2

911

1 3

The multi-mode resource investment problem: a benchmark library…

Next, we utilise so-called core times to compute bounds on the minimal consump-
tion (cf. Klein and Scholl 1999). The core time of an activity i is the periods where
the activity has to be processed, i.e. after its latest start LSi and before it earliest fin-
ish EFi = ESi +min{dim} . So, this concept uses the precedence relations as well as
the due date as an upper bound on the project makespan. However, if the due date
is large or the minimum activity duration is small, this core time interval can be
empty. The bound is computed by checking each period and summing up the mini-
mal resource consumptions of activities that have a core time in this period.

As a fourth way to compute minimal resource consumptions, we want to identify
triplets of activities that cannot be scheduled sequentially, and therefore, at least two
of them have to be processed with some overlap. We look at triplets of activities
i, j, l ∈ A with no precedence relations among them. There are six potential order-
ings of them (i.e. i ≺ j ≺ l, i ≺ l ≺ j, j ≺ i ≺ l, j ≺ l ≺ i, l ≺ i ≺ j and l ≺ j ≺ i) and
we check whether at least one of them is feasible with respect to the due date. If not,
at least two of the three activities have to be carried out in intersecting time intervals
and we can add the minimal resource usages. For example, let us assume we investi-
gate the ordering i ≺ j ≺ l , i.e. activity i has to be finished before j can start and j has
to be finished before l can start. This means that we can compute a new earliest start
time ESj = max{ESj,ESi + dmin

i
} and latest start time LSj = min{LSj, LSl − dmin

j
} .

The ordering is not feasible if LSj < ESj . If all six potential orderings are infeasible
with respect to the due date, then we add the triplet to the set of infeasible triplets IT.
For each triplet in IT, at least two activities have to be scheduled with overlap and
we get the following lower bound for the resource usage:

For a nonrenewable resource, the only simple lower bound Rn
k
 is the sum of the mini-

mal consumptions of all activities.

By multiplying these minimal resource levels with the corresponding resource cost
factors and summing them, we get the following simple lower bound for the MRIP.

(10)
a2
k
=

∑
i∈A

min
m∈Mi

�
rimk ⋅ dim

�

D
k ∈ R.

(11)a3
k
= max

t∈{0,…,D}

∑
i∈A∶LSi≤t≤EFi

rmin

ik
k ∈ R.

(12)
a4
k
= max

(i,j,l)∈IT
{min{max{rmin

ik
+ rmin

jk
, rmin

lk
}, max{rmin

ik
+ rmin

lk
, rmin

kl
},

max{rmin

jk
+ rmin

lk
, rmin

kl
}}} k ∈ R.

(13)an
k
=
∑
i∈A

min
m∈Mi

{rn
imk

} k ∈ R
n
.

(14)LB0 =
∑
k∈R

ck ⋅max
{
a1
k
, a2

k
, a3

k
, a4

k

}
+

∑
k∈Rn

cn
k
⋅ an

k
.

912 P. Gerhards

1 3

We compare LB0 with bounds obtained by solving the linear programming (LP)
relaxation of the MIP. Therefore, we use the mathematical formulation displayed in
(1)–(7) (PDT) and we refer to the objective value of this LP relaxation as LB1 . Fur-
thermore, we also use a mathematical formulation where the precedence relations
are modelled in a disaggregated way. The constraints are displayed in (15). Here, for
each pair (i, j) ∈ E and for each time period t of the planning horizon a constraint is
added that enforces the precedence relations. When the right side of (15) is equal to
1, i.e. the successor j starts before or in period t, then it forces the left side to take a
value of 1 as well. Hence, the predecessor i has to be started before t − dim depend-
ing on the mode m.

Artigues (2017) reported that this disaggregated formulation is stronger (w.r.t to the
LP relaxation) than the aggregated formulation displayed in constraints (3) which
can be seen since constraints (3) are implied by (2) and (15). The “disaggregated
discrete time formulation based on pulse variables” (PDDT) is defined by equations
(1), (2), (4)–(7) and (15). With LB2 , we refer to the lower bound obtained by solving
the LP relaxation of the PDDT formulation. Note that depending on the value of D,
the PDDT formulation can contain considerable more constraints than the PDT for-
mulation, and thus, setting up the mathematical model in the solver most likely takes
a longer time.

Another method for computing lower bounds is the destructive improvement
strategy introduced by Klein and Scholl (1999) for the RCPSP. It is an iterative
approach that is started with LB0 as a starting lower bound B . In each iteration, we
try to proof that if we take B as an upper bound on the objective value, then no
feasible solution can exist. If we succeed with the proof, we know that B + 1 is a
valid lower bound for the instance and we can use this value in the next iteration.
This process is repeated until the proof of infeasibility fails. For the proof, we either
use the PDT formulation and a MIP solver (LB3) or the CP formulation (displayed
in "Appendix 1.3") and the IBM ILOG CP Optimizer solver (LB4). In each itera-
tion, we add an extra constraint that bounds the objective value by the current upper
bound B to the respective problem formulation. To limit the overall run-time of the
procedure, we allow the solver a run-time of 60 s for each iteration. If no infeasibil-
ity can be detected after that time, the procedure stops and returns the best-known
lower bound. However, if the respective solver finds a feasible solution in an itera-
tion, this solution has to be optimal and the procedure terminates as well.

4.2 Upper bounds

To obtain upper bounds, i.e. the costs of feasible solutions, we use different approaches:
On the one hand, we implement heuristic procedures such as a multi-start local
search (MLS), a simulated annealing (SA) procedure and an adaptation of the prior-
ity rule heuristic (PRH) of Hsu and Kim (2005). On the other hand, we also apply

(15)
∑
m∈Mi

∑
�≤t−dim

xim� ≥
∑
m∈Mj

∑
�≤t

xjm� ∀(i, j) ∈ E, t = 1,… ,D

913

1 3

The multi-mode resource investment problem: a benchmark library…

exact methods such as MIP and CP solvers that are able to detect optimality for some
instances (although with a run-time restriction this is not always the case).

Before we explain how the MLS and the SA work in particular, we explain the
schedule generation scheme (SGS) that is utilised by both methods. In our case, we use
a serial SGS that takes a scheduling sequence � and a mode � as an input and tries to
build a feasible solution (i.e. a schedule with start and finish times and resource alloca-
tions). The SGS that we apply works similar to Algorithm 3.7.1 introduced by Neu-
mann et al. (2003) but also has some slight differences. We schedule the activities one
at a time and in the order specified by the sequence � (in Neumann et al. 2003 the SGS
schedules critical activities first and then selects the next activity according to a priority
rule; one could interpret our scheduling sequence as a special kind of priority rule). So,
the SGS ends after n + 2 iterations and we expect the scheduling sequence to respect
the precedence constraints. In iteration l of the SGS, it tries to schedule activity i = �l
in mode m = �i at the least cost increasing feasible time period that respects the prec-
edence relations. Thus, the SGS checks all feasible start times t ∈ {ESi,… , LFi − dim}
and computes the cost increase in the partial schedule with the activity added at each
particular start time. If there are multiple start times with the same cost increment, the
earliest one of them is assigned. It is possible that the SGS may not find a feasible start
time with respect to the due date since the durations of the chosen modes in � are
too high. If the SGS detects such an infeasibility, it fails and does not return a feasible
schedule.

First, we explain the concept of the multi-start local search method that we used.
Algorithm 1 depicts the outline of the MLS. We initialise the current best mode vec-
tor �b by choosing the mode with minimal duration for each activity (ties are resolved
arbitrarily). This initial mode vector is feasible with respect to the due date D. Next, we
determine an initial scheduling sequence �b that respects the precedence relations. This
means, that a successor j cannot occur at an earlier position in the sequence �b than its
predecessor i if (i, j) ∈ E . We generate such a sequence by adding the activities one at
a time to the sequence. An activity can only be added to the sequence if it is not part of
the sequence yet and if all of its predecessors are already in the sequence. If more than
one activity is eligible, we either choose one arbitrarily among the eligible activities
(random generation) or choose the activity with the highest value of some priority rule.
The priority rules that we used in this process are the following: minimum LST, mini-
mum LFT, minimum slack (i.e. LFT − EFT), minimum number of successors, maxi-
mum number of successors and maximum rank positional weight (cf. Kolisch 1996).
We generate a sequence for each priority rule and one using the random selection tech-
nique and use the SGS and the mode vector �b to translate it into a schedule. We keep
the scheduling sequence with the lowest cost value and store it as �b .

914 P. Gerhards

1 3

In the main loop of Algorithm 1, we start by assigning a perturbed mode vec-
tor, called �p in line 5. Here, we select a random number of activities and change
their mode from the one stored in �b to an arbitrary one. For the remaining activi-
ties (that were not selected), we assign in �p the same mode as in �b . The current
best sequence �b is also modified (by extracting a random number of activities from
the sequence and inserting them at a random, precedence feasible position in the
modified sequence) and then copied to �p . We use these two steps to obtain a new
start point for the local search. In order to limit the degree of diversification from
the current best solution �p and �p , we limit the number of changes by n ⋅ �max

M
 and

n ⋅ �max

S
 , respectively. Here, �max

M
,�max

S
∈ [0, 1] are parameters of the MLS. Then, we

perform a local search starting at �p and �p in line 7. This local search procedure
aims to improve the solution costs by altering �p and �p locally. First, the LS proce-
dure checks if altering the chosen mode of an activity leads to lower costs by apply-
ing the SGS to the altered mode vector and the unchanged sequence. After checking
all possible mode changes of an activity, the LS explores all feasible (with respect to
precedence relations) swaps in the scheduling sequence. So, it exchanges the activi-
ties at two positions of the scheduling sequence and if the sequence still respects the
precedence relations, it checks if the application of the SGS leads to a lower cost
value. If an alteration of �p or �p leads to an improvement, we apply the change
and repeat the local search procedure with the updated mode vector and scheduling
sequence. Hence, we apply a first improving move policy. In lines 8 − 12 , we update
the current best mode vector and scheduling sequence if the LS found a strictly bet-
ter cost value. The MLS repeats until the specified time limit is reached.

We briefly explain the priority rule heuristic of Hsu and Kim (2005): First,
we initialise the investment upper bound IUB = LB1 . Then, the PRH iteratively
tries to find a feasible schedule with costs lower than or equal to IUB . If we can-
not find such a schedule, we increase IUB by one at the end of the iteration. To
obtain a schedule, we schedule one activity at a time. Therefore, we compute
for each activity i that is eligible for scheduling (i.e. all of its predecessors are
already scheduled) the mode m∗ and the start time t∗ that results in the lowest
priority value v(i,m∗, t∗) . Then, the activity i∗ with the worst minimum value is

915

1 3

The multi-mode resource investment problem: a benchmark library…

selected for scheduling. The priority value v is a linear combination of two pri-
ority functions v1 and v2 . The parameter � controls the portion of the two prior-
ity functions.

Here, v1 is called the transformed slack priority function and measures how the
selected start time and mode influence the set of remaining start times for the suc-
cessors of this activity (it favours early finish times such that many possible start
times remain for the successors). Priority function v2 , called transformed investment
priority function, calculates how much it costs to schedule an activity in a specific
mode and a start time with respect to the increase in costs of the partial solution (in
contrast to the original work, we also consider nonrenewable resources and their
costs). If the costs excel the given bound IUB , the v2 value is ∞ . The scheduling
procedure stops, if either a start time for each activity was determined or the costs
of the (partial) solution excelled the given upper bound IUB . The whole priority rule
heuristic stops once a feasible solution is found.

As a second metaheuristic approach, we adapted the simulated annealing pro-
cedure with reheating presented by Józefowska et al. (2001) for the MRCPSP to
fit our MRIP setting. Here, in each iteration, we generate a solution candidate
by perturbing the currently best-known solution. It is accepted if it has a better
cost value or with some probability that depends on the delta of the cost val-
ues as well as the so-called temperature. The temperature is used to control the
acceptance rate of worse solutions during the search and decreases constantly by
a cooling factor � . However, we also use reheating to escape local optima when
the search is stuck. The total number of reheats is one of the algorithm param-
eters of the SA approach as well as the cooling factor �.

Next, we explain the set-up of the MIP experiments. We implemented six
formulations: the two based on pulse variables PDT (displayed in (1)–(7)) and
PDDT (displayed in (1), (2), (4)–(7) and (15)). Furthermore, we adapted two
formulations based on step variables (SDT and SDDT) and two based on on/off
variables (OODT and OODDT) which are displayed in more detail in "Appen-
dix 1.1" and 1.2, respectively. In order to model and solve the MIP, we used
Gurobi Optimizer 9.0 via the C# API. For large instances, setting up the model
can require some time (in our experiments, the maximal measured set-up time
was 8.16 s), while for the smaller instances, no big difference in set-up times
between the two formulations was measured.

Another exact approach that becomes more and more relevant in the field of
project scheduling is constraint programming. Constraint programming solvers
became more efficient in recent years and they are applied to a growing number
of scheduling problems (e.g. Kreter et al. 2018 and Schnell and Hartl 2016). The
CP formulation of the MRIP used in this study is displayed in "Appendix 1.3".
We implemented the CP model displayed in (47)–(54).

(16)
v(j,m, t) = � ⋅ v1(j,m, t) + (1 − �) ⋅ v2(j,m, t)

i ∈ A,m ∈ Mi, t = ESi,… ,LFi − dim.

916 P. Gerhards

1 3

5 Instance generation and benchmark library

In this section, we explain how we generated the benchmark instances for the MRIP.
Our main concerns with the instances are diversity of the instances with respect
to certain characteristics and that the feasible mode space cannot be reduced eas-
ily. We used the following characteristics to generate different instances: number
of activities n, maximum number of modes per activity |M|, number of renewable
resources |R|, due date factor � , order strength OS and resource factor RF. Here, the
parameter order strength is a measure of the number of precedence relations (Mas-
tor 1970). It is defined as the fraction of precedence relations in E compared to the
total number of possible relations and, hence, is an indicator whether the precedence
structure of the project is more parallel or more serial (Schwindt 1998 showed that
OS is a good approximation for the restrictiveness of the precedence relations). The
resource factor value is the average portion of different resources required for the
processing of an activity in a mode (Kolisch and Sprecher 1997). Note that it only
varies for the renewable resources. For the single nonrenewable resource, RF = 1 for
all instances since each mode has a positive resource requirement for the nonrenew-
able resource except the modes of the dummy start and finish activities. The due
date factor � is used to compute the due date of the project based on the earliest start
time ESn+1 of the dummy end activity (calculated by forward calculation). We calcu-
late the due date as follows:

The round function in equation (17) applies the rounding to the nearest even num-
ber strategy in the case of midpoint values. Table 2 displays the values that we used.
For each parameter combination, we generated 5 instances, giving us in total 4950
instances. As shown in Sect. 2, it is sufficient to consider only one nonrenewable
resource.

Concerning the mode space, the instances should neither contain inefficient nor
infeasible modes. We call a mode m ∈ Mi of activity i inefficient if there is another
mode m� ∈ Mi for that activity such that the other mode has a shorter or equal dura-
tion and it has lower or equal resource requirements for all resources (cf. Kolisch
et al. 1995). It would never be beneficial to include an inefficient mode m into a solu-
tion since with m′ the resource usage would be lower, and hence, we can omit mode
m from the mode space. It is possible to check if a mode is inefficient in polynomial

(17)D = �����(� ⋅ ESn+1).

Table 2 Parameter values of the
new instances

Parameter Values

n {30, 50, 100}

|M| {3, 6}

|R| {2, 4, 8}

� {1.2, 1.4, 1.6, 1.8, 2}

OS {0.25, 0.5, 0.75}

RF {0.25, 0.5, 0.75, 1}

917

1 3

The multi-mode resource investment problem: a benchmark library…

time. We call a mode m ∈ Mi infeasible if its duration dim is too long to finish the
project before the due date. In mathematical terms, this happens if the difference
between the latest finish time (LF) of the activity and the earliest start time (ES) is
smaller than the duration, i.e.:

Especially when using project data that was generated for the MRCPSP and when
the due date is very close to ESn+1 , many modes are infeasible and can be omitted
from the mode space. Again, we can check in polynomial time if a mode is infeasi-
ble since we can calculate the ES and the LF in polynomial time with the FBC.

Gerhards and Stürck (2018) adapted MRCPSP instances from the PSPLIB with
30 activities per project. They also computed the due date as in (17) and used values
of � ∈ {1.0, 1.1,… , 1.5} . However, they did not investigate if the duration of each
mode is short enough for the resulting due dates. In Table 3, we present the average
number of infeasible modes for the different values of � as well as the maximum and
minimum proportion of infeasible modes for single instances (labelled min and max
in the table). Especially for � = 1.0 and � = 1.1 , many modes are infeasible. Further-
more, we also computed how many modes become inefficient when we try to make
the infeasible modes feasible. We altered the duration of all infeasible modes by
setting dim = LFi − ESi . Again, for low values of � many modes can be omitted from
the mode space since they are inefficient (the altered modes have a shorter duration
and dominate unchanged ones). For this reason, we consider in this study slightly
larger values for the parameter � and check during the generation of the instances for
infeasible and inefficient modes.

In the following, we describe how we computed each instance with the desired
properties. First, we used the network generator RanGen Demeulemeester et al.
(2003) to generate an activity-on-the-node network with the specified number
of activities and OS value (this gives us the set E of precedence relations). For
each activity i ∈ A , the cardinality of the mode set is set to the desired number,
i.e. |Mi| = |M| (except for the dummy activities which have only one mode). We
draw for each activity i and all its modes m ∈ Mi the duration dim as a discrete uni-
formly distributed random number U{1, 10} . Similarly, the resource requirements
rimk (rn

imk
) for each resource k ∈ R (k ∈ R

n) are also taken from U{1, 10} . If the
value of RF < 1 , then we arbitrarily set sufficiently many of the renewable resource

(18)LFi − ESi < dim.

Table 3 Infeasible and inefficient modes in the adapted PSPLIB instances used by Gerhards and Stürck
(2018)

� ∅ Infeasible (%) Min (%) Max (%) ∅ Inefficient (%) Min (%) Max (%)

1.0 28.17 11.11 52.22 13.16 1.11 37.78
1.1 12.02 0.00 35.56 2.01 0.00 14.44
1.2 3.54 0.00 22.22 0.39 0.00 5.56
1.3 0.52 0.00 11.11 0.04 0.00 2.22
1.4 0.03 0.00 3.33 0.00 0.00 0.00
1.5 0.00 0.00 0.00 0.00 0.00 0.00

918 P. Gerhards

1 3

requirements of each mode to 0 such that the resource factor is achieved. After we
determined all the resource requirements and the durations of an activity, we check
if there are inefficient modes. If an inefficient mode occurs, we take new random val-
ues for the modes that cause the inefficiency. This is repeated until each activity has
no inefficient modes. Then, we use the forward calculation to compute ES and deter-
mine the due date D as in (17). Based on the due date, we can compute latest finish
times LF for all activities. Next, we check each activity for infeasible modes. If we
encounter an infeasible mode with some activity, we start over and redraw all values
(durations and resource requirements) of all activity modes of the instance. By tak-
ing new random values for all of the modes and not just the infeasible ones, we want
to avoid that infeasible modes are set to a similar duration (for example, setting the
duration to dim = LFi − ESi would repair the infeasibility, but could also result in
inefficient modes and biased duration values). We repeat this until all modes of all
activities are feasible and none of them is dominated. Finally, we determine the ran-
dom cost factors ck for all renewable resources k ∈ R from U{1, 10} . Although, we
only investigate the MRIP without tardiness permitted in this study, we also added
a value for the tardiness cost factor (also from U{1, 10}) that can be useful in future
work. In the next section, we will investigate the novel instances.

For most instances (3725 of 4950), we drew feasible mode durations on the
first try. However, on average we had to redraw 385 times per instance until all
modes were feasible. The maximum number of redraws was 67,653 for instance
MRIP_30_79. We analysed if the redrawing has an effect on the distribution of
the mode duration values. Therefore, we performed a Pearson’s chi-squared test of
goodness of fit (Cochran 1952) with significance level � = 0.01 to check whether
the duration data fits to a discrete uniform distribution. Only for 47 of the 4950
instances, we were able to reject this hypothesis, and hence, we suspect that there is
no strong bias in the duration values for most of the generated instances.

6 Computational study

To test the “hardness” of the instances, we compute both lower and upper bounds
with the procedures presented in Sect. 4 and compare them. To compute upper
bounds, we apply metaheuristic search procedures as well as different MIP and CP
implementations. The goal is to examine how hard the proposed instances are for
these general purpose methods. For the lower bounds, we propose some rather sim-
ple approaches and compare them to linear programming relaxations of different
mathematical formulations as well as so-called destructive improvement methods.
We want to investigate if drawing the cost factors from a uniform distribution has an
effect on the “hardness” of the instances. Therefore, we perform experiments with the
random cost factor instances and additionally with the same instances, but with all
cost factors set to 1 (called equal resource cost factors). We conducted all following
computational experiments on an Intel Xeon Silver 4214 CPU running at 2.20 GHz
and all procedures were implemented in C#. We utilised Gurobi Optimizer 9.0
to solve LP relaxations and the MIPs. For the CP-based destructive improvement

919

1 3

The multi-mode resource investment problem: a benchmark library…

procedure and the standalone CP implementation, we used IBM ILOG CP Opti-
mizer 12.9.0 (cf. Laborie et al. 2018).

The five lower bound procedures proposed in Sect. 4.1 are applied on the
new benchmark instances. In Table 4, we depict the average of the relative
improvement over the worst lower bound LBmin for all five lower bounds, i.e.
LBi−LBmin

LBmin
, i = 0,… , 4 . If the value of ∅ improvement is close to 0% , then the

respective lower bound value was close to the minimum value among the calculated
bounds. Hence, the higher the ∅ improvement the better. We used random resource
cost factors for the results depicted in Table 4. For instances with unit resource cost
factors, we get a similar trend.

Clearly, LB0 (the bound based on minimum resource level formulae) is always
the worst lower bound. Only for instances with a small number of modes (|M| = 3)
or a high resource factor (RF = 1), the gap between the more advanced procedures
gets smaller. The LP relaxation-based lower bound with disaggregated precedence
constraints LB2 performs best on average. Since the disaggregated formulation
is stronger than the aggregated one (cf. Artigues 2017), LB1 (based on the aggre-
gated precedence constraints) performs slightly worse than LB2 regarding the rela-
tive improvement. The destructive improvement methods (LB3 and LB4) work

Table 4 Average improvement
(with random resource cost
factors) for the different instance
parameters

∅ Improvement

LB
0 (%) LB

1 (%) LB
2 (%) LB

3 (%) LB
4 (%)

All 0.00 119.46 122.99 119.57 119.82
n 30 0.00 122.02 126.78 150.52 128.27

50 0.00 117.07 120.56 124.11 114.65
100 0.00 119.28 121.63 84.08 116.54

|R| 2 0.00 104.03 106.48 99.17 102.12
4 0.00 112.97 116.16 112.16 114.83
8 0.00 137.51 142.19 142.28 138.09

|M| 3 0.00 58.90 60.68 61.47 63.42
6 0.00 180.01 185.29 177.66 176.22

OS 0.25 0.00 143.38 145.80 145.35 142.15
0.5 0.00 119.64 123.27 119.19 118.83
0.75 0.00 95.35 99.90 94.16 98.47

� 1.2 0.00 130.15 135.03 147.78 128.52
1.4 0.00 128.70 133.05 139.47 127.60
1.6 0.00 121.50 125.09 121.74 121.55
1.8 0.00 112.76 115.37 102.91 114.43
2 0.00 104.19 106.40 85.93 107.00

RF 0.25 0.00 146.83 154.11 168.96 155.25
0.5 0.00 158.22 163.39 157.84 157.53
0.75 0.00 121.43 123.61 110.42 119.11
1 0.00 60.48 61.21 57.52 59.20

920 P. Gerhards

1 3

especially well on small- to medium-sized instances but are outperformed by the
LP-based approaches on the n = 100 instances. However, LB3 finds optimal solution
for 31 instances, while LB4 can solve 4 instances to optimality. In absolute terms,
LB3 gives the best lower bound for 3736 instances (and 3403 of those bounds were
solely found by this procedure). Yet, the performance of the MIP solver seems to be
significantly worse for the instances with 100 activities, as we can see a drop in the
average improvement there.

Furthermore, in Table 5, we display the average computation time (in s). As
expected, LB0 has a significantly lower running time than the other procedures. The
PDT LP relaxation (LB1) is solved about 10 times faster than the disaggregated ver-
sion. While the MIP-based destructive improvement procedure takes the longest
computation time, it also closes most instances and performs best on the instances
with 30 and 50 activities. The CP-based variant is not able to find as many opti-
mal solutions as its MIP-based counterpart, yet, it terminates faster. For instances
with 30 and 50 activities, LB2 seems to have the best quality per computation time
ratio, while on the larger 100 activities instances, LB1 seems most efficient. How-
ever, we solved the LP relaxations (LB1 and LB2) much faster when the mode count
was higher. To investigate this unexpected behaviour, we modified the instances

Table 5 Average computation
time in seconds (with random
resource cost factors) for the
different instance parameters

∅ Computation time

LB
0

LB
1

LB
2

LB
3

LB
4

All 0.05 12.47 145.39 2491.07 185.71
n 30 0.02 0.52 2.13 711.89 241.64

50 0.02 2.50 17.30 1748.01 158.95
100 0.10 34.40 416.73 5013.31 156.56

|R| 2 0.03 1.25 64.60 1503.81 97.68
4 0.04 6.12 130.04 2001.14 165.81
8 0.07 27.25 221.31 3721.45 271.65

|M| 3 0.05 18.44 234.38 2100.45 195.22
6 0.05 6.50 56.39 2881.69 176.21

OS 0.25 0.04 1.71 20.13 2610.90 120.65
0.5 0.05 7.67 89.94 2863.30 152.24
0.75 0.05 28.05 326.08 1999.01 284.26

� 1.2 0.05 1.39 11.96 2290.56 224.11
1.4 0.05 2.79 30.14 2783.63 188.63
1.6 0.05 6.27 81.81 2674.72 172.52
1.8 0.04 13.83 200.08 2470.73 172.57
2 0.04 38.09 402.93 2235.71 170.74

RF 0.25 0.05 4.44 123.20 1721.90 321.36
0.5 0.04 8.65 151.83 1947.00 213.10
0.75 0.04 15.60 122.44 2813.10 143.85
1 0.04 18.53 176.67 3225.89 109.77

921

1 3

The multi-mode resource investment problem: a benchmark library…

with three modes per activity by duplicating each mode of each activity and solving
the modified instance again as an LP relaxation. Note that the objective value does
not change when solving this modified instance. However, the average computation
time decreased from 18.44 to 15.96 s for the aggregated variant and from 234.38 to
163.49 s for the disaggregated version. So, basically the same instance was solved
up to 30% faster just by adding the identical modes. Why the LP solver is so much
faster with these additional decision variables is still an open problem and further
research is needed here.

Next, we analyse the upper bound procedures presented in Sect. 4.2. Therefore,
let us first examine how many instances the MIP and CP procedures solved to opti-
mality within a time limit of one hour. When we used equal resource cost factors,
the PDT formulation MIP solved 17.4% of the instances to optimality, whereas the
CP solver found optimal solutions for 30.4% of the instances. Using random cost
factors, PDT solved only 9.3% and CP 28.4% of the instances to optimality. In total,
the exact procedures solved 1430 instances to optimality, and hence, we found opti-
mal solutions for less than 29% of the instances with random cost factors. The ran-
dom cost factors make the instances more challenging, especially for the MIP-based
approaches. Therefore, we take a closer look at these instances.

In Table 6, we can observe how the exact approaches performed given different
run-time limits (60, 600, and 3600 s). Surprisingly, the CP implementation finds
more optimal solutions in 60 s than any of the MIP approaches in one hour. The
aggregated versions of the step-based and the on/off-based formulations cannot find
feasible solutions for all of the instances, even with a time limit of one hour. The
disaggregated variants find at least one feasible solution for each instance except for
PDDT and OODDT with the 60 second time limit. PDT can solve the most instances
to optimality among the MIP-based approaches. However, the CP approach seems to
be much better at proving optimality of a solution and, hence, achieves also faster
average run-times.

Table 6 Percentage of feasible and optimal solutions and average computation times in seconds for the
instances with random cost factors

Max time ∅ Feasible ∅ Opt ∅ Time

60 (%) 600 (%) 3600 (%) 6 (%)0 600 (%) 3600 (%) 60 600 3600

PRH 100.0 0.0 12.5
MLS 100.0 100.0 100.0 0.0 0.0 0.0 60.0 600.0 3600.0
SA 100.0 100.0 100.0 0.0 0.0 0.0 60.0 600.0 3600.0
CP 100.0 100.0 100.0 14.6 22.6 28.4 53.5 485.7 2688.6
PDT 100.0 100.0 100.0 0.9 4.3 9.3 60.1 584.1 3361.3
PDDT 97.8 100.0 100.0 0.8 4.2 8.8 60.8 585.9 3372.6
OODT 36.0 62.7 81.4 0.1 1.4 4.2 61.1 597.0 3503.4
OODDT 94.1 100.0 100.0 0.2 3.0 8.3 61.1 591.5 3406.8
SDT 93.7 97.5 99.4 0.0 0.7 2.5 60.4 598.4 3547.8
SDDT 100.0 100.0 100.0 0.2 1.8 5.3 60.4 594.4 3477.8

922 P. Gerhards

1 3

In Table 7, we can observe how many instances were solved optimally by CP or
one of the MIP formulations after one hour of computation depending on the respec-
tive instance parameter. We see that for “small” instances, i.e. the instances with
only 30 activities, CP outperforms all other approaches and is the only procedure
that finds optimal solutions for instances with 100 activities. In general, instances
with 30 activities, a small RF = 0.25 or a small due date factor are more likely to be
solved to optimality by one of the approaches. A similar phenomenon as with the LP
relaxations occurs with the PDDT MIP approach where more optimal solutions are
found for instances with higher mode count as the MIP solver has to solve several
LPs during the search.

Next, we compare the results of the exact procedures to the MLS, the SA
approach and the PRH. To calibrate the algorithm parameters of the MLS, PRH and
SA, we used the software package ����� López-Ibáñez et al. (2016) and a set of
990 training instances (with the same instance parameters). After performing 1000
experiments with each algorithm, the best parameter values on the training instance
set are �max

S
= 0.92 , �max

M
= 0.2 and � = 0.28 for the MLS and the PRH. For the SA

approach, the number of reheats was 23, 880 and 5280 and the temperature cooling
factor � was 0.52, 0.9 and 0.9 for a run-time limit of 60, 600 and 3600 s, respectively.

Table 7 Percentage of optimal solutions for different instance parameters after 3600 s of run-time (for
the instances with random cost factors)

CP (%) PDT (%) PDDT (%) OODT (%) OODDT (%) SDT (%) SDDT (%)

All 28.4 9.3 8.8 4.2 8.3 2.5 5.3
n 30 62.7 25.2 23.8 12.2 22.8 7.3 14.6

50 22.0 2.6 2.6 0.4 2.1 0.1 1.3
100 0.6 0.0 0.0 0.0 0.0 0.0 0.0

|R| 2 27.5 10.7 11.3 3.5 9.9 3.5 8.1
4 32.4 10.6 10.0 5.8 9.4 2.9 5.7
8 25.2 6.8 5.7 3.2 6.1 1.3 2.8

|M| 3 34.1 9.7 8.6 5.7 10.1 3.4 6.6
6 22.8 8.8 9.0 2.8 6.6 1.5 4.0

OS 0.25 21.8 9.1 8.2 5.1 7.9 2.7 4.7
0.5 28.1 8.4 7.6 3.6 7.6 2.2 5.0
0.75 35.4 10.2 10.6 3.9 9.4 2.6 6.1

� 1.2 34.8 15.3 15.4 8.3 13.7 6.6 10.9
1.4 30.2 11.1 11.4 4.6 10.0 3.2 7.9
1.6 26.6 7.7 7.7 3.5 7.7 1.5 3.9
1.8 25.4 6.7 5.5 2.2 5.7 0.6 2.1
2 25.4 5.6 4.0 2.4 4.4 0.5 1.6

RF 0.25 62.8 28.7 25.0 16.3 26.4 7.0 14.1
0.5 37.9 11.2 11.5 3.6 9.6 3.3 7.2
0.75 17.7 2.9 3.1 0.8 2.6 1.0 2.2
1 6.8 0.7 1.0 0.1 0.6 0.2 0.7

923

1 3

The multi-mode resource investment problem: a benchmark library…

We see that using mostly the transformed investment priority function performs
better for PRH (in Hsu and Kim 2005, an � value of 0.4 performed best). On aver-
age, the PRH took 12.5 s to compute a feasible solution. The fastest PRH running
time took 0.08 s, while the maximum computation time in our experiments was
258.5 s for one instance.

Metaheuristic procedures are in general not able to detect if a solution is opti-
mal or not. So, we compare the procedures based on the average relative deviation
(∅ RD, cf. (19)) from the respective best-known solution value (UBmin) found by
the four procedures. So, if this average is 0% , this means that the procedure always
found a solution with lowest objective function value for each instance.

We also compare them by the average relative deviation from the best-known lower
bound (∅RDLB , cf. (20)).

Tables 8 and 9 depict the average relative deviations ∅RD and ∅RDLB of the tested
procedures, respectively. Note, that SDT and OODT did not find a feasible solution
for each instance and we omitted instances with no solution in the calculation of the
average for these two formulations. This means that the true average for those pro-
cedures may be higher than displayed and a comparison with the other methods is
difficult. We observe that the PDT formulation reaches the lowest average deviation
over all instances although CP was able to find more optimal solutions. One could
suspect that the stronger PDDT formulation should also have a better performance
than the weaker aggregated PDT variant. But we need to keep in mind, that solving
the disaggregated LPs takes longer and the extra constraints also need more mem-
ory, and hence, it is not a priori clear which MIP formulation performs better (cf.
Artigues 2017). However, for the project instances with 30 activities, the CP imple-
mentation achieves the best results. For instances with more activities, again PDT
achieves the best results and also the gap to the metaheuristic procedures grows.
Among the heuristic procedures, MLS works best for small- to medium-sized pro-
ject instances but SA performs better on the 100 activity instances. However, the
heuristic approaches are not competitive with the exact methods and there is a lot of
potential for improvement.

In Table 9, we see that PDDT, SDDT and OODDT have a lower deviation for
instances with a higher number of modes. We think that this phenomenon is related to
the one experienced with the lower bounds. When solving the MIP, also several LPs
are solved, and hence, we think this is related to the better performance of the disaggre-
gated MIP procedures on instances with 6 modes per activity. A low resource factor of
0.25 seems to make it easier for the CP and PDT formulation which is in line with the
findings in Table 7 where the most optimally solved instances also had a RF = 0.25 .
The choice of the due date factor � has no strong impact on the solution quality of
the CP solver. The MIP approaches, especially SDDT and OODDT, perform worse for

(19)RD =
UB − UBmin

UBmin
.

(20)RDLB =
UB − LBmax

LBmax
.

924 P. Gerhards

1 3

Ta
bl

e
8

 A
ve

ra
ge

 re
la

tiv
e

de
vi

at
io

n
(∅

 R
D

) f
ro

m
 th

e
be

st-
kn

ow
n

so
lu

tio
n

co
m

pa
ris

on
 a

fte
r 3

60
0

s o
f r

un
-ti

m
e

fo
r t

he
 in

st
an

ce
s w

ith
 ra

nd
om

 c
os

t f
ac

to
rs

PR
H

 (%
)

SA
 (%

)
M

LS
 (%

)
C

P
(%

)
PD

T
(%

)
PD

D
T

(%
)

O
O

D
T*

 (%
)

O
O

D
D

T
(%

)
SD

T*
 (%

)
SD

D
T

(%
)

A
ll

31
.3

24
.3

16
.4

2.
5

1.
4

2.
2

2.
1

10
.7

3.
5

8.
4

n
30

30
.9

23
.5

7.
2

0.
4

1.
2

1.
1

1.
7

1.
0

2.
1

1.
8

50
31

.7
23

.7
11

.8
1.

7
1.

6
1.

7
2.

7
2.

0
2.

7
2.

9
10

0
31

.4
25

.7
30

.2
5.

3
1.

3
3.

8
2.

0
29

.0
5.

7
20

.6
|R

|
2

32
.6

19
.3

14
.4

2.
1

0.
8

0.
8

1.
4

6.
8

1.
2

1.
7

4
31

.3
23

.9
16

.2
2.

8
1.

3
2.

2
2.

2
10

.9
2.

5
4.

3
8

30
.4

28
.4

18
.1

2.
5

1.
9

3.
1

2.
8

13
.4

6.
2

17
.5

|M
|

3
27

.9
25

.9
13

.8
1.

8
1.

6
3.

1
2.

4
11

.5
3.

8
9.

7
6

34
.8

22
.7

18
.9

3.
2

1.
1

1.
3

1.
9

9.
8

3.
1

7.
1

O
S

0.
25

31
.8

28
.6

19
.2

3.
7

1.
0

1.
0

1.
2

1.
5

1.
6

3.
4

0.
5

29
.0

24
.2

17
.1

2.
6

1.
2

1.
5

2.
0

10
.0

3.
1

8.
4

0.
75

33
.2

20
.0

12
.8

1.
2

1.
8

4.
0

3.
8

20
.5

5.
7

13
.5

�
1.

2
30

.9
25

.0
15

.7
2.

4
0.

9
0.

8
1.

5
0.

7
1.

4
1.

1
1.

4
32

.0
25

.7
16

.2
2.

5
1.

1
1.

0
1.

6
2.

2
1.

8
1.

4
1.

6
31

.9
24

.4
16

.4
2.

5
1.

4
1.

6
2.

2
8.

1
2.

7
6.

5
1.

8
31

.1
23

.7
16

.8
2.

5
1.

6
2.

7
2.

7
18

.2
4.

6
12

.9
2

30
.7

22
.7

16
.8

2.
5

1.
9

4.
8

3.
0

24
.1

7.
0

20
.2

RF
0.

25
28

.1
24

.5
15

.5
1.

1
1.

1
2.

0
2.

5
13

.2
4.

9
8.

1
0.

5
32

.3
23

.4
16

.3
2.

4
1.

3
2.

0
2.

4
10

.2
3.

7
7.

2
0.

75
32

.4
24

.8
16

.9
3.

2
1.

5
1.

9
2.

2
10

.2
3.

1
8.

6
1

31
.5

24
.5

16
.5

2.
8

1.
5

2.
7

1.
6

9.
9

2.
6

9.
7

925

1 3

The multi-mode resource investment problem: a benchmark library…

Ta
bl

e
9

 A
ve

ra
ge

 re
la

tiv
e

de
vi

at
io

n
(∅

 R
D

LB
) f

ro
m

 th
e

be
st-

kn
ow

n
lo

w
er

 b
ou

nd
 c

om
pa

ris
on

 a
fte

r 3
60

0
s o

f r
un

-ti
m

e
fo

r t
he

 in
st

an
ce

s w
ith

 ra
nd

om
 c

os
t f

ac
to

rs

PR
H

 (%
)

SA
 (%

)
M

LS
 (%

)
C

P
(%

)
PD

T
(%

)
PD

D
T

(%
)

O
O

D
T*

 (%
)

O
O

D
D

T
(%

)
SD

T*
 (%

)
SD

D
T

(%
)

A
ll

50
.6

42
.5

33
.3

17
.5

16
.3

17
.3

15
.8

27
.7

18
.9

25
.2

n
30

50
.7

42
.0

23
.2

15
.4

16
.4

16
.3

16
.9

16
.1

17
.4

17
.1

50
53

.1
43

.7
29

.8
18

.1
18

.1
18

.2
17

.9
18

.7
19

.5
19

.7
10

0
48

.1
41

.8
47

.0
18

.8
14

.4
17

.6
10

.1
48

.1
19

.8
38

.8
|R

|
2

39
.7

25
.5

20
.3

7.
4

6.
1

6.
2

6.
5

12
.6

6.
5

7.
1

4
47

.3
38

.7
30

.0
15

.1
13

.6
14

.7
13

.8
24

.7
14

.9
17

.1
8

62
.2

59
.1

46
.4

27
.3

26
.7

28
.4

26
.0

41
.9

32
.3

46
.9

|M
|

3
45

.8
43

.6
29

.8
16

.1
16

.0
17

.8
15

.4
27

.9
18

.7
26

.2
6

55
.5

41
.4

36
.9

18
.9

16
.7

16
.9

16
.1

27
.4

19
.0

24
.3

O
S

0.
25

45
.0

41
.6

30
.9

14
.0

11
.1

11
.0

11
.0

11
.6

11
.7

13
.9

0.
5

47
.3

42
.1

33
.8

17
.2

15
.7

16
.0

15
.9

26
.3

18
.1

24
.6

0.
75

59
.6

43
.8

35
.3

21
.2

22
.1

24
.9

22
.6

45
.0

27
.0

37
.2

�
1.

2
45

.5
38

.8
28

.5
13

.7
12

.1
12

.0
12

.4
11

.9
12

.7
12

.3
1.

4
49

.4
42

.1
31

.2
15

.9
14

.4
14

.3
14

.3
15

.7
15

.2
14

.7
1.

6
51

.9
43

.1
33

.8
17

.9
16

.7
17

.0
16

.4
25

.0
18

.3
23

.2
1.

8
52

.7
44

.0
35

.8
19

.2
18

.3
19

.7
18

.0
38

.6
22

.0
32

.6
2

53
.8

44
.4

37
.3

20
.5

20
.1

23
.7

19
.1

47
.2

26
.4

43
.2

RF
0.

25
49

.0
44

.6
34

.4
17

.5
17

.7
18

.8
16

.1
33

.0
22

.4
26

.7
0.

5
53

.0
42

.7
34

.3
18

.3
17

.2
18

.1
17

.0
28

.2
20

.2
24

.9
0.

75
52

.5
43

.8
34

.4
18

.8
16

.9
17

.6
16

.8
27

.5
18

.9
26

.0
1

47
.6

39
.6

30
.5

15
.2

13
.9

15
.4

13
.3

23
.6

15
.1

23
.7

926 P. Gerhards

1 3

higher due date factors. OODDT performs best over all procedures on the � = 1.2 and
worst on the � = 2 instances. In total, most best-known solutions (BKS) were found
by CP (2228) followed by OODDT (1362), PDDT (1268) and PDT (1239). The MLS
found only 15 BKS and the PRH only a single one, while the SA approach did not find
any BKS at all.

7 Summary and conclusions

In this paper, we investigated the multi-mode resource investment problem. It is a
prominent project scheduling problem where each activity is processed in one of mul-
tiple modes that vary in the activities’ duration and resource consumption. We have
shown that it is sufficient to consider a single nonrenewable resource with a transforma-
tion procedure.

Furthermore, we propose a novel set of benchmark instances for this problem as
no common set of instances was used and known in the literature so far. In total, we
computed 4950 instances with a diverse set of instance characteristics. We especially
assured that none of the modes can be reduced because of infeasibility or inefficiency
reasons. By maintaining the website https ://ripli b.hsu-hh.de, we make these instances
available to the public. In addition, researchers can access best-known solution values
for the instances as well as share and validate their results on this website. We encour-
age researchers to test their solution procedures on the benchmark dataset and compare
their results.

In extensive computational experiments, we examined lower and upper bounds for
the MRIP. For the lower bounds, our experiments revealed that using the LP relaxation
of the so-called disaggregated discrete time indexed formulation yields better lower
bounds for most instances at hand. However, we also proposed destructive improve-
ment methods that yielded good results for the small- and medium-sized instances and
even provided optimal solutions in some cases.

We also tested several procedures to obtain good upper bounds for the MRIP. The
metaheuristic procedures, a multi-start local search, simulated annealing, and a priority
rule heuristic from the literature, were not able to compete with the MIP and CP imple-
mentations. In total, the exact procedures were able to prove the optimality of 1340 of
the 4950 instances. That means that over 60% of the instances are still open and we
encourage researchers to investigate them further. Our experiments also indicated that
the instances are more challenging when we use random cost factors.

For future research, we advise the application of more advanced metaheuristic pro-
cedures. In addition, further extensions such as general temporal constraints or the tar-
diness penalty in the objective function could be an interesting addition to take some
important aspects of project scheduling into account.

Acknowledgements Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article

https://riplib.hsu-hh.de

927

1 3

The multi-mode resource investment problem: a benchmark library…

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

Appendix 1: Additional mathematical model formulations

Here, we present additional mathematical representations of the MRIP. In 1.1 and
1.2, mixed-integer programming models based on different decision variables are pre-
sented. They are based on RCPSP models found in Artigues (2017). In 1.3, we display
a constraint programming formulation of the MRIP.

Appendix 1.1: Step variables discrete time

First, let us present the formulation based on so-called step variables. Here, we have
a binary step variable zimt that is 1 if and only if activity i starts in mode m at time t
or before. Hence, we can express the start time Si of an activity by looking at the dif-
ference of step variables, i.e.:

Next, we show a model using these step variables and the aggregated precedence
constraints in (22)–(31)

(21)Si =
∑
m∈Mi

D∑
t=1

t ⋅ (zimt − zi,m,t−1).

(22)min
∑
k∈R

ck ⋅ ak +
∑
k∈Rn

cn
k
⋅ an

k

(23)s.t.
∑
m∈Mi

(
zi,m,0 +

D∑
t=1

(zimt − zi,m,t−1)

)
= 1 ∀i ∈ A

(24)zimt ≥ zi,m,t−1 ∀i ∈ A,∀m ∈ Mi

(25)zimt = 0 ∀i ∈ A,∀m ∈ Mi,∀t < ESi

(26)
∑
m∈Mi

zi,m,LFi−dim
= 1 ∀i ∈ A

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

928 P. Gerhards

1 3

This formulation is called the aggregated version of the discrete time formulation
based on step variables (SDT). The objective function (22) is the same as in the PDT
formulation and minimises the resource costs. The equation in (23) ensures that
exactly one mode and one step (i.e. a start) is chosen for each activity. The inequali-
ties in (24) let the step variables grow, while the equality in (26) makes sure that
the start time of each activity is scheduled before the mode specific latest start time
LFi − dim . In (27), we display the aggregated version of the precedence constraints.
The next inequalities (28) model the nonrenewable resources. (29) displays the
renewable resource constraints. Finally, in (30) and (31), the domains of the decision
variables are defined. There is also a version with disaggregated precedence con-
straints which are displayed in (32).

We call the formulation using constraints (22)–(26), (28)–(31) and (32) the disag-
gregated version of the discrete time formulation based on step variables (SDDT).

Appendix 1.2: On/off variables discrete dime

The third model utilises so-called on/off variables yimt that are set to 1 if and
only if activity i is in process in mode m at time t. An activity i is started at time
t or before in mode m if it was in process in at least one of the following times:
t, t − dim, t − 2dim, t − 3dim,… . Hence, we get the following relation between the step
and the on/off variables:

(27)

∑
m∈Mi

(
dim ⋅ zi,m,0 +

D∑
t=1

(t + dim) ⋅ (zimt − zi,m,t−1)

)
≤

∑
m∈Mj

D∑
t=1

t ⋅ (zjmt − zj,m,t−1) ∀(i, j) ∈ E

(28)
∑
m∈Mi

rn
imk

⋅

(
zi,m,0 +

D∑
t=1

(zimt − zi,m,t−1)

)
≤ an

k
∀k ∈ R

n

(29)
∑
i∈A

∑
m∈Mi

min(t,LFi−dim)∑
q=max(ESi,t−dim+1)

rimk ⋅ (zimq − zi,m,q−1) ≤ ak ∀k ∈ R, t = 0,… ,D

(30)ak ≥ 0 ∀k ∈ R an
k
≥ 0 ∀k ∈ R

n

(31)zimt ∈ {0, 1} ∀i ∈ A,∀m ∈ Mi, t = 0,… ,D.

(32)
∑
m∈Mi

zi,m,t−dim ≥

∑
m∈Mj

zjmt ∀(i, j) ∈ E, t = 1,… ,D.

929

1 3

The multi-mode resource investment problem: a benchmark library…

By combining (21) and (33), we get the following formula for the start time of activ-
ity i

The model using on/off variables and aggregated precedence constraints (OODT) is
displayed in (35)–(45). Since we are in a multi-mode setting, we need to introduce
an additional binary variable eim to represent the mode choice. This decision vari-
able is equal to 1 if and only if activity i is processed in mode m.

(33)zimt =

⌊t∕dim⌋�
k=0

yi,m,(t−kdim).

(34)Si =

D�
t=1

t ⋅

�⌊t∕dim⌋�
k=0

yi,m,(t−kdim) −

⌊(t−1)∕dim⌋�
k=0

yi,m,(t−1−kdim)

�
.

(35)min
∑
k∈R

ck ⋅ ak +
∑
k∈Rn

cn
k
⋅ an

k

(36)s.t.
�
m∈Mi

⌊LFi∕dim⌋�
k=0

yi,m,(t−kdim) = eim ∀i ∈ A

(37)
∑
m∈Mi

eim = 1 ∀i ∈ A

(38)
D∑
t=1

yimt = dim ⋅ eim ∀i ∈ A,∀m ∈ Mi

(39)
⌊t∕dim⌋�
k=0

yi,m,(t−kdim) ≥

⌊(t−1)∕dim⌋�
k=0

yi,m,(t−1−kdim) ∀i ∈ A,∀m ∈ Mi, t = 1,… ,D

(40)

�
m∈Mi

D�
t=1

(t + dim) ⋅

�⌊t∕dim⌋�
k=0

yi,m,(t−kdim) −

⌊(t−1)∕dim⌋�
k=0

yi,m,(t−1−kdim)

�
≤

�
m∈Mj

D�
t=1

t ⋅

⎛⎜⎜⎝

⌊t∕djm⌋�
k=0

yj,m,(t−kdjm) −

⌊(t−1)∕djm⌋�
k=0

yi,m,(t−1−kdjm)

⎞⎟⎟⎠
∀(i, j) ∈ E

(41)
∑
m∈Mi

rn
imk

⋅ eim ≤ an
k

∀k ∈ R
n

930 P. Gerhards

1 3

With (36), we ensure that each activity is assigned to at least one period where it is
processed in its chosen mode. The equality in (37) limits the mode choice to exactly
one mode per activity. The constraints in (38) have two functions: First, they force
the on/off variables corresponding to the modes that are not chosen to be 0. Second,
together with (39) they ensure that activity i is executed for exactly dim periods with-
out interruption if mode m is chosen. The precedence relations are modelled in (40)
in the aggregated version. The nonrenewable and renewable resource constraints are
displayed in (41) and (42), respectively. Finally, the decision variables are defined
in (43)–(45). Again, we can also formulate the precedence constraints in a disaggre-
gated way (see (46)).

The disaggregated version of the on/off-based formulation (OODDT) uses con-
straints (35)–(39),(41)–(45) and (46).

Artigues (2017) calls PDDT, SDDT and OODDT the strong formulations as their
LP relaxation is superior to the LP relaxation of PDT, SDT and OODT (these three are
called weak formulations). However, due to for example more memory allocation or
other reasons, the weaker formulations can have a better performance when solved as
mixed-integer linear program as we see in Sect. 6.

Appendix 1.3: Constraint programming formulation

The CP formulation of the MRIP is displayed in (47)–(54). To model the MRIP with
CP, we use so-called interval variables that define the start and finish of activities. With
the keyword optional, we specify that an interval variable is not mandatory (applied
for the mode interval variables in (54)) and the keyword size defines the length of the
interval (i.e. the difference of finish and start of an interval). We connect the interval
variable act[i] of activity i ∈ A with the respective mode interval variables mode[i,m]
using the expression alternative. This expression ensures that exactly one of the
mode intervals is present and the start and finish times of act[i] coincide with the cho-
sen mode interval (see (48)). The precedence relations are modelled in (49) and the
nonrenewable resource constraints in (50). For the renewable resource, we utilise a

(42)
∑
i∈A

∑
m∈Mi

rimk ⋅ yimt ≤ ak ∀k ∈ R, t = 0,… ,D

(43)ak ≥ 0 ∀k ∈ R an
k
≥ 0 ∀k ∈ R

n

(44)eim ∈ {0, 1} ∀i ∈ A,∀m ∈ Mi

(45)zimt ∈ {0, 1} ∀i ∈ A,∀m ∈ Mi, t = 1,… ,D.

(46)

�
m∈Mi

⌊�∕dim⌋�
k=0

yi,m,(�−(k+1)dim) ≥
�
m∈Mj

⌊�∕djm⌋�
k=0

yj,m,(�−kdjm)

∀(i, j) ∈ E, t = 1,… ,D.

931

1 3

The multi-mode resource investment problem: a benchmark library…

so-called cumulative function rUsek together with the pulse operator which sums up
the renewable resource requirement for the periods where the mode interval variable is
in process. In (52), we define the resource allocation variables for both the renewable
and nonrenewable resources. They are similar to the ones of the MIP formulation pre-
sented above and are also used in the objective function (47).

References

Artigues C (2017) On the strength of time-indexed formulations for the resource-constrained project
scheduling problem. Oper Res Lett 45(2):154–159. https ://doi.org/10.1016/j.orl.2017.02.001

Bartels JH (2009) Anwendung von Methoden der ressourcenbeschränkten Projektplanung mit multiplen
Ausführungsmodi in der betriebswirtschaftlichen Praxis: Rückbauplanung für Kernkraftwerke und
Versuchsträgerplanung in Automobilentwicklungsprojekten. Springer, Berlin

Bartels JH, Zimmermann J (2009) Scheduling tests in automotive R&D projects. Eur J Oper Res
193(3):805–819. https ://doi.org/10.1016/j.ejor.2007.11.010

Bartels JH, Zimmermann J (2015) Scheduling tests in automotive R&D projects using a genetic algo-
rithm. In: Schwindt C, Zimmermann J (eds) Handbook on project management and scheduling, vol
2. Springer, Cham, pp 1157–1185. https ://doi.org/10.1007/978-3-319-05915 -0_22

Bianco L, Caramia M, Giordani S (2016) Resource levelling in project scheduling with generalized prec-
edence relationships and variable execution intensities. OR Spectrum 38(2):405–425. https ://doi.
org/10.1007/s0029 1-016-0435-1

Boctor FF (1993) Heuristics for scheduling projects with resource restrictions and several resource-dura-
tion modes. Int J Prod Res 31(11):2547–2558. https ://doi.org/10.1080/00207 54930 89568 82

Cochran WG (1952) The � 2 test of goodness of fit. Ann Math Stat 1:315–345
Colak E, Azizoglu M (2014) A resource investment problem with time/resource trade-offs. J Oper Res

Soc 65(5):777–790. https ://doi.org/10.1057/jors.2013.46

(47)min
∑
k∈R

ck ⋅ ak +
∑
k∈Rn

cn
k
⋅ an

k

(48)s.t. �����������(act[i], {mode[i,m] ∶ m ∈ Mi}) ∀i ∈ A

(49)��������������(act[i], act[j]) ∀(i, j) ∈ E

(50)
∑
i∈A

∑
m∈Mi

����������(mode[i,m]) ⋅ rimk ≤ an
k

∀k ∈ R
n

(51)rUsek =
∑
i∈A

∑
m∈Mi

�����(mode[i,m], rimk) ≤ ak ∀k ∈ R

(52)ak ≥ 0, an
k
≥ 0 ∀k ∈ R

(53)��������act[i] ∀i ∈ A

(54)��������mode[i,m] optional size dim ∀i ∈ A,∀m ∈ Mi.

https://doi.org/10.1016/j.orl.2017.02.001
https://doi.org/10.1016/j.ejor.2007.11.010
https://doi.org/10.1007/978-3-319-05915-0_22
https://doi.org/10.1007/s00291-016-0435-1
https://doi.org/10.1007/s00291-016-0435-1
https://doi.org/10.1080/00207549308956882
https://doi.org/10.1057/jors.2013.46

932 P. Gerhards

1 3

Coughlan ET, Lübbecke ME, Schulz J (2015) A branch-price-and-cut algorithm for multi-mode resource
leveling. Eur J Oper Res 245(1):70–80. https ://doi.org/10.1016/j.ejor.2015.02.043

Deckro RF, Hebert JE (1989) Resource constrained project crashing. Omega 17(1):69–79. https ://doi.
org/10.1016/0305-0483(89)90022 -4

Demeulemeester E (1995) Minimizing resource availability costs in time-limited project networks.
Manag Sci 41(10):1590–1598. https ://doi.org/10.1287/mnsc.41.10.1590

Demeulemeester E, Vanhoucke M, Herroelen W (2003) RanGen: a random network generator for activ-
ity-on-the-node networks. J Schedul 6(1):17–38. https ://doi.org/10.1023/A:10222 83403 119

Drexl A, Kimms A (2001) Optimization guided lower and upper bounds for the resource investment
problem. J Oper Res Soc 52(3):340–351. https ://doi.org/10.1057/palgr ave.jors.26010 99

Geiger MJ (2017) A multi-threaded local search algorithm and computer implementation for the multi-
mode, resource-constrained multi-project scheduling problem. Eur J Oper Res 256(3):729–741.
https ://doi.org/10.1016/j.ejor.2016.07.024

Gerhards P, Stürck C (2018) A hybrid metaheuristic for the multi-mode resource investment problem
with tardiness penalty. In: Fink A, Fügenschuh A, Geiger MJ (eds) Operations Research Proceed-
ings 2016. Springer, Cham, pp 515–520. https ://doi.org/10.1007/978-3-319-55702 -1_68

Hsu CC, Kim DS (2005) A new heuristic for the multi-mode resource investment problem. J Oper Res
Soc 56(4):406–413. https ://doi.org/10.1057/palgr ave.jors.26018 27

Józefowska J, Mika M, Rózycki R, Waligóra G, Weglarz J (2001) Simulated annealing for multi-mode
resource-constrained project scheduling. Ann Oper Res 102(1–4):137–155

Kelley JE (1963) The critical-path method: resources planning and scheduling. Ind Schedul
13(1):347–365

Klein R, Scholl A (1999) Computing lower bounds by destructive improvement: an application to
resource-constrained project scheduling. Eur J Oper Res 112(2):322–346. https ://doi.org/10.1016/
S0377 -2217(97)00442 -6

Kolisch R (1996) Efficient priority rules for the resource-constrained project scheduling problem. J Oper
Manag 14(3):179–192. https ://doi.org/10.1016/0272-6963(95)00032 -1

Kolisch R, Sprecher A (1997) PSPLIB—a project scheduling problem library: OR software—ORSEP
operations research software exchange program. Eur J Oper Res 96(1):205–216. https ://doi.
org/10.1016/S0377 -2217(96)00170 -1

Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of resource-
constrained project scheduling problems. Manag Sci 41(10):1693–1703. https ://doi.org/10.1287/
mnsc.41.10.1693

Kreter S, Schutt A, Stuckey PJ, Zimmermann J (2018) Mixed-integer linear programming and con-
straint programming formulations for solving resource availability cost problems. Eur J Oper Res
266(2):472–486. https ://doi.org/10.1016/j.ejor.2017.10.014

Laborie P, Rogerie J, Shaw P, Vilím P (2018) IBM ILOG CP optimizer for scheduling. Constraints
23(2):210–250. https ://doi.org/10.1007/s1060 1-018-9281-x

López-Ibáñez M, Dubois-Lacoste J, Cáceres LP, Birattari M, Stützle T (2016) The irace package: iterated
racing for automatic algorithm configuration. Oper Res Perspect 3:43–58. https ://doi.org/10.1016/j.
orp.2016.09.002

Mastor AA (1970) An experimental investigation and comparative evaluation of production line balanc-
ing techniques. Manag Sci 16(11):728–746. https ://doi.org/10.1287/mnsc.16.11.728

Meng H, Wang B, Nie Y, Xia X, Zhang X (2016) A scatter search hybrid algorithm for resource avail-
ability cost problem. In: Harmony search algorithm. Springer, Berlin, pp 39–51. https ://doi.
org/10.1007/978-3-662-47926 -1_5

Möhring RH (1984) Minimizing costs of resource requirements in project networks subject to a fixed
completion time. Oper Res 32(1):89–120. https ://doi.org/10.1287/opre.32.1.89

Najafi AA, Azimi F (2009) A priority rule-based heuristic for resource investment project scheduling
problem with discounted cash flows and tardiness penalties. Math Problems Eng 2009:1. https ://doi.
org/10.1155/2009/10642 5

Najafi AA, Niaki STA (2006) A genetic algorithm for resource investment problem with discounted cash
flows. Appl Math Comput 183(2):1057–1070. https ://doi.org/10.1016/j.amc.2006.05.118

Najafi AA, Niaki STA, Shahsavar M (2009) A parameter-tuned genetic algorithm for the resource invest-
ment problem with discounted cash flows and generalized precedence relations. Comput Oper Res
36(11):2994–3001. https ://doi.org/10.1155/2009/10642 5

https://doi.org/10.1016/j.ejor.2015.02.043
https://doi.org/10.1016/0305-0483(89)90022-4
https://doi.org/10.1016/0305-0483(89)90022-4
https://doi.org/10.1287/mnsc.41.10.1590
https://doi.org/10.1023/A:1022283403119
https://doi.org/10.1057/palgrave.jors.2601099
https://doi.org/10.1016/j.ejor.2016.07.024
https://doi.org/10.1007/978-3-319-55702-1_68
https://doi.org/10.1057/palgrave.jors.2601827
https://doi.org/10.1016/S0377-2217(97)00442-6
https://doi.org/10.1016/S0377-2217(97)00442-6
https://doi.org/10.1016/0272-6963(95)00032-1
https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1287/mnsc.41.10.1693
https://doi.org/10.1287/mnsc.41.10.1693
https://doi.org/10.1016/j.ejor.2017.10.014
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1287/mnsc.16.11.728
https://doi.org/10.1007/978-3-662-47926-1_5
https://doi.org/10.1007/978-3-662-47926-1_5
https://doi.org/10.1287/opre.32.1.89
https://doi.org/10.1155/2009/106425
https://doi.org/10.1155/2009/106425
https://doi.org/10.1016/j.amc.2006.05.118
https://doi.org/10.1155/2009/106425

933

1 3

The multi-mode resource investment problem: a benchmark library…

Neumann K, Schwindt C, Zimmermann J (2003) Project scheduling with time windows and scarce
resources: temporal and resource-constrained project scheduling with regular and nonregular objec-
tive functions. Springer, Berlin

Qi JJ, Liu YJ, Jiang P, Guo B (2015) Schedule generation scheme for solving multi-mode resource avail-
ability cost problem by modified particle swarm optimization. J Schedul 18(3):285–298. https ://doi.
org/10.1007/s1095 1-014-0374-0

Ranjbar M, Kianfar F, Shadrokh S (2008) Solving the resource availability cost problem in project sched-
uling by path relinking and genetic algorithm. Appl Math Comput 196(2):879–888. https ://doi.
org/10.1016/j.amc.2007.07.022

Rieck J, Zimmermann J (2015) Exact methods for resource leveling problems. In: Schwindt C, Zimmer-
mann J (eds) Handbook on project management and scheduling, vol 1. Springer, Cham, pp 361–387.
https ://doi.org/10.1007/978-3-319-05443 -8_17

Rodrigues SB, Yamashita DS (2010) An exact algorithm for minimizing resource availability costs in pro-
ject scheduling. Eu J Oper Res 206(3):562–568. https ://doi.org/10.1016/j.adven gsoft .2010.03.002

Rodrigues SB, Yamashita DS (2015) Exact methods for the resource availability cost problem. In:
Schwindt C, Zimmermann J (eds) Handbook on project management and scheduling, vol 1.
Springer, Cham, pp 319–338. https ://doi.org/10.1007/978-3-319-05443 -8_15

Schnell A, Hartl RF (2016) On the efficient modeling and solution of the multi-mode resource-
constrained project scheduling problem with generalized precedence relations. OR Spectrum
38(2):283–303. https ://doi.org/10.1007/s0029 1-015-0419-6

Schwindt C (1998) Generation of resource constrained project scheduling problems subject to temporal
constraints. Inst. für Wirtschaftstheorie und Operations-Research

Shadrokh S, Kianfar F (2007) A genetic algorithm for resource investment project scheduling prob-
lem, tardiness permitted with penalty. Eur J Oper Res 181(1):86–101. https ://doi.org/10.1016/j.
ejor.2006.03.056

Sprecher A, Drexl A (1998) Multi-mode resource-constrained project scheduling by a simple, general
and powerful sequencing algorithm. Eur J Oper Res 107(2):431–450. https ://doi.org/10.1016/S0377
-2217(97)00348 -2

Talbot FB (1982) Resource-constrained project scheduling with time-resource tradeoffs: the nonpreemp-
tive case. Manag Sci 28(10):1197–1210. https ://doi.org/10.1287/mnsc.28.10.1197

Van Peteghem V, Vanhoucke M (2013) An artificial immune system algorithm for the resource availabil-
ity cost problem. Flex Serv Manuf J 25(1–2):122–144. https ://doi.org/10.1007/s1069 6-011-9117-0

Van Peteghem V, Vanhoucke M (2014) An experimental investigation of metaheuristics for the multi-
mode resource-constrained project scheduling problem on new dataset instances. Eur J Oper Res
235(1):62–72. https ://doi.org/10.1016/j.ejor.2013.10.012

Van Peteghem V, Vanhoucke M (2015) Heuristic methods for the resource availability cost problem.
In: Schwindt C, Zimmermann J (eds) Handbook on project management and scheduling, vol 1.
Springer, Cham, pp 339–359. https ://doi.org/10.1007/978-3-319-05443 -8_16

Verbeeck C, Van Peteghem V, Vanhoucke M, Vansteenwegen P, Aghezzaf EH (2017) A metaheuristic
solution approach for the time-constrained project scheduling problem. OR Spectrum 39(2):353–
371. https ://doi.org/10.1007/s0029 1-016-0458-7

Yamashita DS, Morabito R (2009) A note on time/cost tradeoff curve generation for project scheduling
with multi-mode resource availability costs. Int J Oper Res 5(4):429–444. https ://doi.org/10.1504/
IJOR.2009.02570 2

Yamashita DS, Armentano VA, Laguna M (2006) Scatter search for project scheduling with resource
availability cost. Eur J Oper Res 169(2):623–637. https ://doi.org/10.1016/j.amc.2006.05.118

Yamashita DS, Armentano VA, Laguna M (2007) Robust optimization models for project scheduling
with resource availability cost. J Sched 10(1):67–76. https ://doi.org/10.1007/s1095 1-006-0326-4

Yuan X, Liu J, Hao X (2017) A moving block sequence-based evolutionary algorithm for resource
investment project scheduling problems. Big Data Inf Anal 2(1):39–58. https ://doi.org/10.3934/
bdia.20170 07

Zhu X, Ruiz R, Li S, Li X (2017) An effective heuristic for project scheduling with resource availability
cost. Eur J Oper Res 257(3):746–762. https ://doi.org/10.1016/j.ejor.2016.08.049

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1007/s10951-014-0374-0
https://doi.org/10.1007/s10951-014-0374-0
https://doi.org/10.1016/j.amc.2007.07.022
https://doi.org/10.1016/j.amc.2007.07.022
https://doi.org/10.1007/978-3-319-05443-8_17
https://doi.org/10.1016/j.advengsoft.2010.03.002
https://doi.org/10.1007/978-3-319-05443-8_15
https://doi.org/10.1007/s00291-015-0419-6
https://doi.org/10.1016/j.ejor.2006.03.056
https://doi.org/10.1016/j.ejor.2006.03.056
https://doi.org/10.1016/S0377-2217(97)00348-2
https://doi.org/10.1016/S0377-2217(97)00348-2
https://doi.org/10.1287/mnsc.28.10.1197
https://doi.org/10.1007/s10696-011-9117-0
https://doi.org/10.1016/j.ejor.2013.10.012
https://doi.org/10.1007/978-3-319-05443-8_16
https://doi.org/10.1007/s00291-016-0458-7
https://doi.org/10.1504/IJOR.2009.025702
https://doi.org/10.1504/IJOR.2009.025702
https://doi.org/10.1016/j.amc.2006.05.118
https://doi.org/10.1007/s10951-006-0326-4
https://doi.org/10.3934/bdia.2017007
https://doi.org/10.3934/bdia.2017007
https://doi.org/10.1016/j.ejor.2016.08.049

	The multi-mode resource investment problem: a benchmark library and a computational study of lower and upper bounds
	Abstract
	1 Introduction
	2 Problem statement
	3 Literature review
	4 Lower and upper bounds
	4.1 Lower bounds
	4.2 Upper bounds

	5 Instance generation and benchmark library
	6 Computational study
	7 Summary and conclusions
	Acknowledgements
	References

