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Abstract
The multi-mode resource investment problem (MRIP) is the multi-mode extension 
of the resource investment problem, which is also known under the name resource 
availability cost problem. It is a project scheduling problem with a given due date 
as well as precedence and resource constraints. The goal is to find a precedence 
feasible schedule that minimises the resource costs of the allocated resources. To 
compute these costs, the maximum resource peak is considered regarding renewable 
resource types, whereas the sum of allocated nonrenewable resource units is used in 
the case of nonrenewable resources. Many practical and complex project schedul-
ing settings can be modelled with this type of problem. Especially with the usage 
of different processing modes, time and cost compromises can be utilised by the 
project manager. In the literature, some procedures for the MRIP have been inves-
tigated; however, the computational experiments in these studies have not been car-
ried out on common benchmark instances. This makes a fair comparison of meth-
ods difficult. Therefore, we generated novel instances specifically designed for this 
problem and published them on the website https ://ripli b.hsu-hh.de. On this website, 
the instances as well as best-known solution values are available and researchers 
can also contribute their findings. We investigate these novel instances by proposing 
and evaluating lower bounds for the MRIP. Additionally, we analyse the proposed 
instances by applying heuristic as well as exact methods. These experiments suggest 
that most of the instances are challenging and further research is needed. Finally, we 
show some computational complexity properties of the NP-hard MRIP.
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1 Introduction

Project scheduling is an important part of project management. Often, projects 
have a deadline or a due date and the tasks of the project compete against each 
other in the use of scarce resources. In the resource investment problem (RIP), 
the decision maker can determine how many units of each resource are allocated 
to the project in order to find a schedule that meets the due date. This schedule 
needs to respect the allocated resources as well as the precedence relations among 
the activities of the project. The goal is to minimise the project costs that are 
defined by the allocated units of resources. In this work, we consider two types 
of resources: renewable and nonrenewable resources. The amount of available 
renewable resource units is replenished after each time period. So, for the cost 
calculation of the renewable resource costs, the maximum resource usage peak 
is multiplied with a cost factor. This cost factor defines the costs of adding an 
extra resource unit to the project that is available in each period of the project 
horizon. Nonrenewable resource units are consumed for the entire project horizon 
and their resource costs are calculated by considering the total sum of consumed 
resource units.

The resource investment problem was firstly introduced by Möhring (1984) and 
is also known as the resource availability cost problem (RACP) in the literature. 
Möhring (1984) describes it as a “problem of scarce time” in contrast to the well-
known and related resource-constrained project scheduling problem (RCPSP) which 
is a “problem of scarce resources”. With the RIP, it is possible to model a wide 
range of applications such as the construction or dismantling of buildings or soft-
ware development projects, just to name a few (e.g. Bartels 2009). Several exten-
sions of the problem were introduced in the literature. In this work, we consider 
the multi-mode resource investment problem (MRIP), which was firstly introduced 
by Hsu and Kim (2005). Here, each activity can be processed in multiple modes 
which vary in the resource consumption and the processing duration. For the RCPSP 
and its multi-mode extension, several benchmark instance libraries, such as the 
Boctor datasets  (Boctor 1993), the PSPLIB  (Kolisch and Sprecher 1997), or the 
MMLIB (Van Peteghem and Vanhoucke 2014), exist. Yet, for the MRIP, no bench-
mark instances are available to the public which makes the comparison of solution 
procedures hard. For this reason, we designed a set of benchmark instances and 
made them available to the public on the website https ://ripli b.hsu-hh.de.

The contributions of this work are the following:

• We show that it is sufficient to consider only one nonrenewable resource in the 
MRIP and provide a transformation for instances with multiple nonrenewable 
resources.

• We describe and compare different approaches to compute lower bounds for 
the MRIP.

• We have set-up and maintain a website https ://ripli b.hsu-hh.de. Here, research-
ers can access a new set of benchmark instances for the MRIP and share their 
results with others.

https://riplib.hsu-hh.de
https://riplib.hsu-hh.de
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• We use different exact and heuristic procedures to solve the novel benchmark 
instances. This enables us to gain insights into which characteristics lead to 
“easy” and “hard” instances.

This paper is organised as follows: In Sect.  2, we give a formal definition of the 
problem and show that we can aggregate multiple nonrenewable resources into a 
single one. Section 3 provides an overview of the existing literature concerning the 
RIP or extensions of it. Next, we present several lower bound procedures as well as 
different optimisation techniques to generate upper bounds for the MRIP in Sect. 4. 
We applied mixed-integer programming (MIP), constraint programming (CP), simu-
lated annealing (SA) and a multi-start local search (MLS). In Sect.  5, we explain 
which parameters we used for generating benchmark instances and what difficul-
ties we encountered in the process of doing so. Sect.  6 contains a computational 
study with our findings considering the performance of the procedures presented in 
Sect. 4. Finally, in Sect. 7, we finish this work with a critical appraisal and an out-
look for further research.

2  Problem statement

An instance of the MRIP is defined by the following properties: a set of activi-
ties A = {0,… , n + 1} , a set of precedence relations E ⊆ A × A , a set of renewa-
ble resources R and a set of nonrenewable resources Rn . For each activity, i ∈ A , a 
set of modes Mi exists and for each mode m ∈ Mi , the duration dim ∈ ℤ

+
0
 is given. 

Activity 0 and n + 1 are dummy activities that mark the beginning and end of the 
project and their duration and resource requirements are equal to 0. In this work, we 
consider only finish-to-start precedence constraints among activities which are rep-
resented by the set E. So, if (i, j) ∈ E for activities i, j ∈ A this means that there is a 
minimum time lag of 0 between the finish of activity i and the start of activity j, i.e. j 
can only start after i is finished.

The due date D ∈ ℤ
+ is fixed and defines the maximum project duration. The 

resource requirement rimk ∈ ℤ
+
0
 ( rn

imk
∈ ℤ

+
0
 ) of each non-dummy activity i depends 

on the mode m and the renewable resource k ∈ R (nonrenewable resource k ∈ R
n ). 

For each renewable resource k ∈ R (nonrenewable resource k ∈ R
n ) a resource cost 

factor ck ∈ ℤ
+
0
 ( cn

k
∈ ℤ

+
0
 ) defines the price of allocating one unit of the resource to 

the project. For renewable resources, the allocated amount of the resource is replen-
ished after each time period. A schedule is resource feasible with respect to the 
renewable resources if the amount of allocated resource units is larger than or equal 
to the maximum resource peak usage. That means that for each period of the pro-
ject horizon, the sum of resource requirements of activities that are in process in 
this period has to be smaller than or equal to the allocated amount. To calculate the 
renewable resource costs, we multiply the allocated amount that corresponds with 
the maximum resource peak with the resource cost factor. The renewable resource 
type is useful to model for example workers or machines.

The amount of allocated nonrenewable resources, however, is consumed by 
the activities over the whole project and they are not replenished. To calculate the 
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nonrenewable resource costs, we sum up the nonrenewable resource requirements of 
all activities and multiply them with the respective cost factor (i.e. no peak usage is 
considered as the resource units do not replenish here). Resources of this type can 
represent budgets or rare materials. The nonrenewable resources are also useful to 
model outsourcing certain activities to external contractors.

A small example of an MRIP instance is depicted in Fig. 1. Here, we have five activ-
ities with activities 0 and 4 being the dummy start and dummy end activity of the pro-
ject, respectively. The arcs in the network represent the precedence relations among 
activities. So, e.g. activity 2 can only start after activity 1 is finished. For each activity, 
there is only one mode available except for activity 3. Fig. 1b depicts the duration of 
each mode as well as the renewable resource consumption ri,m,1 and the nonrenewable 
resource consumption rn

i,m,1
 . Hence, we consider only one renewable and one nonrenew-

able resource in this example. The unit cost factors are c1 = 2 and cn
1
= 1 and there is 

no upper bound on the capacity of each resource. The due date of the project is D = 4 . 
In Fig. 2a, we show a Gantt chart, where each activity is processed in mode 1. Since 
there is a renewable resource usage of 3 units in period 1 and 2, we need to allocate 3 
units of the renewable resource to the project. Because of the mode choice, 0 units of 
the nonrenewable resource are utilised, and thus, the schedule has a cost value of 6. The 
precedence relations as well as the due date are respected. By switching the mode of 
activity 3 (mode 2 instead of mode 1), we obtain a better solution (Fig. 2b). Here, only 
2 units of the renewable resource are allocated to the project since the peak resource 

0

1 2

3

4

(a) Example activity-
on-the-node network

i m dim ri,m,1 rni,m,1

0 1 0 0 0
1 1 2 1 0
2 1 1 2 0
3 1 2 2 0

2 3 1 1
4 1 0 0 0

(b) Duration and resource consump-
tion

Fig. 1  Illustrative example data

1

2

3

t

a1

D = 4

(a) Example schedule for D = 4

1

2

3

t

a1

D = 4

(b) Example schedule with different mode for
activity 3

Fig. 2  Example schedule
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usage is now 2 instead of 3, but also 1 nonrenewable resource unit is needed. Therefore, 
the cost of the schedule depicted in Fig. 2b is 5.

In equations (1)–(7), we display a mathematical model formulation for the MRIP, 
which is also used in Sect. 4 in a MIP procedure. It is an adaptation of the model of Tal-
bot (1982) for the multi-mode extension of the RCPSP. We use two types of decision 
variables in the mathematical model: real-valued variables ak and an

k
 for the resource 

allocation of resource k ∈ R ∪R
n and binary variables ximt for the mode and schedul-

ing choice. The variable ximt takes a value of 1 if and only if activity i is processed in 
mode m ∈ Mi and starts at period t. For the start period, we compute lower (and upper) 
bounds called ESi ( LSi ) using forward and backward calculation (FBC, similar to Kel-
ley 1963). Here, we use the minimum duration of each activity and the due date D 
acts as an upper bound of the latest start time of the project dummy end activity n + 1 
(i.e. LSn+1 = D ). We also compute an upper bound LFi on the latest finish period with 
respect to the due date D using backward calculation, and hence, LFi − dim is the latest 
possible start of activity i if it is processed in mode m.

In the objective function (1), the resource costs are minimised. Constraints (2) 
enforce that for each activity i exactly one mode and one start period is chosen. The 
inequalities (3) represent the precedence relations: if (i, j) ∈ E , then the finish period 
of activity i (left side of the inequality) has to be lower than or equal to the start period 
of activity j (right side). Inequalities (4) and (5) make sure that the amount of allocated 
resources an

k
 and ak is as least as high as the consumption of the nonrenewable and 

renewable resources, respectively. Finally, in terms (6) and (7), the two different types 
of decision variables are depicted. According to Artigues (2017), the binary variables 
are so-called pulse variables over discrete time periods and inequalities (3) are the so-
called aggregated precedence constraints. Hence, we call the formulation displayed in 
(1)–(7) the “aggregated discrete time formulation based on pulse variables” (PDT). In 
Sect. 4, we will use this formulation and others (using the disaggregated version of the 
precedence constraints and/or other decision variable types) in a MIP.

(1)min
∑
k∈R

ck ⋅ ak +
∑
k∈Rn

cn
k
⋅ an

k

(2)s.t.
∑
m∈Mi

LFi−dim∑
t=ESi

ximt = 1 ∀i ∈ A

(3)
∑
m∈Mi

LFi−dim∑
t=ESi

ximt(t + dim) ≤
∑
m∈Mj

LFj−djm∑
t=ESj

xjmt ⋅ t ∀(i, j) ∈ E

(4)
∑
i∈A

∑
m∈Mi

LFi−dim∑
t=ESi

ximt ⋅ r
n
imk

≤ an
k

∀k ∈ R
n
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Since the resource investment problem with a single mode per activity is NP-hard 
(cf. Möhring 1984), the multi-mode extension is also NP-hard. This is still true if we 
extend the problem setting with nonrenewable resources. However, it is sufficient to 
consider only a single nonrenewable resource since we can aggregate multiple non-
renewable resources into a single one. We compute the novel resource requirement 
of an activity i and a mode m to be the sum of the old resource requirements times 
the respective resource cost factor:

The cost factor of this single nonrenewable resource is equal to 1. Note that this is 
possible since there is no upper bound on the resource use and the resource con-
sumption is not time dependent for nonrenewable resources. For this aggregated 
nonrenewable resource, we can set the allocation to be an

1
=
∑

k∈Rn cn
k
⋅ an

k
 based 

on allocations an
k
 of the former resources. Obviously, the objective value does not 

change by this aggregation and also all constraints such as precedence relations and 
renewable resource constraints are not changed. This transformation is the reason 
why we consider only instances with a single nonrenewable resource in this study 
and it can be used to convert instances with multiple nonrenewable resources into 
the single resource case.

3  Literature review

The RIP is closely related to other project scheduling problems such as the RCPSP 
or the resource levelling problem (RLP). However, the goal of the RCPSP and its 
multi-mode extension (MRCPSP) is the minimisation of the makespan with fixed 
resource availabilities. Several heuristic and exact procedures have been proposed 
for the MRCPSP (e.g. Geiger 2017 and Schnell and Hartl 2016, respectively). In the 
RLP, also a due date for the latest project completion is given, yet the objective func-
tion often differs. Several resource levelling objective functions are known in the 
literature such as the total squared utilisation cost or the total overload cost (Rieck 
and Zimmermann 2015). Bianco et al. (2016) extended the RLP setting with gener-
alised precedence relations and variable intensities in the execution of the activities. 
Another closely related problem to the RIP is the time-constrained project schedul-
ing problem (TCPSP). It can be seen as a combination of the RIP and the RCPSP 
since there is a given due date as well as resource capacities. However, additional 

(5)
∑
i∈A

∑
m∈Mi

min(t,LFi−dim)∑
q=max(ESi,t−dim+1)

ximq ⋅ rimk ≤ ak ∀k ∈ R, t = 0,… ,D

(6)ak ≥ 0, an
k
≥ 0 ∀k ∈ R

n

(7)ximt ∈ {0, 1} ∀i ∈ A,∀m ∈ Mi, t = ESi,… , LSi.

(8)r
n

i,m,1
=

∑
k∈Rn

cn
k
⋅ rn

imk
.



907

1 3

The multi-mode resource investment problem: a benchmark library…

capacities can be temporarily allocated to the project at a certain cost. So, it has to 
be decided in which periods extra resource units are added. The goal is to minimise 
the cost for additional resources under the given due date. This problem was firstly 
proposed by Deckro and Hebert (1989), and lately, Verbeeck et al. (2017) proposed 
an artificial immune system (AIS) implementation for the TCPSP.

Next, we give a brief literature overview on the existing work for the RIP and 
some of its extensions. Several exact solution methods for the RIP exist. Möhring 
(1984) was the first to use the RIP to model a bridge construction project. He pro-
posed an exact method using graph theoretical algorithms to solve the problem. 
Another exact algorithm, called minimum bounding algorithm (MBA), was intro-
duced by Demeulemeester (1995), where a branch-and-bound procedure for the 
RCPSP is applied iteratively. Improving this procedure, Rodrigues and Yamashita 
(2010, 2015) proposed the modified minimum bounding algorithm by utilising a 
feasible initial solution that is found heuristically. Lately, Kreter et al. (2018) studied 
the RIP as well as an extension with general temporal constraints and one with cal-
endar constraints. They provided mixed-integer linear programming formulations as 
well as constraint programming (CP) implementations for the problems. With their 
CP procedure, they were able to close all available instances from the literature for 
these single-mode problems. The authors also give an overview on previous work 
on the RIP with generalised precedence constraints (RIP/max). On their website, the 
authors provide instances for the single-mode RIP as well as the RIP/max with up to 
500 activities per project.

Drexl and Kimms (2001) studied the computation of lower bounds (LB) for the 
RIP. They proposed two procedures: one using Lagrangian relaxation and the other 
based on column generation techniques. Both procedures also yield feasible solu-
tions for the problem as a by-product. The authors conducted computational experi-
ments on project instances with up to 30 activities and up to 8 resources.

The initial application of a metaheuristic for the RIP was proposed by Yamashita 
et al. (2006). They implemented a scatter search (SS) which is a population-based 
metaheuristic and it outperformed two simple multi-start heuristics as well as the 
upper bounds obtained by Drexl and Kimms (2001) on instances with up to 120 
activities. Ranjbar et al. (2008) also implemented population-based metaheuristics: 
path relinking (PR) and genetic algorithm (GA). Here, the PR achieved slightly bet-
ter results than the GA on the instances generated in Yamashita et al. (2006), but due 
to different hardware they did not compare their results directly to the SS mentioned 
above. An implementation of the AIS metaheuristic as well as a benchmark set 
with 30 activities and 4 resources (called RACP30) is presented by Van Peteghem 
and Vanhoucke (2013). They show that their approach outperforms the GA for the 
tardiness permitted extension presented by Shadrokh and Kianfar (2007) and the 
proposed instances are also used in Van  Peteghem and Vanhoucke (2015). Meng 
et  al. (2016) proposed a hybrid metaheuristic by combining the tabu search (TS) 
metaheuristic with the SS metaheuristic. They tested their procedure, called tabued 
scatter search (TSS), on 48 adapted RCPSP instances from the PSPLIB. Experi-
ments showed that on average TSS is able to obtain better solutions than the SS 
of Yamashita et al. (2006), but by spending a higher computational time. A novel 
heuristic approach called multi-start iterative search heuristic (MSIS) is proposed 
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by Zhu et al. (2017). Here, the authors combine local search techniques with path 
relinking and show that their method outperforms the PR, the GA and the SS proce-
dures presented earlier. The computational experiments were performed on adapted 
PSPLIB instances and newly generated ones.

Shadrokh and Kianfar (2007) began studying the extension of the RIP, where 
exceeding the due date (tardiness) is permitted but penalised in the objective func-
tion. The penalty costs rise for each time period that the project finishes later than 
its specified due date by a fixed tardiness cost factor. It is called resource invest-
ment problem with tardiness (RIPT) and the authors applied a GA to tackle this 
novel problem. Van Peteghem and Vanhoucke (2015) apply a metaheuristic proce-
dure called invasive weed optimisation algorithm (IWO) to the RIP as well as the 
RIPT. Computational experiments performed on the RACP30 instance set as well as 
on 30 activity projects adapted from the PSPLIB indicate that the IWO outperforms 
both the AIS from Van Peteghem and Vanhoucke (2013) and the GA from Shadrokh 
and Kianfar (2007). Recently, Yuan et  al. (2017) use the so-called moving block 
sequence (MBS) representation in an evolutionary algorithm (EA) for the RIPT. The 
authors conducted experiments on instances with up to 20 activities and results indi-
cated that their procedure outperforms the GA of Shadrokh and Kianfar (2007).

The multi-mode extension of the RIP was firstly studied Hsu and Kim (2005). 
They proposed a heuristic procedure that combines two priority rules: one regard-
ing the increase in costs when adding an activity to a partial schedule and the other 
considering how the finish time of the current activity affects its successors’ remain-
ing start times. They tested different weight combinations of this combined prior-
ity rule heuristic against heuristics that applied different priority rules sequentially 
(one to select the next activity and another one to select the mode and start time). 
For the experiments, they used MRCPSP instances from the PSPLIB with 12 to 30 
activities, but treated the nonrenewable resources as renewable resources. Another 
heuristic procedure for the MRIP was presented by Qi et  al. (2015). The authors 
proposed a novel schedule generation scheme as well as the modified particle swarm 
optimisation (MPSO) metaheuristic, which is a combination of particle swarm opti-
misation (PSO) and SS. They also adapted PSPLIB instances for the MRCPSP with 
12–30 activities to test their MPSO heuristic against a PSO implementation and 
an adaptation of the GA of Ranjbar et al. (2008). Colak and Azizoglu (2014) pro-
posed a heuristic procedure for the special case of the MRIP with a single renewable 
resource. Their approach uses different construction procedures and tries to improve 
a solution using several neighbourhood search strategies. The authors performed 
experiments on instances with up to 100 activities and up to 10 modes per activity.

For the MRIP, two exact procedures are known. Yamashita and Morabito (2009) 
combined the MBA of Demeulemeester (1995) with an exact branch-and-bound 
algorithm for the MRCPSP of Sprecher and Drexl (1998). In order to compute time/
cost trade-off curves, they investigated several different due dates per instance. 
Since the procedure relies on solving multiple MRCPSP exactly, they solved only 
small instances with 15 activities per project. The other exact procedure was pre-
sented by Coughlan et  al. (2015). The authors also added calendar constraints to 
the MRIP setting, making some resources not available at certain times. They pro-
posed a Dantzig–Wolfe reformulation in combination with a column generation 
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and a branch-and-price algorithm, where they heavily utilise the calendar structure 
of the resource availability. In computational experiments, Coughlan et  al. (2015) 
compared their approach to a standard MIP implementation in CPLEX 12.2. Their 
approach was able to close several 50 activity instances, while a normal MIP imple-
mentation in CPLEX often failed to solve the instance.

Another extension of the MRIP with generalised temporal constraints and so-
called cumulative resources was proposed by Bartels (2009). Cumulative resources 
are similar to renewable resources but are used to model storage. The start and fin-
ish of an activity can change the resource level in a positive or negative way. Bar-
tels proposed two application cases where one considers the dismantling of nuclear 
power plants (RBP). There, at most two modes are available for each activity but 
only the resource usage can vary and not the activity processing time. The author 
used projects with 20 − 60 activities and 6 renewable resources in the computational 
study. The objective is to minimise the net present value associated with mode-
dependent costs (which is similar to the nonrenewable resource in the MRIP set-
ting but time dependent). The second area of application models is the scheduling 
of testing in the automotive industry (VTP). Here, tests (modelled as activities) are 
assigned to experimental vehicles (represented by cumulative resources) through 
different modes and the goal is to minimise the total number of utilised experimental 
vehicles. Again, the processing time does not vary with the mode choice as only 
resource utilisation is affected by the mode. In Bartels and Zimmermann (2009, 
2015), this problem type is further analysed and a priority rule-based schedule gen-
eration scheme as well as a GA are utilised. The authors applied these procedures 
to instances with 20 and 600 activities. Each instance incorporates one renewable 
resource to model the construction of the experimental vehicles and a cumulative 
resource for each experimental vehicle.

The problem extension with both a tardiness penalty and multiple modes 
(MRIPT) was studied by Gerhards and Stürck (2018). They proposed a hybrid large 
neighbourhood search (LNS) procedure that uses MIP techniques to solve sub-
problems exactly. They carried out experiments on adapted 30 activity MRCPSP 
instances of the PSPLIB.

Several other extensions of the resource investment problem exist, where the 
authors adapted the objective function. In the work of Najafi and Niaki (2006), a 
RIP extension with discounted cash flows and net present value maximisation is pro-
posed and a GA was applied to the problem. Najafi et  al. (2009) extend this set-
ting further by adding generalised precedence constraints to the problem and also 
applied a GA. A RIP extension with net present value maximisation and tardiness 
penalty was studied by Najafi and Azimi (2009) and a priority rule-based heuristic 
was proposed. Yamashita et al. (2007) added uncertainty to the activity durations in 
the RIP. The authors applied a SS with PR to different scenarios to obtain a robust 
solution.

In Table 1, we give an overview of the instance properties used in multi-mode 
RIP studies. Here, |M| is the maximum number of modes per activity. It is clear 
that most of the studies only address small projects with rather few activities. The 
majority of the instances are based on MRCPSP instances and only the work of 
Gerhards and Stürck (2018) used nonrenewable resources (when nonrenewable 
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resources were available in the original MRCPSP instance, the other authors 
treated them as renewable resources). Hence, it is desirable to have a more chal-
lenging and publicly available benchmark set of instances for future studies.

4  Lower and upper bounds

Next, we present several procedures to obtain lower (Sect. 4.1) and upper bounds 
(Sect. 4.2) for the MRIP. We apply these methods in Sect. 6 to evaluate the novel 
set of benchmarks instances.

4.1  Lower bounds

In order to obtain lower bounds, we use four formulae as well as the linear pro-
gramming relaxations of different mathematical formulations and the destructive 
improvement approach. Two rather simple lower bounds for the minimum 
resource level for the renewable resources in the RIP presented by Drexl and 
Kimms (2001) can be adapted for the multi-mode setting ( a1

k
 and a2

k
 ). We calcu-

late how many units for a resource k ∈ R are needed so that every activity can be 
performed in its least resource consuming mode (with rmin

ik
= min

m∈Mi

rimk we denote 
the minimum resource demand of activity i for resource k). Hence, the minimum 
resource level for the first method is as follows.

As a second way to compute a lower bound on the minimal consumption, we can 
distribute the required resources equally over the planning horizon. Hence, we 
divide the sum of the minimal products of the resource consumption and the dura-
tion of all activities by the due date D.

(9)a1
k
= max

i∈A

{
rmin

ik

}
k ∈ R.

Table 1  Instances used in the existing studies of the MRIP

References Problem n |M| |R| |Rn|
Hsu and Kim (2005) MRIP 10–30 3 4 0
Yamashita and Morabito (2009) MRIP 15 3 4 0
Colak and Azizoglu (2014) MRIP 10–100 10 1 0
Qi et al. (2015) MRIP 10–30 3 4 0
Coughlan et al. (2015) MRIP calendars 50 3 2 0
Bartels (2009) (RBP) MRIP/max with cumulative resources 20, 40, 50, 60 2 6 1
Bartels (2009) (VTP) MRIP/max with cumulative resources 20, 600 – 1 –
Gerhards and Stürck (2018) MRIPT 30 3 2 2
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Next, we utilise so-called core times to compute bounds on the minimal consump-
tion (cf. Klein and Scholl 1999). The core time of an activity i is the periods where 
the activity has to be processed, i.e. after its latest start LSi and before it earliest fin-
ish EFi = ESi +min{dim} . So, this concept uses the precedence relations as well as 
the due date as an upper bound on the project makespan. However, if the due date 
is large or the minimum activity duration is small, this core time interval can be 
empty. The bound is computed by checking each period and summing up the mini-
mal resource consumptions of activities that have a core time in this period.

As a fourth way to compute minimal resource consumptions, we want to identify 
triplets of activities that cannot be scheduled sequentially, and therefore, at least two 
of them have to be processed with some overlap. We look at triplets of activities 
i, j, l ∈ A with no precedence relations among them. There are six potential order-
ings of them (i.e. i ≺ j ≺ l, i ≺ l ≺ j, j ≺ i ≺ l, j ≺ l ≺ i, l ≺ i ≺ j and l ≺ j ≺ i ) and 
we check whether at least one of them is feasible with respect to the due date. If not, 
at least two of the three activities have to be carried out in intersecting time intervals 
and we can add the minimal resource usages. For example, let us assume we investi-
gate the ordering i ≺ j ≺ l , i.e. activity i has to be finished before j can start and j has 
to be finished before l can start. This means that we can compute a new earliest start 
time ESj = max{ESj,ESi + dmin

i
} and latest start time LSj = min{LSj, LSl − dmin

j
} . 

The ordering is not feasible if LSj < ESj . If all six potential orderings are infeasible 
with respect to the due date, then we add the triplet to the set of infeasible triplets IT. 
For each triplet in IT, at least two activities have to be scheduled with overlap and 
we get the following lower bound for the resource usage:

For a nonrenewable resource, the only simple lower bound Rn
k
 is the sum of the mini-

mal consumptions of all activities.

By multiplying these minimal resource levels with the corresponding resource cost 
factors and summing them, we get the following simple lower bound for the MRIP.

(10)
a2
k
=

∑
i∈A

min
m∈Mi

�
rimk ⋅ dim

�

D
k ∈ R.

(11)a3
k
= max

t∈{0,…,D}

∑
i∈A∶LSi≤t≤EFi

rmin

ik
k ∈ R.

(12)
a4
k
= max

(i,j,l)∈IT
{min{max{rmin

ik
+ rmin

jk
, rmin

lk
}, max{rmin

ik
+ rmin

lk
, rmin

kl
},

max{rmin

jk
+ rmin

lk
, rmin

kl
}}} k ∈ R.

(13)an
k
=
∑
i∈A

min
m∈Mi

{rn
imk

} k ∈ R
n
.

(14)LB0 =
∑
k∈R

ck ⋅max
{
a1
k
, a2

k
, a3

k
, a4

k

}
+

∑
k∈Rn

cn
k
⋅ an

k
.



912 P. Gerhards 

1 3

We compare LB0 with bounds obtained by solving the linear programming (LP) 
relaxation of the MIP. Therefore, we use the mathematical formulation displayed in 
(1)–(7) (PDT) and we refer to the objective value of this LP relaxation as LB1 . Fur-
thermore, we also use a mathematical formulation where the precedence relations 
are modelled in a disaggregated way. The constraints are displayed in (15). Here, for 
each pair (i, j) ∈ E and for each time period t of the planning horizon a constraint is 
added that enforces the precedence relations. When the right side of (15) is equal to 
1, i.e. the successor j starts before or in period t, then it forces the left side to take a 
value of 1 as well. Hence, the predecessor i has to be started before t − dim depend-
ing on the mode m.

Artigues (2017) reported that this disaggregated formulation is stronger (w.r.t to the 
LP relaxation) than the aggregated formulation displayed in constraints (3) which 
can be seen since constraints (3) are implied by (2) and (15). The “disaggregated 
discrete time formulation based on pulse variables” (PDDT) is defined by equations 
(1), (2), (4)–(7) and (15). With LB2 , we refer to the lower bound obtained by solving 
the LP relaxation of the PDDT formulation. Note that depending on the value of D, 
the PDDT formulation can contain considerable more constraints than the PDT for-
mulation, and thus, setting up the mathematical model in the solver most likely takes 
a longer time.

Another method for computing lower bounds is the destructive improvement 
strategy introduced by Klein and Scholl (1999) for the RCPSP. It is an iterative 
approach that is started with LB0 as a starting lower bound B . In each iteration, we 
try to proof that if we take B as an upper bound on the objective value, then no 
feasible solution can exist. If we succeed with the proof, we know that B + 1 is a 
valid lower bound for the instance and we can use this value in the next iteration. 
This process is repeated until the proof of infeasibility fails. For the proof, we either 
use the PDT formulation and a MIP solver ( LB3 ) or the CP formulation (displayed 
in "Appendix  1.3") and the IBM ILOG CP Optimizer solver ( LB4 ). In each itera-
tion, we add an extra constraint that bounds the objective value by the current upper 
bound B to the respective problem formulation. To limit the overall run-time of the 
procedure, we allow the solver a run-time of 60 s for each iteration. If no infeasibil-
ity can be detected after that time, the procedure stops and returns the best-known 
lower bound. However, if the respective solver finds a feasible solution in an itera-
tion, this solution has to be optimal and the procedure terminates as well.

4.2  Upper bounds

To obtain upper bounds, i.e. the costs of feasible solutions, we use different approaches: 
On the one hand, we implement heuristic procedures such as a multi-start local 
search (MLS), a simulated annealing (SA) procedure and an adaptation of the prior-
ity rule heuristic (PRH) of Hsu and Kim (2005). On the other hand, we also apply 

(15)
∑
m∈Mi

∑
�≤t−dim

xim� ≥
∑
m∈Mj

∑
�≤t

xjm� ∀(i, j) ∈ E, t = 1,… ,D
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exact methods such as MIP and CP solvers that are able to detect optimality for some 
instances (although with a run-time restriction this is not always the case).

Before we explain how the MLS and the SA work in particular, we explain the 
schedule generation scheme (SGS) that is utilised by both methods. In our case, we use 
a serial SGS that takes a scheduling sequence � and a mode � as an input and tries to 
build a feasible solution (i.e. a schedule with start and finish times and resource alloca-
tions). The SGS that we apply works similar to Algorithm 3.7.1 introduced by Neu-
mann et al. (2003) but also has some slight differences. We schedule the activities one 
at a time and in the order specified by the sequence � (in Neumann et al. 2003 the SGS 
schedules critical activities first and then selects the next activity according to a priority 
rule; one could interpret our scheduling sequence as a special kind of priority rule). So, 
the SGS ends after n + 2 iterations and we expect the scheduling sequence to respect 
the precedence constraints. In iteration l of the SGS, it tries to schedule activity i = �l 
in mode m = �i at the least cost increasing feasible time period that respects the prec-
edence relations. Thus, the SGS checks all feasible start times t ∈ {ESi,… , LFi − dim} 
and computes the cost increase in the partial schedule with the activity added at each 
particular start time. If there are multiple start times with the same cost increment, the 
earliest one of them is assigned. It is possible that the SGS may not find a feasible start 
time with respect to the due date since the durations of the chosen modes in � are 
too high. If the SGS detects such an infeasibility, it fails and does not return a feasible 
schedule.

First, we explain the concept of the multi-start local search method that we used. 
Algorithm 1 depicts the outline of the MLS. We initialise the current best mode vec-
tor �b by choosing the mode with minimal duration for each activity (ties are resolved 
arbitrarily). This initial mode vector is feasible with respect to the due date D. Next, we 
determine an initial scheduling sequence �b that respects the precedence relations. This 
means, that a successor j cannot occur at an earlier position in the sequence �b than its 
predecessor i if (i, j) ∈ E . We generate such a sequence by adding the activities one at 
a time to the sequence. An activity can only be added to the sequence if it is not part of 
the sequence yet and if all of its predecessors are already in the sequence. If more than 
one activity is eligible, we either choose one arbitrarily among the eligible activities 
(random generation) or choose the activity with the highest value of some priority rule. 
The priority rules that we used in this process are the following: minimum LST, mini-
mum LFT, minimum slack (i.e. LFT − EFT ), minimum number of successors, maxi-
mum number of successors and maximum rank positional weight (cf. Kolisch 1996). 
We generate a sequence for each priority rule and one using the random selection tech-
nique and use the SGS and the mode vector �b to translate it into a schedule. We keep 
the scheduling sequence with the lowest cost value and store it as �b . 
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In the main loop of Algorithm 1, we start by assigning a perturbed mode vec-
tor, called �p in line 5. Here, we select a random number of activities and change 
their mode from the one stored in �b to an arbitrary one. For the remaining activi-
ties (that were not selected), we assign in �p the same mode as in �b . The current 
best sequence �b is also modified (by extracting a random number of activities from 
the sequence and inserting them at a random, precedence feasible position in the 
modified sequence) and then copied to �p . We use these two steps to obtain a new 
start point for the local search. In order to limit the degree of diversification from 
the current best solution �p and �p , we limit the number of changes by n ⋅ �max

M
 and 

n ⋅ �max

S
 , respectively. Here, �max

M
,�max

S
∈ [0, 1] are parameters of the MLS. Then, we 

perform a local search starting at �p and �p in line 7. This local search procedure 
aims to improve the solution costs by altering �p and �p locally. First, the LS proce-
dure checks if altering the chosen mode of an activity leads to lower costs by apply-
ing the SGS to the altered mode vector and the unchanged sequence. After checking 
all possible mode changes of an activity, the LS explores all feasible (with respect to 
precedence relations) swaps in the scheduling sequence. So, it exchanges the activi-
ties at two positions of the scheduling sequence and if the sequence still respects the 
precedence relations, it checks if the application of the SGS leads to a lower cost 
value. If an alteration of �p or �p leads to an improvement, we apply the change 
and repeat the local search procedure with the updated mode vector and scheduling 
sequence. Hence, we apply a first improving move policy. In lines 8 − 12 , we update 
the current best mode vector and scheduling sequence if the LS found a strictly bet-
ter cost value. The MLS repeats until the specified time limit is reached.

We briefly explain the priority rule heuristic of Hsu and Kim (2005): First, 
we initialise the investment upper bound IUB = LB1 . Then, the PRH iteratively 
tries to find a feasible schedule with costs lower than or equal to IUB . If we can-
not find such a schedule, we increase IUB by one at the end of the iteration. To 
obtain a schedule, we schedule one activity at a time. Therefore, we compute 
for each activity i that is eligible for scheduling (i.e. all of its predecessors are 
already scheduled) the mode m∗ and the start time t∗ that results in the lowest 
priority value v(i,m∗, t∗) . Then, the activity i∗ with the worst minimum value is 
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selected for scheduling. The priority value v is a linear combination of two pri-
ority functions v1 and v2 . The parameter � controls the portion of the two prior-
ity functions.

Here, v1 is called the transformed slack priority function and measures how the 
selected start time and mode influence the set of remaining start times for the suc-
cessors of this activity (it favours early finish times such that many possible start 
times remain for the successors). Priority function v2 , called transformed investment 
priority function, calculates how much it costs to schedule an activity in a specific 
mode and a start time with respect to the increase in costs of the partial solution (in 
contrast to the original work, we also consider nonrenewable resources and their 
costs). If the costs excel the given bound IUB , the v2 value is ∞ . The scheduling 
procedure stops, if either a start time for each activity was determined or the costs 
of the (partial) solution excelled the given upper bound IUB . The whole priority rule 
heuristic stops once a feasible solution is found.

As a second metaheuristic approach, we adapted the simulated annealing pro-
cedure with reheating presented by Józefowska et al. (2001) for the MRCPSP to 
fit our MRIP setting. Here, in each iteration, we generate a solution candidate 
by perturbing the currently best-known solution. It is accepted if it has a better 
cost value or with some probability that depends on the delta of the cost val-
ues as well as the so-called temperature. The temperature is used to control the 
acceptance rate of worse solutions during the search and decreases constantly by 
a cooling factor � . However, we also use reheating to escape local optima when 
the search is stuck. The total number of reheats is one of the algorithm param-
eters of the SA approach as well as the cooling factor �.

Next, we explain the set-up of the MIP experiments. We implemented six 
formulations: the two based on pulse variables PDT (displayed in (1)–(7)) and 
PDDT (displayed in (1), (2), (4)–(7) and (15)). Furthermore, we adapted two 
formulations based on step variables (SDT and SDDT) and two based on on/off 
variables (OODT and OODDT) which are displayed in more detail in "Appen-
dix 1.1" and 1.2, respectively. In order to model and solve the MIP, we used 
Gurobi Optimizer 9.0 via the C# API. For large instances, setting up the model 
can require some time (in our experiments, the maximal measured set-up time 
was 8.16  s), while for the smaller instances, no big difference in set-up times 
between the two formulations was measured.

Another exact approach that becomes more and more relevant in the field of 
project scheduling is constraint programming. Constraint programming solvers 
became more efficient in recent years and they are applied to a growing number 
of scheduling problems (e.g. Kreter et al. 2018 and Schnell and Hartl 2016). The 
CP formulation of the MRIP used in this study is displayed in "Appendix 1.3". 
We implemented the CP model displayed in (47)–(54).

(16)
v(j,m, t) = � ⋅ v1(j,m, t) + (1 − �) ⋅ v2(j,m, t)

i ∈ A,m ∈ Mi, t = ESi,… ,LFi − dim.
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5  Instance generation and benchmark library

In this section, we explain how we generated the benchmark instances for the MRIP. 
Our main concerns with the instances are diversity of the instances with respect 
to certain characteristics and that the feasible mode space cannot be reduced eas-
ily. We used the following characteristics to generate different instances: number 
of activities n, maximum number of modes per activity  |M|, number of renewable 
resources |R|, due date factor � , order strength OS and resource factor RF. Here, the 
parameter order strength is a measure of the number of precedence relations (Mas-
tor 1970). It is defined as the fraction of precedence relations in E compared to the 
total number of possible relations and, hence, is an indicator whether the precedence 
structure of the project is more parallel or more serial (Schwindt 1998 showed that 
OS is a good approximation for the restrictiveness of the precedence relations). The 
resource factor value is the average portion of different resources required for the 
processing of an activity in a mode (Kolisch and Sprecher 1997). Note that it only 
varies for the renewable resources. For the single nonrenewable resource, RF = 1 for 
all instances since each mode has a positive resource requirement for the nonrenew-
able resource except the modes of the dummy start and finish activities. The due 
date factor � is used to compute the due date of the project based on the earliest start 
time ESn+1 of the dummy end activity (calculated by forward calculation). We calcu-
late the due date as follows:

The round function in equation (17) applies the rounding to the nearest even num-
ber strategy in the case of midpoint values. Table 2 displays the values that we used. 
For each parameter combination, we generated 5 instances, giving us in total 4950 
instances. As shown in Sect.  2, it is sufficient to consider only one nonrenewable 
resource.

Concerning the mode space, the instances should neither contain inefficient nor 
infeasible modes. We call a mode m ∈ Mi of activity i inefficient if there is another 
mode m� ∈ Mi for that activity such that the other mode has a shorter or equal dura-
tion and it has lower or equal resource requirements for all resources (cf. Kolisch 
et al. 1995). It would never be beneficial to include an inefficient mode m into a solu-
tion since with m′ the resource usage would be lower, and hence, we can omit mode 
m from the mode space. It is possible to check if a mode is inefficient in polynomial 

(17)D = �����(� ⋅ ESn+1).

Table 2  Parameter values of the 
new instances

Parameter Values

n {30, 50, 100}

|M| {3, 6}

|R| {2, 4, 8}

� {1.2, 1.4, 1.6, 1.8, 2}

OS {0.25, 0.5, 0.75}

RF {0.25, 0.5, 0.75, 1}
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time. We call a mode m ∈ Mi infeasible if its duration dim is too long to finish the 
project before the due date. In mathematical terms, this happens if the difference 
between the latest finish time (LF) of the activity and the earliest start time (ES) is 
smaller than the duration, i.e.:

Especially when using project data that was generated for the MRCPSP and when 
the due date is very close to ESn+1 , many modes are infeasible and can be omitted 
from the mode space. Again, we can check in polynomial time if a mode is infeasi-
ble since we can calculate the ES and the LF in polynomial time with the FBC.

Gerhards and Stürck (2018) adapted MRCPSP instances from the PSPLIB with 
30 activities per project. They also computed the due date as in (17) and used values 
of � ∈ {1.0, 1.1,… , 1.5} . However, they did not investigate if the duration of each 
mode is short enough for the resulting due dates. In Table 3, we present the average 
number of infeasible modes for the different values of � as well as the maximum and 
minimum proportion of infeasible modes for single instances (labelled min and max 
in the table). Especially for � = 1.0 and � = 1.1 , many modes are infeasible. Further-
more, we also computed how many modes become inefficient when we try to make 
the infeasible modes feasible. We altered the duration of all infeasible modes by 
setting dim = LFi − ESi . Again, for low values of � many modes can be omitted from 
the mode space since they are inefficient (the altered modes have a shorter duration 
and dominate unchanged ones). For this reason, we consider in this study slightly 
larger values for the parameter � and check during the generation of the instances for 
infeasible and inefficient modes.

In the following, we describe how we computed each instance with the desired 
properties. First, we used the network generator RanGen  Demeulemeester et  al. 
(2003) to generate an activity-on-the-node network with the specified number 
of activities and OS value (this gives us the set E of precedence relations). For 
each activity i ∈ A , the cardinality of the mode set is set to the desired number, 
i.e. |Mi| = |M| (except for the dummy activities which have only one mode). We 
draw for each activity i and all its modes m ∈ Mi the duration dim as a discrete uni-
formly distributed random number U{1, 10} . Similarly, the resource requirements 
rimk ( rn

imk
 ) for each resource k ∈ R ( k ∈ R

n ) are also taken from U{1, 10} . If the 
value of RF < 1 , then we arbitrarily set sufficiently many of the renewable resource 

(18)LFi − ESi < dim.

Table 3  Infeasible and inefficient modes in the adapted PSPLIB instances used by Gerhards and Stürck 
(2018)

� ∅ Infeasible (%) Min (%) Max (%) ∅ Inefficient (%) Min (%) Max (%)

1.0 28.17 11.11 52.22 13.16 1.11 37.78
1.1 12.02 0.00 35.56 2.01 0.00 14.44
1.2 3.54 0.00 22.22 0.39 0.00 5.56
1.3 0.52 0.00 11.11 0.04 0.00 2.22
1.4 0.03 0.00 3.33 0.00 0.00 0.00
1.5 0.00 0.00 0.00 0.00 0.00 0.00
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requirements of each mode to 0 such that the resource factor is achieved. After we 
determined all the resource requirements and the durations of an activity, we check 
if there are inefficient modes. If an inefficient mode occurs, we take new random val-
ues for the modes that cause the inefficiency. This is repeated until each activity has 
no inefficient modes. Then, we use the forward calculation to compute ES and deter-
mine the due date D as in (17). Based on the due date, we can compute latest finish 
times LF for all activities. Next, we check each activity for infeasible modes. If we 
encounter an infeasible mode with some activity, we start over and redraw all values 
(durations and resource requirements) of all activity modes of the instance. By tak-
ing new random values for all of the modes and not just the infeasible ones, we want 
to avoid that infeasible modes are set to a similar duration (for example, setting the 
duration to dim = LFi − ESi would repair the infeasibility, but could also result in 
inefficient modes and biased duration values). We repeat this until all modes of all 
activities are feasible and none of them is dominated. Finally, we determine the ran-
dom cost factors ck for all renewable resources k ∈ R from U{1, 10} . Although, we 
only investigate the MRIP without tardiness permitted in this study, we also added 
a value for the tardiness cost factor (also from U{1, 10} ) that can be useful in future 
work. In the next section, we will investigate the novel instances.

For most instances (3725 of 4950), we drew feasible mode durations on the 
first try. However, on average we had to redraw 385 times per instance until all 
modes were feasible. The maximum number of redraws was 67,653 for instance 
MRIP_30_79. We analysed if the redrawing has an effect on the distribution of 
the mode duration values. Therefore, we performed a Pearson’s chi-squared test of 
goodness of fit  (Cochran 1952) with significance level � = 0.01 to check whether 
the duration data fits to a discrete uniform distribution. Only for 47 of the 4950 
instances, we were able to reject this hypothesis, and hence, we suspect that there is 
no strong bias in the duration values for most of the generated instances.

6  Computational study

To test the “hardness” of the instances, we compute both lower and upper bounds 
with the procedures presented in Sect.  4 and compare them. To compute upper 
bounds, we apply metaheuristic search procedures as well as different MIP and CP 
implementations. The goal is to examine how hard the proposed instances are for 
these general purpose methods. For the lower bounds, we propose some rather sim-
ple approaches and compare them to linear programming relaxations of different 
mathematical formulations as well as so-called destructive improvement methods. 
We want to investigate if drawing the cost factors from a uniform distribution has an 
effect on the “hardness” of the instances. Therefore, we perform experiments with the 
random cost factor instances and additionally with the same instances, but with all 
cost factors set to 1 (called equal resource cost factors). We conducted all following 
computational experiments on an Intel Xeon Silver 4214 CPU running at 2.20 GHz  
and all procedures were implemented in C#. We utilised Gurobi Optimizer 9.0 
to solve LP relaxations and the MIPs. For the CP-based destructive improvement 
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procedure and the standalone CP implementation, we used IBM ILOG CP Opti-
mizer 12.9.0 (cf. Laborie et al. 2018).

The five lower bound procedures proposed in Sect.  4.1 are applied on the 
new benchmark instances. In Table  4, we depict the average of the relative 
improvement over the worst lower bound LBmin for all five lower bounds, i.e. 
LBi−LBmin

LBmin
, i = 0,… , 4 . If the value of ∅ improvement is close to 0% , then the 

respective lower bound value was close to the minimum value among the calculated 
bounds. Hence, the higher the ∅ improvement the better. We used random resource 
cost factors for the results depicted in Table 4. For instances with unit resource cost 
factors, we get a similar trend.

Clearly, LB0 (the bound based on minimum resource level formulae) is always 
the worst lower bound. Only for instances with a small number of modes ( |M| = 3 ) 
or a high resource factor ( RF = 1 ), the gap between the more advanced procedures 
gets smaller. The LP relaxation-based lower bound with disaggregated precedence 
constraints LB2 performs best on average. Since the disaggregated formulation 
is stronger than the aggregated one (cf. Artigues 2017), LB1 (based on the aggre-
gated precedence constraints) performs slightly worse than LB2 regarding the rela-
tive improvement. The destructive improvement methods ( LB3 and LB4 ) work 

Table 4  Average improvement 
(with random resource cost 
factors) for the different instance 
parameters

∅ Improvement

LB
0 (%) LB

1 (%) LB
2 (%) LB

3 (%) LB
4 (%)

All 0.00 119.46 122.99 119.57 119.82
n 30 0.00 122.02 126.78 150.52 128.27

50 0.00 117.07 120.56 124.11 114.65
100 0.00 119.28 121.63 84.08 116.54

|R| 2 0.00 104.03 106.48 99.17 102.12
4 0.00 112.97 116.16 112.16 114.83
8 0.00 137.51 142.19 142.28 138.09

|M| 3 0.00 58.90 60.68 61.47 63.42
6 0.00 180.01 185.29 177.66 176.22

OS 0.25 0.00 143.38 145.80 145.35 142.15
0.5 0.00 119.64 123.27 119.19 118.83
0.75 0.00 95.35 99.90 94.16 98.47

� 1.2 0.00 130.15 135.03 147.78 128.52
1.4 0.00 128.70 133.05 139.47 127.60
1.6 0.00 121.50 125.09 121.74 121.55
1.8 0.00 112.76 115.37 102.91 114.43
2 0.00 104.19 106.40 85.93 107.00

RF 0.25 0.00 146.83 154.11 168.96 155.25
0.5 0.00 158.22 163.39 157.84 157.53
0.75 0.00 121.43 123.61 110.42 119.11
1 0.00 60.48 61.21 57.52 59.20
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especially well on small- to medium-sized instances but are outperformed by the 
LP-based approaches on the n = 100 instances. However, LB3 finds optimal solution 
for 31 instances, while LB4 can solve 4 instances to optimality. In absolute terms, 
LB3 gives the best lower bound for 3736 instances (and 3403 of those bounds were 
solely found by this procedure). Yet, the performance of the MIP solver seems to be 
significantly worse for the instances with 100 activities, as we can see a drop in the 
average improvement there.

Furthermore, in Table  5, we display the average computation time (in s). As 
expected, LB0 has a significantly lower running time than the other procedures. The 
PDT LP relaxation ( LB1 ) is solved about 10 times faster than the disaggregated ver-
sion. While the MIP-based destructive improvement procedure takes the longest 
computation time, it also closes most instances and performs best on the instances 
with 30 and 50 activities. The CP-based variant is not able to find as many opti-
mal solutions as its MIP-based counterpart, yet, it terminates faster. For instances 
with 30 and 50 activities, LB2 seems to have the best quality per computation time 
ratio, while on the larger 100 activities instances, LB1 seems most efficient. How-
ever, we solved the LP relaxations ( LB1 and LB2 ) much faster when the mode count 
was higher. To investigate this unexpected behaviour, we modified the instances 

Table 5  Average computation 
time in seconds (with random 
resource cost factors) for the 
different instance parameters

∅ Computation time

LB
0

LB
1

LB
2

LB
3

LB
4

All 0.05 12.47 145.39 2491.07 185.71
n 30 0.02 0.52 2.13 711.89 241.64

50 0.02 2.50 17.30 1748.01 158.95
100 0.10 34.40 416.73 5013.31 156.56

|R| 2 0.03 1.25 64.60 1503.81 97.68
4 0.04 6.12 130.04 2001.14 165.81
8 0.07 27.25 221.31 3721.45 271.65

|M| 3 0.05 18.44 234.38 2100.45 195.22
6 0.05 6.50 56.39 2881.69 176.21

OS 0.25 0.04 1.71 20.13 2610.90 120.65
0.5 0.05 7.67 89.94 2863.30 152.24
0.75 0.05 28.05 326.08 1999.01 284.26

� 1.2 0.05 1.39 11.96 2290.56 224.11
1.4 0.05 2.79 30.14 2783.63 188.63
1.6 0.05 6.27 81.81 2674.72 172.52
1.8 0.04 13.83 200.08 2470.73 172.57
2 0.04 38.09 402.93 2235.71 170.74

RF 0.25 0.05 4.44 123.20 1721.90 321.36
0.5 0.04 8.65 151.83 1947.00 213.10
0.75 0.04 15.60 122.44 2813.10 143.85
1 0.04 18.53 176.67 3225.89 109.77
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with three modes per activity by duplicating each mode of each activity and solving 
the modified instance again as an LP relaxation. Note that the objective value does 
not change when solving this modified instance. However, the average computation 
time decreased from 18.44 to 15.96 s for the aggregated variant and from 234.38 to 
163.49 s for the disaggregated version. So, basically the same instance was solved 
up to 30% faster just by adding the identical modes. Why the LP solver is so much 
faster with these additional decision variables is still an open problem and further 
research is needed here.

Next, we analyse the upper bound procedures presented in Sect. 4.2. Therefore, 
let us first examine how many instances the MIP and CP procedures solved to opti-
mality within a time limit of one hour. When we used equal resource cost factors, 
the PDT formulation MIP solved 17.4% of the instances to optimality, whereas the 
CP solver found optimal solutions for 30.4% of the instances. Using random cost 
factors, PDT solved only 9.3% and CP 28.4% of the instances to optimality. In total, 
the exact procedures solved 1430 instances to optimality, and hence, we found opti-
mal solutions for less than 29% of the instances with random cost factors. The ran-
dom cost factors make the instances more challenging, especially for the MIP-based 
approaches. Therefore, we take a closer look at these instances.

In Table 6, we can observe how the exact approaches performed given different 
run-time limits (60, 600, and 3600  s). Surprisingly, the CP implementation finds 
more optimal solutions in 60  s than any of the MIP approaches in one hour. The 
aggregated versions of the step-based and the on/off-based formulations cannot find 
feasible solutions for all of the instances, even with a time limit of one hour. The 
disaggregated variants find at least one feasible solution for each instance except for 
PDDT and OODDT with the 60 second time limit. PDT can solve the most instances 
to optimality among the MIP-based approaches. However, the CP approach seems to 
be much better at proving optimality of a solution and, hence, achieves also faster 
average run-times.

Table 6  Percentage of feasible and optimal solutions and average computation times in seconds for the 
instances with random cost factors

Max time ∅ Feasible ∅ Opt ∅ Time

60 (%) 600 (%) 3600 (%) 6 (%)0 600 (%) 3600 (%) 60 600 3600

PRH 100.0 0.0 12.5
MLS 100.0 100.0 100.0 0.0 0.0 0.0 60.0 600.0 3600.0
SA 100.0 100.0 100.0 0.0 0.0 0.0 60.0 600.0 3600.0
CP 100.0 100.0 100.0 14.6 22.6 28.4 53.5 485.7 2688.6
PDT 100.0 100.0 100.0 0.9 4.3 9.3 60.1 584.1 3361.3
PDDT 97.8 100.0 100.0 0.8 4.2 8.8 60.8 585.9 3372.6
OODT 36.0 62.7 81.4 0.1 1.4 4.2 61.1 597.0 3503.4
OODDT 94.1 100.0 100.0 0.2 3.0 8.3 61.1 591.5 3406.8
SDT 93.7 97.5 99.4 0.0 0.7 2.5 60.4 598.4 3547.8
SDDT 100.0 100.0 100.0 0.2 1.8 5.3 60.4 594.4 3477.8
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In Table 7, we can observe how many instances were solved optimally by CP or 
one of the MIP formulations after one hour of computation depending on the respec-
tive instance parameter. We see that for “small” instances, i.e. the instances with 
only 30 activities, CP outperforms all other approaches and is the only procedure 
that finds optimal solutions for instances with 100 activities. In general, instances 
with 30 activities, a small RF = 0.25 or a small due date factor are more likely to be 
solved to optimality by one of the approaches. A similar phenomenon as with the LP 
relaxations occurs with the PDDT MIP approach where more optimal solutions are 
found for instances with higher mode count as the MIP solver has to solve several 
LPs during the search.

Next, we compare the results of the exact procedures to the MLS, the SA 
approach and the PRH. To calibrate the algorithm parameters of the MLS, PRH and 
SA, we used the software package ����� López-Ibáñez et  al. (2016) and a set of 
990 training instances (with the same instance parameters). After performing 1000 
experiments with each algorithm, the best parameter values on the training instance 
set are �max

S
= 0.92 , �max

M
= 0.2 and � = 0.28 for the MLS and the PRH. For the SA 

approach, the number of reheats was 23, 880 and 5280 and the temperature cooling 
factor � was 0.52, 0.9 and 0.9 for a run-time limit of 60, 600 and 3600 s, respectively.

Table 7  Percentage of optimal solutions for different instance parameters after 3600 s of run-time (for 
the instances with random cost factors)

CP (%) PDT (%) PDDT (%) OODT (%) OODDT (%) SDT (%) SDDT (%)

All 28.4 9.3 8.8 4.2 8.3 2.5 5.3
n 30 62.7 25.2 23.8 12.2 22.8 7.3 14.6

50 22.0 2.6 2.6 0.4 2.1 0.1 1.3
100 0.6 0.0 0.0 0.0 0.0 0.0 0.0

|R| 2 27.5 10.7 11.3 3.5 9.9 3.5 8.1
4 32.4 10.6 10.0 5.8 9.4 2.9 5.7
8 25.2 6.8 5.7 3.2 6.1 1.3 2.8

|M| 3 34.1 9.7 8.6 5.7 10.1 3.4 6.6
6 22.8 8.8 9.0 2.8 6.6 1.5 4.0

OS 0.25 21.8 9.1 8.2 5.1 7.9 2.7 4.7
0.5 28.1 8.4 7.6 3.6 7.6 2.2 5.0
0.75 35.4 10.2 10.6 3.9 9.4 2.6 6.1

� 1.2 34.8 15.3 15.4 8.3 13.7 6.6 10.9
1.4 30.2 11.1 11.4 4.6 10.0 3.2 7.9
1.6 26.6 7.7 7.7 3.5 7.7 1.5 3.9
1.8 25.4 6.7 5.5 2.2 5.7 0.6 2.1
2 25.4 5.6 4.0 2.4 4.4 0.5 1.6

RF 0.25 62.8 28.7 25.0 16.3 26.4 7.0 14.1
0.5 37.9 11.2 11.5 3.6 9.6 3.3 7.2
0.75 17.7 2.9 3.1 0.8 2.6 1.0 2.2
1 6.8 0.7 1.0 0.1 0.6 0.2 0.7
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We see that using mostly the transformed investment priority function performs 
better for PRH (in Hsu and Kim 2005, an � value of 0.4 performed best). On aver-
age, the PRH took 12.5 s to compute a feasible solution. The fastest PRH running 
time took 0.08  s, while the maximum computation time in our experiments was 
258.5 s for one instance.

Metaheuristic procedures are in general not able to detect if a solution is opti-
mal or not. So, we compare the procedures based on the average relative deviation 
( ∅ RD, cf. (19)) from the respective best-known solution value ( UBmin ) found by 
the four procedures. So, if this average is 0% , this means that the procedure always 
found a solution with lowest objective function value for each instance.

We also compare them by the average relative deviation from the best-known lower 
bound ( ∅RDLB , cf. (20)).

Tables 8 and 9 depict the average relative deviations ∅RD and ∅RDLB of the tested 
procedures, respectively. Note, that SDT and OODT did not find a feasible solution 
for each instance and we omitted instances with no solution in the calculation of the 
average for these two formulations. This means that the true average for those pro-
cedures may be higher than displayed and a comparison with the other methods is 
difficult. We observe that the PDT formulation reaches the lowest average deviation 
over all instances although CP was able to find more optimal solutions. One could 
suspect that the stronger PDDT formulation should also have a better performance 
than the weaker aggregated PDT variant. But we need to keep in mind, that solving 
the disaggregated LPs takes longer and the extra constraints also need more mem-
ory, and hence, it is not a priori clear which MIP formulation performs better (cf. 
Artigues 2017). However, for the project instances with 30 activities, the CP imple-
mentation achieves the best results. For instances with more activities, again PDT 
achieves the best results and also the gap to the metaheuristic procedures grows. 
Among the heuristic procedures, MLS works best for small- to medium-sized pro-
ject instances but SA performs better on the 100 activity instances. However, the 
heuristic approaches are not competitive with the exact methods and there is a lot of 
potential for improvement.

In Table  9, we see that PDDT, SDDT and OODDT have a lower deviation for 
instances with a higher number of modes. We think that this phenomenon is related to 
the one experienced with the lower bounds. When solving the MIP, also several LPs 
are solved, and hence, we think this is related to the better performance of the disaggre-
gated MIP procedures on instances with 6 modes per activity. A low resource factor of 
0.25 seems to make it easier for the CP and PDT formulation which is in line with the 
findings in Table 7 where the most optimally solved instances also had a RF = 0.25 . 
The choice of the due date factor � has no strong impact on the solution quality of 
the CP solver. The MIP approaches, especially SDDT and OODDT, perform worse for 

(19)RD =
UB − UBmin

UBmin
.

(20)RDLB =
UB − LBmax

LBmax
.
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higher due date factors. OODDT performs best over all procedures on the � = 1.2 and 
worst on the � = 2 instances. In total, most best-known solutions (BKS) were found 
by CP (2228) followed by OODDT (1362), PDDT (1268) and PDT (1239). The MLS 
found only 15 BKS and the PRH only a single one, while the SA approach did not find 
any BKS at all.

7  Summary and conclusions

In this paper, we investigated the multi-mode resource investment problem. It is a 
prominent project scheduling problem where each activity is processed in one of mul-
tiple modes that vary in the activities’ duration and resource consumption. We have 
shown that it is sufficient to consider a single nonrenewable resource with a transforma-
tion procedure.

Furthermore, we propose a novel set of benchmark instances for this problem as 
no common set of instances was used and known in the literature so far. In total, we 
computed 4950 instances with a diverse set of instance characteristics. We especially 
assured that none of the modes can be reduced because of infeasibility or inefficiency 
reasons. By maintaining the website https ://ripli b.hsu-hh.de, we make these instances 
available to the public. In addition, researchers can access best-known solution values 
for the instances as well as share and validate their results on this website. We encour-
age researchers to test their solution procedures on the benchmark dataset and compare 
their results.

In extensive computational experiments, we examined lower and upper bounds for 
the MRIP. For the lower bounds, our experiments revealed that using the LP relaxation 
of the so-called disaggregated discrete time indexed formulation yields better lower 
bounds for most instances at hand. However, we also proposed destructive improve-
ment methods that yielded good results for the small- and medium-sized instances and 
even provided optimal solutions in some cases.

We also tested several procedures to obtain good upper bounds for the MRIP. The 
metaheuristic procedures, a multi-start local search, simulated annealing, and a priority 
rule heuristic from the literature, were not able to compete with the MIP and CP imple-
mentations. In total, the exact procedures were able to prove the optimality of 1340 of 
the 4950 instances. That means that over 60% of the instances are still open and we 
encourage researchers to investigate them further. Our experiments also indicated that 
the instances are more challenging when we use random cost factors.

For future research, we advise the application of more advanced metaheuristic pro-
cedures. In addition, further extensions such as general temporal constraints or the tar-
diness penalty in the objective function could be an interesting addition to take some 
important aspects of project scheduling into account.
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Appendix 1: Additional mathematical model formulations

Here, we present additional mathematical representations of the MRIP. In 1.1 and 
1.2, mixed-integer programming models based on different decision variables are pre-
sented. They are based on RCPSP models found in Artigues (2017). In 1.3, we display 
a constraint programming formulation of the MRIP.

Appendix 1.1: Step variables discrete time

First, let us present the formulation based on so-called step variables. Here, we have 
a binary step variable zimt that is 1 if and only if activity i starts in mode m at time t 
or before. Hence, we can express the start time Si of an activity by looking at the dif-
ference of step variables, i.e.:

Next, we show a model using these step variables and the aggregated precedence 
constraints in (22)–(31)

(21)Si =
∑
m∈Mi

D∑
t=1

t ⋅ (zimt − zi,m,t−1).

(22)min
∑
k∈R

ck ⋅ ak +
∑
k∈Rn

cn
k
⋅ an

k

(23)s.t.
∑
m∈Mi

(
zi,m,0 +

D∑
t=1

(zimt − zi,m,t−1)

)
= 1 ∀i ∈ A

(24)zimt ≥ zi,m,t−1 ∀i ∈ A,∀m ∈ Mi

(25)zimt = 0 ∀i ∈ A,∀m ∈ Mi,∀t < ESi

(26)
∑
m∈Mi

zi,m,LFi−dim
= 1 ∀i ∈ A

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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This formulation is called the aggregated version of the discrete time formulation 
based on step variables (SDT). The objective function (22) is the same as in the PDT 
formulation and minimises the resource costs. The equation in (23) ensures that 
exactly one mode and one step (i.e. a start) is chosen for each activity. The inequali-
ties in (24) let the step variables grow, while the equality in (26) makes sure that 
the start time of each activity is scheduled before the mode specific latest start time 
LFi − dim . In (27), we display the aggregated version of the precedence constraints. 
The next inequalities (28) model the nonrenewable resources. (29) displays the 
renewable resource constraints. Finally, in (30) and (31), the domains of the decision 
variables are defined. There is also a version with disaggregated precedence con-
straints which are displayed in (32).

We call the formulation using constraints (22)–(26), (28)–(31) and (32) the disag-
gregated version of the discrete time formulation based on step variables (SDDT).

Appendix 1.2: On/off variables discrete dime

The third model utilises so-called on/off variables yimt that are set to 1 if and 
only if activity i is in process in mode m at time t. An activity i is started at time 
t or before in mode m if it was in process in at least one of the following times: 
t, t − dim, t − 2dim, t − 3dim,… . Hence, we get the following relation between the step 
and the on/off variables:

(27)

∑
m∈Mi

(
dim ⋅ zi,m,0 +

D∑
t=1

(t + dim) ⋅ (zimt − zi,m,t−1)

)
≤

∑
m∈Mj

D∑
t=1

t ⋅ (zjmt − zj,m,t−1) ∀(i, j) ∈ E

(28)
∑
m∈Mi

rn
imk

⋅

(
zi,m,0 +

D∑
t=1

(zimt − zi,m,t−1)

)
≤ an

k
∀k ∈ R

n

(29)
∑
i∈A

∑
m∈Mi

min(t,LFi−dim)∑
q=max(ESi,t−dim+1)

rimk ⋅ (zimq − zi,m,q−1) ≤ ak ∀k ∈ R, t = 0,… ,D

(30)ak ≥ 0 ∀k ∈ R an
k
≥ 0 ∀k ∈ R

n

(31)zimt ∈ {0, 1} ∀i ∈ A,∀m ∈ Mi, t = 0,… ,D.

(32)
∑
m∈Mi

zi,m,t−dim ≥

∑
m∈Mj

zjmt ∀(i, j) ∈ E, t = 1,… ,D.
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By combining (21) and (33), we get the following formula for the start time of activ-
ity i

The model using on/off variables and aggregated precedence constraints (OODT) is 
displayed in (35)–(45). Since we are in a multi-mode setting, we need to introduce 
an additional binary variable eim to represent the mode choice. This decision vari-
able is equal to 1 if and only if activity i is processed in mode m.

(33)zimt =

⌊t∕dim⌋�
k=0

yi,m,(t−kdim).

(34)Si =

D�
t=1

t ⋅

�⌊t∕dim⌋�
k=0

yi,m,(t−kdim) −

⌊(t−1)∕dim⌋�
k=0

yi,m,(t−1−kdim)

�
.

(35)min
∑
k∈R

ck ⋅ ak +
∑
k∈Rn

cn
k
⋅ an

k

(36)s.t.
�
m∈Mi

⌊LFi∕dim⌋�
k=0

yi,m,(t−kdim) = eim ∀i ∈ A

(37)
∑
m∈Mi

eim = 1 ∀i ∈ A

(38)
D∑
t=1

yimt = dim ⋅ eim ∀i ∈ A,∀m ∈ Mi

(39)
⌊t∕dim⌋�
k=0

yi,m,(t−kdim) ≥

⌊(t−1)∕dim⌋�
k=0

yi,m,(t−1−kdim) ∀i ∈ A,∀m ∈ Mi, t = 1,… ,D

(40)

�
m∈Mi

D�
t=1

(t + dim) ⋅

�⌊t∕dim⌋�
k=0

yi,m,(t−kdim) −

⌊(t−1)∕dim⌋�
k=0

yi,m,(t−1−kdim)

�
≤

�
m∈Mj

D�
t=1

t ⋅

⎛⎜⎜⎝

⌊t∕djm⌋�
k=0

yj,m,(t−kdjm) −

⌊(t−1)∕djm⌋�
k=0

yi,m,(t−1−kdjm)

⎞⎟⎟⎠
∀(i, j) ∈ E

(41)
∑
m∈Mi

rn
imk

⋅ eim ≤ an
k

∀k ∈ R
n
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With (36), we ensure that each activity is assigned to at least one period where it is 
processed in its chosen mode. The equality in (37) limits the mode choice to exactly 
one mode per activity. The constraints in (38) have two functions: First, they force 
the on/off variables corresponding to the modes that are not chosen to be 0. Second, 
together with (39) they ensure that activity i is executed for exactly dim periods with-
out interruption if mode m is chosen. The precedence relations are modelled in (40) 
in the aggregated version. The nonrenewable and renewable resource constraints are 
displayed in (41) and (42), respectively. Finally, the decision variables are defined 
in (43)–(45). Again, we can also formulate the precedence constraints in a disaggre-
gated way (see (46)).

The disaggregated version of the on/off-based formulation (OODDT) uses con-
straints (35)–(39),(41)–(45) and (46).

Artigues (2017) calls PDDT, SDDT and OODDT the strong formulations as their 
LP relaxation is superior to the LP relaxation of PDT, SDT and OODT (these three are 
called weak formulations). However, due to for example more memory allocation or 
other reasons, the weaker formulations can have a better performance when solved as 
mixed-integer linear program as we see in Sect. 6.

Appendix 1.3: Constraint programming formulation

The CP formulation of the MRIP is displayed in (47)–(54). To model the MRIP with 
CP, we use so-called interval variables that define the start and finish of activities. With 
the keyword optional, we specify that an interval variable is not mandatory (applied 
for the mode interval variables in (54)) and the keyword size defines the length of the 
interval (i.e. the difference of finish and start of an interval). We connect the interval 
variable act[i] of activity i ∈ A with the respective mode interval variables mode[i,m] 
using the expression alternative. This expression ensures that exactly one of the 
mode intervals is present and the start and finish times of act[i] coincide with the cho-
sen mode interval (see (48)). The precedence relations are modelled in (49) and the 
nonrenewable resource constraints in (50). For the renewable resource, we utilise a 

(42)
∑
i∈A

∑
m∈Mi

rimk ⋅ yimt ≤ ak ∀k ∈ R, t = 0,… ,D

(43)ak ≥ 0 ∀k ∈ R an
k
≥ 0 ∀k ∈ R

n

(44)eim ∈ {0, 1} ∀i ∈ A,∀m ∈ Mi

(45)zimt ∈ {0, 1} ∀i ∈ A,∀m ∈ Mi, t = 1,… ,D.

(46)

�
m∈Mi

⌊�∕dim⌋�
k=0

yi,m,(�−(k+1)dim) ≥
�
m∈Mj

⌊�∕djm⌋�
k=0

yj,m,(�−kdjm)

∀(i, j) ∈ E, t = 1,… ,D.
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so-called cumulative function rUsek together with the pulse operator which sums up 
the renewable resource requirement for the periods where the mode interval variable is 
in process. In (52), we define the resource allocation variables for both the renewable 
and nonrenewable resources. They are similar to the ones of the MIP formulation pre-
sented above and are also used in the objective function (47).
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