
OR Spectrum (2020) 42:427–460
https://doi.org/10.1007/s00291-020-00583-z

REGULAR ART ICLE

A branch-and-bound procedure
for the resource-constrained project scheduling problem
with partially renewable resources and general temporal
constraints

Kai Watermeyer1 · Jürgen Zimmermann1

Received: 3 September 2019 / Accepted: 19 February 2020 / Published online: 13 April 2020
© The Author(s) 2020

Abstract
In this paper, we consider the resource-constrained project scheduling problem with
partially renewable resources and general temporal constraints. For the first time,
the concept of partially renewable resources is embedded in the context of projects
with general temporal constraints. While partially renewable resources have already
broadened the area of applications for project scheduling, the extension by general
temporal constraints allows to consider evenmore relevant aspects of real projects.We
present a branch-and-bound procedure for the problem with the objective to minimize
the project duration. To improve the performance of the solution procedure, new
consistency tests, lower bounds, and dominance rules are developed. Furthermore,
new temporal planning procedures, based on forbidden start times of activities, are
presented which can be used for any project scheduling problemwith general temporal
constraints independent on the considered resource type. In a performance analysis, we
compare our branch-and-bound procedure with themixed-integer linear programming
solver IBM CPLEX 12.8.0 on adaptations of benchmark instances from the literature.
In addition, we compare our solution procedure with the only available branch-and-
bound procedure for partially renewable resources. The results of the computational
experiments prove the efficiency of our branch-and-bound procedure.

Keywords Project scheduling · Branch and bound · Resource-constrained project
scheduling · Partially renewable resources · Minimum and maximum time lags

B Kai Watermeyer
kai.watermeyer@tu-clausthal.de

Jürgen Zimmermann
juergen.zimmermann@tu-clausthal.de

1 Institute of Management and Economics, Operations Research Group, Clausthal University of
Technology, Julius-Albert-Str. 2, 38678 Clausthal-Zellerfeld, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-020-00583-z&domain=pdf

428 K. Watermeyer, J. Zimmermann

1 Introduction

This paper is concernedwith the resource-constrained project scheduling problemwith
partially renewable resources (RCPSP/π) extended by general temporal constraints
which to the best of our knowledge has not been treated in the open literature so far.
The concept of partially renewable resources has already proved to be useful to model
constraints occurring in different real applications. The first usage of this resource type
can be found in Drexl et al. (1993) for a course scheduling problem. Further examples
are given in Drexl and Salewski (1997) for school timetabling, in Bartsch et al. (2006)
and Knust (2010) for sports scheduling, in Briskorn and Fliedner (2012) for container
transshipment, and in Okubo et al. (2015) for machine scheduling. The availability of
a partially renewable resource is limited to an arbitrary set of periods. Accordingly,
a partially renewable resource is only consumed by an activity in the periods the
resource is available and the activity is in process. In the field of project scheduling, it
is well known that partially renewable resources generalize the concepts of renewable
resources with time-varying capacities and nonrenewable resources. Therefore, the
usage of partially renewable resources in project scheduling problems opens new
application areas, where the modeling of labor regulations in staff scheduling appears
as one of the most promising fields.

Different approximation methods have been considered for the RCPSP/π . Böttcher
et al. (1999) and Schirmer (1999) have both proposed a schedule-generation scheme
where in Schirmer (1999) local search procedures have been investigated in addition.
Furthermore, the works of Alvarez-Valdes et al. (2006, 2008) andAlvarez-Valdes et al.
(2015) are dedicated to a GRASP and a scatter search algorithm for the RCPSP/π .

An alternative approach to extend the classical resource-constrained project
scheduling problem (RCPSP) is given by the consideration of general temporal con-
straints (RCPSP/max) which has been studied thoroughly in the literature but has not
yet been treated with partially renewable resources so far. Therefore, it seems promis-
ing to combine both extensions which we denote by RCPSP/max-π in the following.
For an extensive overview of applications for general temporal constraints, we refer
the reader to Neumann and Schwindt (1995) and Neumann et al. (2003).

For both extensions, branch-and-bound procedures have been developed. In
Böttcher et al. (1999), the only branch-and-bound procedure for the RCPSP/π based
on the work of Talbot and Patterson (1978) can be found. All other procedures in con-
trast are dedicated to the RCPSP/max given in Bartusch et al. (1988), De Reyck and
Herroelen (1998), Schwindt (1998a, c), Fest et al. (1999), Dorndorf et al. (2000b), and
Bianco and Caramia (2012). Since none of these procedures can directly be adapted
to solve the RCPSP/max-π , the need for a new concept tackling the RCPSP/max-π is
evident.

In this paper,we present a branch-and-bound procedure for theRCPSP/max-π com-
plemented by efficient procedures to improve the performance. The following section
describes the RCPSP/max-π formally. Section 3 covers the enumeration scheme of
the branch-and-bound procedure and Sect. 4 presents temporal planning procedures
which are used for the consistency tests concerned with in Sect. 5. Sections 6 and 7 are
dedicated to lower bounds and dominance rules, respectively. In Sect. 9, the branch-

123

A branch-and-bound procedure for the RCPSP/max-π 429

and-bound procedure is discussed, and Sect. 10 provides an experimental performance
analysis. Finally, conclusions are presented in Sect. 11.

2 Problem description

TheRCPSP/max-π is given by a project consisting of n real activities and two fictitious
activities 0 and n + 1 which represent the start and the end of the project, respectively.
Each activity i ∈ V � {0, 1, . . . , n + 1} is assigned a non-interruptible processing
time pi ∈ Z≥0 and a resource demand rdik ∈ Z≥0 for each partially renewable resource
k ∈ R , where all fictitious activities have neither a processing time nor a resource
demand. Between pairs of activities (i, j) ∈ E ⊂ V ×V general temporal constraints
are given. For each activity pair (i, j) ∈ E , a time lag δi j ∈ Z between the start times
of activity i and j has to be hold, i.e., S j ≥ Si + δi j . It should be noted that negative
time lags can be interpreted as maximum time lags. Besides the temporal constraints,
resource capacities Rk of all partially renewable resources k ∈ R have to be taken
into consideration. Each resource is defined on a subset of all periods of the planning
horizon Πk ⊆ {1, 2, . . . , d̄} with d̄ as the prescribed maximum project duration. It
should be noted that in the literature, partially renewable resources are also defined
in other ways by assigning multiple subsets of periods to each of them. In this paper,
we use the so-called normalized formulation for partially renewable resources which
is beneficial for theoretical issues (Böttcher et al. 1999). An activity i ∈ V consumes
rdik units of resource k ∈ R in each period of Πk the activity is in execution. In the
following, we call the number of periods in Πk an activity i ∈ V with start time Si is
in execution, given by ruik(Si) :� |]Si , Si + pi] ∩ Πk |, the resource usage of resource
k ∈ R by activity i. Accordingly, the consumption of a resource k ∈ R by an activity
i ∈ V which starts at time Si can be stated by rcik(Si) :� ruik(Si) · rdik , where the
consumption by all activities of the project rck (S) :�

∑
i∈V rcik(Si) must not exceed

the capacity Rk . To ensure that each activity is not executed just during a part of a
period, the start times are restricted to integral values, i.e., Si ∈ Z≥0 for all i ∈ V .

The objective of the RCPSP/max-π is to assign each activity a start time, so that all
temporal and resource constraints are satisfied and the project duration is minimized
with a presumed start of the project at time 0 and a maximum project duration d̄ . In the
following, a sequence of start times of all activities S � (Si)i∈V with Si ∈ Z≥0 for all
i ∈ V and S0 � 0 is called a schedule, where S is said to be time-feasible, resource-
feasible or feasible if it fulfills all temporal constraints, all resource constraints or all
constraints, respectively. The problem RCPSP/max-π can thus be stated as follows:

Minimize f (S) � Sn+1
subject to S j − Si ≥ δi j ((i, j) ∈ E)∑

i∈V
rcik(Si) ≤ Rk (k ∈ R)

S0 � 0
Si ∈ Z≥0 (i ∈ V).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(P1)

123

430 K. Watermeyer, J. Zimmermann

It should be noted that in order to ensure the compliance with the maximum project
duration d̄ of each time-feasible schedule, a temporal constraint between the start
and the end of the project is established, i.e., (n + 1, 0) ∈ E with δn+1,0 � −d̄ .
Accordingly, the start time of each activity is restricted to set H :� {0, 1, . . . , d̄}
representing all integral times of the planning horizon. In the following, the feasible
region of problem (P1) is denoted by S with OS ⊆ S as the set of all optimal
schedules. In addition, regarding the temporal and resource constraints, the sets of all
time-feasible schedules ST and all resource-feasible schedules SR are considered as
well.

3 Enumeration scheme

In this section, the enumeration scheme of our branch-and-bound procedure is
described, i.e., the way to generate a set Φ ⊆ S containing at least one optimal
solution for problem (P1). This scheme can be illustrated as a directed out-tree, where
each node is assigned a so-called start time restriction W which is defined as fol-
lows:

Definition 1 A vector W � (Wi)i∈V with Wi ⊆ {0, 1, . . . , d̄} for all i ∈ V and
W0 � {0} is called a start time restriction with Wi as the start time restriction of
activity i ∈ V .

In each node of the enumeration tree, the resource relaxation of problem (P1) is con-
sidered with additional constraints, restricting the possible start times of each activity
i ∈ V to the values contained in Wi , i.e., Si ∈ Wi . Thus, the problem corresponding
to an enumeration node can be stated by

Minimize f (S) � Sn+1
subject to S j − Si ≥ δi j ((i, j) ∈ E)

Si ∈ Wi (i ∈ V).

⎫
⎬

⎭
(P2(W))

In the following, the solution space of problem (P2(W)) is termed W -feasible region
denoted by ST(W) :� {S ∈ ST | Si ∈ Wi for all i ∈ V } and each schedule S ∈ ST(W)
is calledW -feasible. In Sect. 4, we show that ST(W) 	� ∅ has a unique minimal point,
where we call a schedule S ∈ ST(W) the unique minimal point of ST(W) if there is
no other schedule S′ ∈ ST(W) with S′

i ≤ Si for all i ∈ V . Furthermore, an algorithm
is covered, able to determine minST(W) exactly if there is at least one W -feasible
schedule, or to prove ST(W) � ∅, otherwise.

The construction of the directed out-tree or rather the enumeration tree is outlined
inAlgorithm 1. At first, for each activity i ∈ V the earliest and latest time-feasible start
timesESi andLSi are determined by a label-correcting algorithm (see, e.g., Ahuja et al.
1993, Sect. 5.4) if there is at least one time-feasible schedule, i.e., ST 	� ∅. Otherwise,
the label-correcting algorithm proves ST � ∅, so that Algorithm 1 terminates.

123

A branch-and-bound procedure for the RCPSP/max-π 431

In the following, we assume that ST 	� ∅. At the beginning of the
construction process, the start time restriction W � (Wi)i∈V with Wi �
{ESi ,ESi + 1, . . . ,LSi } for all activities i ∈ V is assigned to the root node
and added to set Ω , which is used in the process for saving all enumera-
tion nodes not explored yet. Additionally, set Φ which gathers all potentially
optimal schedules generated in the process, is initialized to an empty set. It
should be noted that problem (P2(W)) corresponding to the root node is equal
to the resource relaxation of problem (P1), so that ST(W) � ST ⊇ S
holds.

The main step of Algorithm 1 describes the generation of the enumeration tree.
In each iteration, a start time restriction W is removed from set Ω and the corre-
sponding problem (P2(W)) is solved, i.e., S � minST(W) is determined. In case that
schedule S is feasible, i.e., rck (S) :�

∑
i∈V rcik(Si) ≤ Rk for all k ∈ R, schedule S is

added to set Φ, meaning that the corresponding node represents a leaf of the enumer-
ation tree. Otherwise, there is at least one conflict resource k ∈ R with rck (S) > Rk .
In this case, the solution space ST(W) is decomposed based on a reduction in the
permitted maximum resource usages of all activities i ∈ Vk :� {i ∈ V | rdik > 0}
consuming conflict resource k ∈ R. In the following, we will use ūik as the so-
called resource usage bound of activity i ∈ V for resource k ∈ R, representing an
upper bound for the resource usage, i.e., ruik(Si) ≤ ūik , added during the enumera-
tion process. Additionally, Wik(ūik) :� {τ ∈ {ESi ,ESi + 1, . . . ,LSi } | ruik(τ) ≤ ūik}
is said to be the start time restriction of activity i ∈ V induced by the resource
usage bound ūik , comprising all time-feasible start times of activity i ∈ V with

123

432 K. Watermeyer, J. Zimmermann

a maximum resource usage of ūik . The following explanations for the decom-
position of ST(W) are based on Theorem 1 which implicates that no feasible
schedule S ∈ S is excluded by the enumeration procedure. It should be noted that
therefore the enumeration process is independent on the considered objective func-
tion.

Theorem 1 Given
∑

i∈V uikrdik > Rk with uik ∈ {0, 1, . . . , pi } for resource k ∈ R,
each feasible schedule S ∈ S fulfills Si ∈ Wik(uik −1) for at least one activity i ∈ Vk .

Proof Let S be a feasible schedule with Si /∈ Wik(uik − 1) for all activities i ∈ Vk . It
follows that ruik(Si) ≥ uik for all activities, so that

∑
i∈Vk r

u
ik(Si) · rdik ≥ ∑

i∈Vk uik ·
rdik > Rk is given. Since this contradicts the assumption that S is feasible, the theorem
is proven. �

In what follows, we describe the decomposition of ST(W) in subsets for some
conflict resource k ∈ R so that each activity i ∈ Vk corresponds to one of them.
Let W be the start time restriction of any node in the enumeration tree with schedule
S � minST(W) /∈ SR and conflict resource k ∈ R. Then, the decomposition ofST(W)
works as follows. Regarding Theorem 1, for each activity i ∈ Vk consuming conflict
resource k ∈ R, the maximum resource usage ūik is set to ruik(Si) − 1, meaning that
all start times t ∈ Wi with ruik(t) ≥ ruik(Si) are removed from Wi . This is achieved by
settingW ′

i :� Wi ∩Wik(ruik(Si)−1) andW ′
j :� Wj for all j ∈ V \ {i}with ST(W ′) as

the decomposition part of ST(W) corresponding to activity i ∈ Vk . If ST(W ′) 	� ∅,W ′
is added to Ω and explored in one of the following iterations. After the exploration of
all enumeration nodes, i.e., Ω � ∅, Algorithm 1 terminates with output Φ containing
all generated feasible schedules in the process.

Finally, it should be mentioned that the completeness of Algorithm 1 can easily
be derived from Theorem 1 where the correctness follows directly with Φ ⊆ S. As
a consequence of Lemma 1, we can additionally state that the enumeration scheme
terminates after finitely many iterations.

Lemma 1 Algorithm 1 generates at most |V ||V ||R|pmax
enumeration nodes.

Proof Since the permitted usage of a resource by an activity can be reduced at most
pmax :� maxi∈V pi times, the maximum depth of the enumeration tree is given by
|V ||R|pmax. Taking also into consideration, that in each decomposition step at most
|V | enumeration nodes can be added toΩ , we get a maximum number of |V ||V ||R|pmax

enumeration nodes. �

4 Temporal planning with start time restrictions

In this section, we discuss temporal planning procedureswhich represent the backbone
of the consistency tests described in Sect. 5 and which are used in the enumeration
scheme to determine for each enumeration node theminimal point of its corresponding

123

A branch-and-bound procedure for the RCPSP/max-π 433

feasible region. In the first part,we consider two algorithmswhich are able to determine
the earliest and latest start times of all activities of the project, where a start time
restriction and a lower or upper bound for the start time of some activity are taken into
account. Based on these procedures, the second part is concerned with the calculation
of minimum and maximum time lags between the start times of all activity pairs of
the project.

4.1 Earliest and latest start times

The first procedure can be seen as a label-correcting algorithm which is able to deter-
mine the unique minimal point of S̃T(W , α, tα) :� {S ∈ ST(W) | Sα ≥ tα} if it exists
or which shows otherwise that S̃T(W , α, tα) � ∅. In the following, we denote by
ES(W , α, tα) the minimal point of S̃T(W , α, tα) , where ESi (W , α, tα) represents the
earliestW -feasible start time of activity i if activity α ∈ V is not started earlier than at
time tα . As described in the next section, the limitation of ST(W) by Sα ≥ tα is used to
determine the start-time-dependent indirect minimum time lags between all activity
pairs of the project. It should be noted that Algorithm 2 comprises the calculation of
minST(W) by setting α :� 0 and tα :� 0, i.e., establishing the project start to be
greater than 0.

In what follows, we describe Algorithm 2 for which we use

δ̃i j (W , νi) :�
{
min

{
τ ∈ Wj |τ ≥ νi + δi j

} − νi , if
{
τ ∈ Wj |τ ≥ νi + δi j

} 	� ∅
δi j , otherwise

to represent the minimum time lag between the lowest start time ν j ∈ Wj of activity
j ∈ V which satisfies the minimum time lag to the tentative start time νi of activity
i ∈ V (if it exists). In the first step, Algorithm 2 checks conditions which imply that
ST � ∅. In case that none of these conditions is satisfied, the earliest time t ′α ≥ tα in
Wα is assigned to node α, the initial weights of all other nodes i ∈ V \ {α} are set
to νi :� −∞ and Q, which is implemented as a queue, is initialized by Q :� {α}.
In each iteration of Algorithm 2, the weights of the direct successors Succ(i) of all
nodes i ∈ V are considered which have been added to Q in the previous iteration.
In case that νi + δ̃i j (W , νi) > ν j is detected, the weight ν j is set to νi + δ̃i j (W , νi).
Since the weight of node j is increased, in the next iteration the node weights of all
its direct successors have to be checked which is ensured by adding j to Q. If the
updated weight of node j is greater than maxWj , S̃T(W , α, tα) � ∅ can be stated.
Finally, in case that Algorithm 2 terminates with Q � ∅, schedule min S̃T(W , α, tα)
is determined or rather ES(W , α, tα) is returned. The correctness of the algorithm and
its time complexity is stated in Theorem 2.

123

434 K. Watermeyer, J. Zimmermann

In the following, we call a set I :� {a, a + 1, . . . , b} ⊂ Z a start time component
of start time restriction Wi if and only if the conditions I ⊆ Wi and a − 1, b + 1 /∈ Wi

are satisfied. Otherwise, in case that I ⊆ H \ Wi with a − 1, b + 1 ∈ Wi is given, I is
said to be a start time break of Wi , where the number of start time breaks in Wi and
W is denoted by Bi and B, respectively.

Theorem 2 Algorithm 2 determines the unique minimal point of S̃T(W , α, tα) or
shows that S̃T(W , α, tα) � ∅ with a time complexity of O(|V ||E |(B + 1)).

Proof Let S ∈ S̃T(W , α, tα) be given. From t ′α :� min{τ ∈ Wα | τ ≥ tα} ≤ Sα and
ν′
i + δ̃i j (W , ν′

i) ≤ ν′′
i + δ̃i j (W , ν′′

i) for all ν
′
i ≤ ν′′

i , we can derive νi ≤ Si for all i ∈ V in
any iteration ofAlgorithm 2. Since in addition any further iteration implies the increase
in at least one weight νi , from S̃T(W , α, tα) 	� ∅ the termination of Algorithm 2
follows with Q � ∅ and ν :� (νi)i∈V ≤ S after a finite number of iterations. Finally,
with ν ∈ S̃T(W , α, tα) we can state that ν is equal to the unique minimal point of
S̃T(W , α, tα). If otherwise S̃T(W , α, tα) � ∅, the algorithm terminates either because
of any condition in row 1 or with Q 	� ∅ after a finite number of iterations.

The time complexity of the algorithm can be deduced as follows. First of all, it can
easily be verified that the termination conditions in row 1 and the initialization step can
be donewith a time complexity ofO(|V ||E |+Bα). Furthermore, themaximumnumber
of iterations is given byO(|V |(1 +B)), which can be followed by the implication that
after at most |V | iterations at least one weight νi has to be assigned to a succeeding
start time component of Wi , since otherwise network N contains a cycle of positive

123

A branch-and-bound procedure for the RCPSP/max-π 435

length. Finally, the time complexity of each iteration remains to consider. Obviously,
the maximum number of verified and potentially updated weights in each iteration is
given by |E|. Since each start time restriction Wi of an activity i ∈ V can be stored
in memory as a list of non-decreasing values, representing the start and end times of
all start time components, the update process can be done with a time complexity of
O(|V |+B) over all iterations. �

The second temporal planning procedure can be seen as a reversed version of
Algorithm 2 which determines the unique maximal point of ŜT(W , α, tα) :� {S ∈
ST(W) | Sα ≤ tα} or shows ŜT(W , α, tα) � ∅ otherwise. Based on an initialized
weight with να :� max{τ ∈ Wα | τ ≤ tα} and νi :� ∞ for all other activities, the
algorithm decreases the activity weights iteratively until either aW -feasible schedule
is determined or ŜT(W , α, tα) � ∅ is established. In contrast to the first procedure,
the reversed version checks in each iteration for all direct predecessors i ∈ Pred(j) of
some activity j if the tentative weight νi satisfies the minimum time span to ν j , i.e.,
νi ≤ ν j − δi j .

It is worth mentioning that in Franck et al. (2001a) label-correcting algorithms have
already been introduced for a project scheduling problem with calendars which could
also be used to determine the unique minimal and maximal point of ST(W) with some
adjustments. In contrast to the procedures in Franck et al. (2001a), Algorithm 2 and its
reversed version provide the possibility to set a lower or upper bound for the start time
of any activity of the project without the need to establish further temporal constraints
or rather to extend the project network.

4.2 Minimum andmaximum time lags

In the following, temporal planning procedures are presented which are essential for
some consistency tests as described in Sect. 5. These procedures are able to determine
for each activity i ∈ V allW -feasible start times, where a start time t ∈ Wi is calledW -
feasible if at least one schedule S ∈ ST(W) with Si � t exists. Besides, the procedures
can also determine the indirect minimum and maximum time lags between all activity
pairs (i, j) ∈ V ×V of the project for a subset of all time-feasible start times of activity
i ∈ V which can be used to calculate the indirect minimum and maximum time lag for
each W -feasible start time as described later on. The indirect minimum (maximum)
time lag d̃i j (W , t) (d̂i j (W , t)) for any activity pair (i, j) ∈ V × V is equal to the time
span between the earliest (latest)W -feasible start time of activity j and time t if activity
i is assumed to be started not earlier (later) than at time t. That means t + d̃i j (W , t)
(t − d̂i j (W , t)) corresponds to the earliest (latest) W -feasible start time ES j (W , i, t)
(LS j (W , i, t)) of activity j ∈ V if S̃T(W , i, t) 	� ∅ (ŜT(W , i, t) 	� ∅). It should be
noted that in contrast to the temporal planning without start time restrictions, indirect
minimum and maximum time lags have to be considered separately due to the start
time breaks.

123

436 K. Watermeyer, J. Zimmermann

Algorithm 3 determines for each activity i ∈ V all W -feasible start times and the
indirect minimum time lag d̃i j (W , t) to any other activity j ∈ V \ {i} for each start
time t ∈ W ′

i with W ′
i as a subset of all time-feasible start times of activity i ∈ V .

The indirect minimum time lags d̃i j (W , t) for all start times t ∈ W ′
i are stored in a

list [d̃i j (W , t)] sorted by increasing values of t, where D̃(W) :� ([d̃i j (W , t)])i, j∈V is
called theminimumdistancematrix of start time restrictionW . Algorithm3 is based on
a right-shift over all start times in Wi of an activity i ∈ V , starting with t :� minWi .
As long as S̃T(W , i, t) 	� ∅, the minimal point ES′ :� ES(W , i, t) is determined.
From ES′

i > t , it follows directly that all start times in {t, t + 1, . . . ,ES′
i − 1} are not

W -feasible so that they are removed fromWi in row 8. After that, variable t is set to ES′
i

and the indirect minimum time lag between activity iwith start time t and each activity
j ∈ V \{i} is stored in di j t :� ES′

j−ES′
i . In the next step,which is based onTheorem3,

a start time t ′ is calculated to which the currently start time t of activity i ∈ V could be
right-shifted so that all start times τ ∈ [t, t ′]∩Wi can be shown to beW -feasible. From
Theorem 3, it can easily be derived that for all start times τ ′, τ ′′ ∈ [t, t ′] ∩ Wi with
τ ′ < τ ′′ and τ ′′+di j ≤ ES′

j , wheredi j corresponds to a longest directed path in network

N from activity i to activity j, d̃i j (W , τ ′) � d̃i j (W , τ ′′)+(τ ′′ −τ ′) and that for all other
start times with τ ′ + di j ≥ ES′

j the condition d̃i j (W , τ ′) � d̃i j (W , τ ′′) is satisfied.

123

A branch-and-bound procedure for the RCPSP/max-π 437

This implies that the storage of d̃i j (W ,ES′
j − di j) if ES′

j − di j < t ′ and d̃i j (W , t ′)
is sufficient to be able to determine d̃i j (W , τ) for any start time τ ∈ [t, t ′] ∩ Wi .
The storage of the corresponding values in [d̃i j (W , t)] can be seen in rows 13–20 of
Algorithm 3. Given list [d̃i j (W , t)], the indirect minimum time lag d̃i j (W , τ) of any
W -feasible start time τ in interval [t, t ′] can be calculated by

d̃i j (W , τ) :� d̃i j (W , τ ′) + sgn
(
d̃i j (W , τ ′′) − d̃i j (W , τ ′)

) · (τ − τ ′),

with τ ′ :� max{σ ∈ Ψ | σ ≤ τ }, τ ′′ :� min{σ ∈ Ψ | σ ≥ τ } and Ψ as the set of
all start times stored in [d̃i j (W , t)]. In case that there is still a W -feasible start time
τ ≥ t ′ + 1 in Wi , a further loop pass for activity i ∈ V is conducted. Otherwise, all
remaining start times τ ≥ t ′ +1 inWi are removed and the next activity is considered.
At the end of Algorithm 3, start time restrictionW contains allW -feasible start times
of the initial start time restriction and the minimum distance matrix D̃(W) is returned.

Theorem 3 Let ES′ � min S̃T(W , i, t) be given. Then, for ES′′ � min S̃T(W , i, τ)
and each time τ ∈ Wi , satisfying ES′

i ≤ τ ≤ min{min j∈V \{i}{e(ES′
j) − di j },−di0}

with e(ES′
j) as the end time of the corresponding start time component of ES

′
j , ES

′′
h �

max{ES′
h, τ + dih} holds for all h ∈ V .

Proof Let ν � (νh)h∈V with νh � max{ES′
h, τ + dih} be given. First of all, it can

be derived from S̃T(W , i, t) ⊇ S̃T(W , i, τ) that ES′ ≤ ES′′ (ES′
h ≤ ES′′

h for all
h ∈ V). Furthermore, since dih represents a lower bound for the time span ES′′

j − τ ,
(τ + dih)h∈V ≤ ES′′ follows as well. In conclusion, we get ν ≤ ES′′ so that due to
νi � max{ES′

i , τ + dii } � τ (dii � 0) it is sufficient to show that ν is W -feasible to
prove ν � ES′′.

First, we show that ν is time-feasible. For this, ν0 � 0 can be derived by ES′
0 � 0

and condition τ ≤ −di0, equivalent to τ + di0 ≤ 0, so that at least one ordered pair
(u, v) ∈ V × V with νv < νu + duv exists if ν is not time-feasible. Since ES′ is time-
feasible, ES′

v ≥ ES′
u +duv holds, so that νu � τ +diu > ES′

u can be followed. Finally,
we get νv < τ + diu + duv ≤ τ + div which contradicts νv � max{ES′

v, τ + div}. To
complete the proof, the conditions τ ∈ Wi and τ ≤ min j∈V \{i}{e(ES′

j) − di j } imply
νh ∈ Wh for all h ∈ V , so that ν isW -feasible. �

Themaximum distancematrix D̂(W) :� ([d̂i j (W , t)])i, j∈V which contains the lists
[d̂i j (W , t)] for all activity pairs (i, j) ∈ V × V can be calculated in a similar way as
described before. The corresponding procedure which also determines allW -feasible
start times can be seen as a reversed version of Algorithm 3 which is based on left-
shifts over all start times in Wi , considering the latest schedule LS(W , i, t) in each
iteration.

It should be mentioned that in Kreter (2016, Sect. 5.1) and Kreter et al. (2016)
different temporal planning procedures have been developed for a project scheduling
problemwith calendarswhich could also beused to determine allW -feasible start times
of any start time restriction W and the start-time-dependent indirect minimum time
lags as described for all activity pairs of the project as well. While for these procedures

123

438 K. Watermeyer, J. Zimmermann

referred to the problem of this work, time complexities of O(max(|V |3d̄3, |V |4d̄2)),
O(|V |4d̄2) andO(max(|V |7(B+1)3, |V |8(B+1)2)) have been shown, Algorithm 3 and
its reversed version can both be implementedwith a time complexity ofO(|V |2|E |(B+
1)). Furthermore, it should be noted that the procedures from literature are not able to
determine the start-time-dependent indirect maximum time lags between all activity
pairs of a project.

5 Consistency tests

In the literature, it could already be shown that consistency tests can successively be
applied on project scheduling problems with renewable resources in the framework of
an exact solution procedure (Dorndorf et al. 2000b; Schutt et al. 2013). Furthermore, in
Alvarez-Valdes et al. (2006, 2008) consistency tests have been used in approximation
procedures for the RCPSP/π .

Commonly, consistency tests can be seen as pairs of a condition and a constraint,
where the constraint is established if the condition is satisfied. In the following, we
present five consistency tests whose possibly deduced constraint is unary, i.e., the
established constraint can directly be transformed to a reduction in a start time restric-
tion Wi as the domain of start time Si of activity i ∈ V . Following the terminology in
Dorndorf et al. (2000a), such tests can be referred to as domain-consistency tests and
can be considered as functions γ mapping a start time restriction W to another start
time restriction W ′ � γ (W) with W ′

i ⊆ Wi for all i ∈ V . In the following, we call
the outcome of all consistency tests from a set Γ , iteratively applied until no domain
reduction can be done anymore or W ′

i � ∅ for at least one activity i ∈ V is detected,
a fixed point.

The first two consistency tests are based on the temporal constraints S j ≥ Si +δi j for
all (i, j) ∈ E of problem (P1) and could thus be used for similar project scheduling
problems independent of the considered type of resource. At first, we consider a
well-known consistency test which has already been used for precedence constraints
in Alvarez-Valdes et al. (2006, 2008) and also for general temporal constraints in
Dorndorf et al. (2000b). This test is based on the fact that for any temporal constraint
minWi +δi j represents a lower bound of start time S j and maxWj −δi j gives an upper
bound of start time Si . In this work, the test is called temporal-bound consistency test
which is given by the following conditions to be checked for all (i, j) ∈ E and the
corresponding reduction rules for the start time restrictions:

minWj < minWi + δi j ⇒ Wj :� Wj \ [0,minWi + δi j [
maxWi > maxWj − δi j ⇒ Wi :� Wi \]maxWj − δi j ,∞[.

It should be noted that the fixed point of the temporal-bound consistency test W ′
can be obtained with Algorithm 2 and its reversed version with a time complexity of
O(|V ||E |(B+1)) by settingW ′

i :� Wi ∩ [ESi (W , 0, 0),LSi (W , 0, 0)] for all activities
i ∈ V .

The second consistency test is based on the temporal constraints as well. In contrast
to the first consistency test, all start times t ∈ Wi of an activity i ∈ V are checked

123

A branch-and-bound procedure for the RCPSP/max-π 439

whether anyW -feasible schedule S ∈ ST(W)with t � Si exists rather than considering
only the minimum and maximum start times inWi . The second test is called temporal
consistency test and can be described by the following condition and its corresponding
reduction rule:

�S ∈ ST(W) : Si � t ⇒ Wi :� Wi \ {t}.

This test is conducted for all activities i ∈ V and their corresponding start times
t ∈ Wi . The fixed point of the temporal consistency test only contains theW -feasible
start times for all activities of the project. As described in Sect. 4, the fixed point of the
temporal consistency test can be determined by Algorithm 3 with a time complexity
ofO(|V |2|E |(B + 1)). It is easy to verify that the temporal consistency test dominates
the temporal-bound consistency test, which means that Wb

i ⊇ Wt
i holds for all i ∈ V

with Wb and Wt as the fixed points of the temporal-bound and temporal consistency
test, respectively.

The following consistency tests take the resource constraints into consideration.
The first of these consistency tests is used to remove each start time from the start
time restriction of some activity if this start time implies a resource conflict taking the
minimum possible resource consumptions of all other activities into account. Accord-
ingly, for this test the minimum resource consumption of each resource k ∈ R by
an activity i ∈ Vk is determined if it is assumed that the activity can be started at
any time in Wi . That means rc,min

ik (W) :� min{rcik(τ) | τ ∈ Wi } is calculated for
each i ∈ V and k ∈ Ri :� {k ∈ R | rdik > 0}, where the so-called resource-bound
consistency test for each start time t ∈ Wi of any activity i ∈ V \ {0, n + 1} is stated
by

∃k ∈ Ri : r
c
ik(t) +

∑

j∈Vk\{i}
rc,min
jk (W) > Rk ⇒ Wi :� Wi \ {t}.

It should be noted that one pass over all activities and start times can be conducted
with a time complexity ofO(|V |I + |R|B) with I as the number of components over
all sets Πk , where I :� {a, a + 1, . . . , b} ⊂ Z is called a component of Πk if I ⊆ Πk

and a − 1, b + 1 /∈ Πk is given. This can be achieved by storing the resource usages
ruik(t) for each activity i ∈ V and resource k ∈ Ri for a subset of the start times of
the whole planning horizon H in a list [ruik(t)] sorted by increasing values of t which
is sufficient to calculate the resource usage for any start time just like for the lists
[d̃i j (W , t)] and [d̂i j (W , t)]. The resource usages of the start times τ ∈ H which have
to be stored in [ruik(t)] can be deduced from the following relations:

τ + 1 ∈ Πk ∧ τ + pi + 1 ∈ Πk ⇒ ruik(τ + 1) � ruik(τ)
τ + 1 ∈ Πk ∧ τ + pi + 1 /∈ Πk ⇒ ruik(τ + 1) � ruik(τ) − 1
τ + 1 /∈ Πk ∧ τ + pi + 1 ∈ Πk ⇒ ruik(τ + 1) � ruik(τ) + 1
τ + 1 /∈ Πk ∧ τ + pi + 1 /∈ Πk ⇒ ruik(τ + 1) � ruik(τ).

The given relations imply that it is sufficient to store the resource usages ruik(τ) of a
resource k ∈ R by an activity i ∈ V for all start times τ ∈ Uk or τ + pi ∈ Uk with

123

440 K. Watermeyer, J. Zimmermann

Uk :� {σ | σ ∈ Πk ∧ σ + 1 /∈ Πk} ∪ {σ | σ /∈ Πk ∧ σ + 1 ∈ Πk} ∪ {0, d̄}, so that the
resource usage for any start time τ ∈ H can be calculated by

ruik(τ) :� ruik(τ
′) + sgn

(
ruik(τ

′′) − ruik(τ
′)
) · (τ − τ ′),

with τ ′ :� max{σ ∈ Ψ | σ ≤ τ }, τ ′′ :� min{σ ∈ Ψ | σ ≥ τ } and Ψ as the set
of all start times stored in [ruik(t)]. It follows directly that the maximum number of
start times stored in any list [ruik(t)] is polynomially bounded byO(Ik) with Ik as the
number of components in Πk , so that it can easily be verified that rc,min

ik (W) can be
determinedwith a time complexity ofO(Ik+Bi) , which results in a time complexity of
O(|V |I+|R|B) over all activities i ∈ V and all resources k ∈ R. Since all inconsistent
start times t ∈ Wi with respect to the resource-bound consistency test for any resource
k ∈ R can be removed from Wi with a time complexity of O(Ik + Bi), in conclusion
we get a time complexity of O(|V |I + |R|B) for one pass of the resource-bound
consistency test over all activities and resources.

The next consistency test can be seen as an extension of the resource-bound con-
sistency test, where besides the resource constraints the temporal constraints between
the activities of the project are considered as well. Thereby, this test makes use of
the fact that each activity of the project has to be started in a schedule-dependent
time window if the start time of some activity is fixed, so that the calculation of
the minimum resource consumptions can be restricted to these time windows. For
the so-called D-interval consistency test, the distance matrix D � (di j)i, j∈V or
rather the lengths of the longest directed paths di j in network N between all activ-
ity pairs (i, j) ∈ V × V are used to restrict the possible start times τ ∈ Wj

of each activity j ∈ V \ {i} to start times in [t + di j , t − d ji] with t as the
given start time of activity i ∈ V . The consistency test is conducted for each D-
consistent start time t ∈ Wi of an activity i ∈ V , where a start time t ∈ Wi

is called D-consistent if and only if [t + di j , t − d ji] ∩ Wj 	� ∅ for all j ∈ V .
Considering any D-consistent start time of activity i ∈ V , rcik(t) and the min-
imum resource consumption of each activity j ∈ V \ {i} over all start times
τ ∈ [t + di j , t − d ji] ∩ Wj is determined, i.e., rc,min

i jkt (W , D) :� min{rcjk(τ) | τ ∈
Wj ∩ [t + di j , t − d ji]} is calculated. Conclusively, the D-interval consistency test can
be stated by

∃k ∈ R : rcik(t) +
∑

j∈Vk\{i}
rc,min
i jkt (W , D) > Rk ⇒ Wi :� Wi \ {t}

for each activity i ∈ V and each D-consistent start time t ∈ Wi .
One pass of the D-interval consistency test over all D-consistent start times of all

activities i ∈ V is outlined in Algorithm 4. As it can be seen in rows 4 and 5, the
algorithm is based on the generation of lists which can be used in the same manner as
the lists described before.

123

A branch-and-bound procedure for the RCPSP/max-π 441

First of all, we consider the generation of list [ru,min
i jkt (W , D)], which contains the

minimum resource usages

ru,min
i jkt (W , D) :� min{rujk(τ) | τ ∈ Wj ∩ [t + di j , t − d ji]}

of all start times in a subset of all D-consistent start times of activity i ∈ V . The
generation of the list is based on a right-shift over all start times t ∈ Wi of activity
i ∈ V . Let t ∈ Wi be anyD-consistent start time of activity i ∈ V . Then, the minimum
resource usage of activity j ∈ V \{i} in the restricted start time setWr

j :� [t +di j , t −
d ji] ∩ Wj 	� ∅ is given by rumin :� {rujk(τ) | τ ∈ Wr

j }, where τmin :� max{τ ∈
Wr

j | rujk(τ) � rumin} represents the greatest start time in Wr
j with the lowest resource

usage. The greatest start time t s towhich the current start time t of activity i ∈ V can be
right-shifted so that rumin keeps unchanged, is based on the calculation of τ

′ :� min{τ ∈
Wj | τ > t−d ji ∧ rujk(τ) < rumin} and τ ′′ :� min{τ ∈ Wj | τ > τmin ∧ rujk(τ) > rumin}
representing the next start times of activity j with a lower or greater resource usage
than rumin. That means the minimum resource usage rumin does not decrease for all start
times t of activity i ∈ V with t −d ji < τ ′ and does not increase for all start times with
t + di j ≤ max{τ ∈ Wj | τ < τ ′′}, so that t s :� min{τ ′ − 1 + d ji ,max{τ ∈ Wj | τ <

τ ′′} − di j } can directly be deduced. After the storage of rumin in list [r
u,min
i jkt (W , D)] for

start time t s , the minimum resource usage rumin of the next start time t+ with Wr
j 	� ∅

is stored as well. In case that for some directly succeeding start times t > t+ each
right-shift by one unit leads to an increase or decrease in rumin by exactly one unit,
the greatest of these start times and its corresponding minimum resource usage rumin

is also stored in [ru,min
i jkt (W , D)]. If the described procedure is reiterated until all start

times inWi are considered, [r
u,min
i jkt (W , D)] is determined, which is implemented with

a time complexity of O(I2
k + B2

j).

After the generation of the lists [ru,min
i jkt (W , D)] for all j ∈ Vk \ {i}, a list for the

minimum resource consumption

rc,min
ikt (W , D) :� rcik(t) +

∑

j∈Vk\{i}
rc,min
i jkt (W , D)

can trivially be deduced by calculating the resource consumptions for all start times
stored in the lists [ru,min

i jkt (W , D)] and [ruik(W , t)]. Thus, the maximum number of

123

442 K. Watermeyer, J. Zimmermann

stored start times in [rc,min
ikt (W , D)] is given by O(|V |I2

k + B2), which is equal to the
time complexity of the update procedure for each resource k ∈ R at the end of the
algorithm. In conclusion, Algorithm 4 returns a start time restriction γ D(W) with a
time complexity of O(|V |2I2 + |V ||R|B2).

The last consistency test extends theD-interval consistency test in the sense that for
eachW -feasible start time t ∈ Wi of an activity i ∈ V the set of start times considered
for each activity j ∈ Vk \ {i} is restricted even more by using the minimum and
maximum distance matrices D̃(W) and D̂(W). That means for any W -feasible start
time t ∈ Wi of activity i ∈ V the considered start times τ ∈ Wj of activity j ∈ Vk \{i}
are restricted to [t + d̃i j (W , t), t− d̂i j (W , t)]. Accordingly, the minimum consumption
of resource k ∈ R by activity j ∈ Vk \ {i}, which is dependent on theW -feasible start
time t ∈ Wi of activity i ∈ V , is given by

rc,min
i jkt (W , D̃, D̂) :� min{rcjk(τ) | τ ∈ Wj ∩ [t + d̃i j (W , t), t − d̂i j (W , t)]}.

Thecorresponding condition and reduction rule of the so-calledW -interval consistency
test for all activities i ∈ V and allW -feasible start times t ∈ Wi are given by

∃k ∈ R : rcik(t) +
∑

j∈Vk\{i}
rc,min
i jkt (W , D̃, D̂) > Rk ⇒ Wi :� Wi \ {t}.

One pass over allW -feasible start times of all activities i ∈ V can be conducted in the
same way as for theD-interval consistency test sketched in Algorithm 4. In contrast to
theD-interval consistency test, a list [ru,min

i jkt (W , D̃, D̂)] is determined for each activity
j ∈ Vk \ {i} with

ru,min
i jkt (W , D̃, D̂) :� min{rujk(τ) | τ ∈ Wj ∩ [t + d̃i j (W , t), t − d̂i j (W , t)]}.

The generation of this list works quite similar to Algorithm 4, except that for the right-
shifts over the start times of activity i ∈ V , intervals with constant courses of d̃i j (W , t)
and d̂i j (W , t) have to be taken into consideration as well. Since the maximum number
of start times stored in lists [d̃i j (W , t)] and [d̂i j (W , t)] is given by O(B + 1), the time
complexity for the generation of [ru,min

i jkt (W , D̃, D̂)] equalsO((Ik +B j)(Ik +B j +B)).
Just like for the D-interval consistency test, the list [rc,min

ikt (W , D̃, D̂)] with

rc,min
ikt (W , D̃, D̂) :� rcik(t) +

∑

j∈Vk\{i}
rc,min
i jkt (W , D̃, D̂)

for each resource k ∈ R can trivially be deduced and the update of Wi follows
directly. Conclusively, theW -interval consistency test determines γ W (W) with a time
complexity of O(|V |2I2 + |V |2IB + |V ||R|B2).

123

A branch-and-bound procedure for the RCPSP/max-π 443

6 Lower bounds

In the following, we describe two lower bounds for the project duration which can be
used for any node in the search tree or rather its corresponding start time restriction
W . The first lower bound LB0π is given by the solution of problem (P2(W)), i.e.,
LB0π :� ESn+1(W) with ES(W) :� ES(W , 0, 0). In the literature, such a lower bound
based on a relaxation is usually referred as constructive. Conversely, the second lower
bound LBDπ is termed destructive, meaning that a hypothetical maximum project
duration d is increased as long as it can be shown that d precludes any feasible solution
(Klein and Scholl 1999). Algorithm 5 shows the procedure to determine the destructive
lower bound LBDπ , where the structure of Algorithm 5 is inspired by Franck et al.
(2001b) and the way to find the greatest hypothetical project duration, which cannot
be rejected anymore, is taken from Klein and Scholl (1999).

Algorithm 5 determines for any enumeration node or rather its corresponding start
time restriction W the lowest hypothetical maximum project duration (if it exists) on
a given interval [LBstart,UBstart] which does not contradict the existence of a feasible
schedule, where the verification of the existence of a feasible schedule is described
later on. First of all, the algorithm starts with LBstart :� max(LB0π ,LBG) , where
LBG represents the global lower bound determined in the root node, and UBstart :�
min(d̄, S∗

n+1 − 1) with S∗ as the currently best found solution (if already detected).
In the following, it is assumed that LBstart ≤ UBstart and S̃T(W , n + 1,LBstart) 	� ∅
is given, since otherwise, we can state that LBDπ is greater than UBstart so that the
algorithm does not have to be conducted. The main step of Algorithm 5 executes
a binary search on interval [LBstart,UBstart] in the following way. In each iteration,
an interval [LBd ,UBd] is considered with LBd :� LBstart and UBd :� UBstart for
the first iteration. Based on this interval, d :� �(LBd + UBd)/2� is determined. If
it can be shown that the maximum project duration d precludes the existence of any
feasible solution, it can be followed that LBDπ has to be greater than d. In the case that
d � UBstart, the algorithm terminates since LBDπ is known to be greater than UBstart.

123

444 K. Watermeyer, J. Zimmermann

Otherwise, for the next iteration LBd :� d + 1 is set, so that the interval [d + 1,UBd]
is considered next. Conversely, if d cannot be rejected, the interval [LBd , d − 1] is
investigated in the next iteration, i.e., UBd :� d−1 is set. This procedure is reiterated
while LBd ≤ UBd is given, where LBd equals the destructive lower bound LBDπ at
the end of the algorithm.

Finally, the way the algorithm verifies if any feasible solution exists for a given
maximum project duration d on interval [LBstart,UBstart] remains to consider. Let d
be any hypothetical maximum project duration on interval [LBstart,UBstart]. Then, the
minimum resource consumption for each resource k ∈ R by an activity i ∈ Vk over
all start times t ∈ Wi ∩ [ES′

i ,LS
′
i] is determined with ES′

i as the earliest and LS′
i as

the latest W -feasible start time of activity i ∈ Vk if the project duration is not lower
than LBstart and not greater than d. It should be noted that in contrast to ES′

i , LS
′
i has

to be determined in each iteration since it depends on d. Given rc,min
ik (W , t1, t2) :�

min{rcik(τ) | τ ∈ Wi ∩ [t1, t2]}, the minimum resource consumption over all start

times t ∈ Wi ∩ [ES′
i ,LS

′
i] can be expressed by r

c,min
ik (W ,ES′

i ,LS
′
i) and thus the total

minimum resource consumption of a resource k ∈ R by
∑

i∈Vk r
c,min
ik (W ,ES′

i ,LS
′
i).

If there exists at least one resource k ∈ Rwith a total minimum resource consumption
greater than Rk , the considered maximum project duration d precludes any feasible
solution. Otherwise, the existence of a feasible solution with project duration d cannot
be ruled out by the described procedure.

In the following, the time complexities of both lower bounds are considered. For the
first lower boundLB0π , a time complexity ofO(|V ||E |(B+1)) has already been shown
in Sect. 4, where it should be noted that the determination of LB0π is already a part of
the enumeration process itself, so that it does not cause any additional computational
effort. In contrast, the destructive lower bound LBDπ entails additional computing
time with a possibly better lower bound as an outcome, i.e., LBDπ ≥ LB0π . For
Algorithm 5, we can state a time complexity ofO(log(d̄)(|V ||E |(B+1)+|R|B+|V |I))
based on the following observations. First of all, the maximum number of iterations
is given by log(d̄) due to the binary search. Combined with the time complexity
to determine LS′ given by O(|V ||E |(B + 1)), and the time complexity to get the
total minimum resource consumption of all resources stated by O(|R|B + |V |I), the
mentioned time complexity follows.

7 Dominance rules

In the following, two dominance rules are described where both have in common
that they implicate for two nodes, given by their corresponding start time restrictions
W ′ and W ′′, that S(W ′) ⊆ S(W ′′) with S(W) :� ST(W) ∩ S holds. Obviously,
if both nodes are not reachable from each other in the search tree, this implicates
the redundancy of the enumeration node with start time restriction W ′ or rather the
dominance of the enumeration node with start time restriction W ′′.

For the first dominance rule, a so-called resource usage bound Ū :� (ūik)i∈V ,k∈R
is assigned to each enumeration node in the search tree, used to store all resource usage
bounds ūik established during the enumeration process as described in Sect. 3. Since at

123

A branch-and-bound procedure for the RCPSP/max-π 445

the beginning of the enumeration process no resource usage restriction is considered,
ūik :� pi for all i ∈ V and k ∈ R is set for the root node. In order to represent all
time-feasible start times of an activity for a node in the enumeration tree, satisfying all
resource usage bounds ūik established during the enumeration process, we introduce
further notations. First, we define the so-called Ū -induced start time restriction of
an activity i ∈ V by Wi (Ū) :� ⋂

k∈R Wik(ūik) and call W (Ū) :� (Wi (Ū))i∈V the
corresponding Ū -induced start time restriction. For the following explanations, in
order to improve the readability, we writeW ′ ⊆ W ′′ instead ofW ′

i ⊆ W ′′
i for all i ∈ V

and Ū ′ ≤ Ū ′′ to state ū′
ik ≤ ū′′

ik for all i ∈ V and k ∈ R.
The first rule, called Ū -dominance rule, compares the resource usage bounds of

nodeswhich are not reachable fromeach other in the search tree to reveal redundancies.
Let Ū ′ and Ū ′′ be the resource usage bounds of such nodes and assume that Ū ′ ≤ Ū ′′
is given. Then, the Ū -dominance rule detects that the node corresponding to Ū ′ is
redundant or rather dominated by the other node which can be deduced as follows.
First of all, let W be the start time restriction and Ū the resource usage bound of an
arbitrary node in the search tree. Then it can easily be verified that W ⊆ W (Ū) and
S(W) � S(W (Ū)) is given, since no consistency test excludes feasible schedules from
ST(W) (cf. Sect. 5). Since Ū ′ ≤ Ū ′′ implicates ST(W (Ū ′)) ⊆ ST(W (Ū ′′)) and thus
S(W (Ū ′)) ⊆ S(W (Ū ′′)) as well, S(W ′) ⊆ S(W ′′) follows directly with W ′ and W ′′
as the start time restrictions corresponding to the nodes with Ū ′ and Ū ′′, respectively.

In contrast to the first rule, the second rule is not dependent on storing additional
information for each enumeration node. Instead, it directly compares the start time
restrictionsW ′ andW ′′ of nodes which are not reachable from each other in the search
tree, for what reason the rule is called W -dominance rule. The redundancy of a node
is detected by the rule if the condition W ′ ⊆ W ′′ is satisfied, where the dominance of
the node corresponding to W ′′ is trivially given by ST(W ′) ⊆ ST(W ′′).

Concluding, the time complexity for each dominance rule should be considered,
where the time complexity refers to the dominance verification between two given
nodes. For the Ū -dominance rule, a time complexity of O(|V ||R|) can obviously be
determined and for theW -dominance rule a time complexity ofO(|V |+min(B′,B′′))
can be stated with B′ and B′′ as the numbers of start time breaks corresponding to W ′
and W ′′, respectively.

8 Partitioning the feasible region

The dominance rules described in the previous section are just able under specified
conditions to avoid that one and the same part of ST is explored several times in the
search tree. In contrast, the following procedure ensures that any part of ST is explored
at most one time by partitioning the feasible region of each enumeration node. It
should be noted that a similar approach has already been used in Murty (1968) for the
assignment problem. In order to achieve the partitioning for eachnode, the enumeration
scheme has to be adjusted as follows. LetW be the start time restriction corresponding
to any enumeration node in the search tree with S � min ST(W) /∈ SR and the
chosen conflict resource k ∈ R. Furthermore, assume that (i1, i2, . . . , iμ, . . . , i|Vk (S)|)

123

446 K. Watermeyer, J. Zimmermann

is an arbitrary sequence of all activities considered for the decomposition of ST(W)
as described in Sect. 3 with Vk(S) :� {i ∈ Vk | ruik(Si) > 0}. Then, the start time
restriction Wiμ corresponding to iμ ∈ Vk(S) for each μ ∈ {1, 2, . . . , |Vk(S)|} is set to
W

iμ
i :� Wi for all i ∈ V \ Vk(S) and

W
iμ
is

:�
⎧
⎨

⎩

Wis , if s < μ

{τ ∈ Wis | ruis ,k(τ) < ruis ,k(S)}, if s � μ

{τ ∈ Wis | ruis ,k(τ) ≥ ruis ,k(S)}, otherwise

for all s ∈ {1, 2, . . . , |Vk(S)|}.
In the following, we will show that the described decomposition leads to a partition

of ST(W) satisfying ST(W) ∩ S � ⋃
i∈Vk (S)(ST(Wi) ∩ S) so that the correctness of

the enumeration scheme with the adjusted decomposition still remains. First of all,
a partition of ST(W) is given if ST(W

iμ′) ∩ ST(W
iμ′′) � ∅ holds for all μ′, μ′′ ∈

{1, 2, . . . , |Vk(S)|} with μ′ 	� μ′′ which follows directly from the guideline for the
decomposition. Thus, it remains to show that any feasible schedule in ST(W) is an
element of the feasible region of any child node. For this, it is sufficient to show that

|Vk (S)|⋃

μ�1

ST(W
iμ) �

|Vk (S)|⋃

μ�1

ST(W
iμ) (1)

holds with W
iμ as the start time restriction determined in the enumeration procedure

for activity iμ ∈ Vk(S) as described in Sect. 3. The correctness of Equation (1) can be

deduced fromST(W
i|Vk (S)|) � ST(W

i|Vk (S)|),ST(W
iμ)\ST(Wiμ) � ⋃|Vk (S)|

μ′�μ+1 ST(W
iμ′)

for all μ � {1, 2, . . . , |Vk(S)|−1} and ST(Wi) ⊆ ST(W
i
) for all i ∈ Vk(S).

9 Branch-and-bound procedure

In this section, the framework of our branch-and-bound procedure for theRCPSP/max-
π is covered, which means that the corresponding representation of the procedure
enables different specifications. Besides the enumeration scheme, the branch-and-
bound procedure is given by a search strategy which determines how the search tree
is built, consistency tests which are applied on start time restrictions, lower bounds on
the project duration, and dominance rules used to prune redundant parts of the search
tree.

For the following explanations, we assume the search strategy to be subdivided into
different strategies, called traversing, generation, ordering, and branching strategy.
The traversing strategy determines the sequence in which all not completely explored
nodes in the search tree are considered, where a node is said to be completely explored
exactly if all its child nodes are generated. As traversing strategy, the well-known
depth-first search strategy (DFS) is applied. Since computational tests have shown
that DFS results in a long calculation time to find a first feasible solution, leading to
a rather bad performance especially for great instance sets, an additional traversing

123

A branch-and-bound procedure for the RCPSP/max-π 447

strategy has been implemented to enhance the diversification in the search tree. This
strategy works just like the DFS, except that after a predefined time span one of all
not completely explored nodes with lowest level in the search tree and lowest lower
bound is considered next. We call this traversing strategy scattered-path search (SPS)
and denote by SPS+ the extension which considers priority values of the nodes in
addition, where the priority values are determined in the same way as for the ordering
strategy as it will be described later on.

It should be noted that the traversing strategy neither states themaximum number of
child nodes to be generated for any explored node nor the order inwhich the child nodes
are considered. Instead, these specifications for the search procedure are determined
by the generation and the ordering strategy, respectively. For the generation strategy,
considering any search nodewhich is explored,we distinguish between the alternatives
to generate all its child nodes (all) or to restrict the number of the generated child nodes
by a maximum value (restr). Besides the maximum number for the generation of child
nodes, the order inwhich they are considered during the search procedure has also been
shown to be crucial for the performance by computational studies. As it has already
beenobserved for theRCPSP/max, it is also beneficial for theRCPSP/max-π to explore
all generated child nodes in an order of non-decreasing lower boundswhich can be seen
to increase locally the probability to find a good solution. Since it is likely that the lower
bounds among some child nodes are equal, the ordering strategy enables the usage of
priority values for the child nodes in addition to identifying the most favorable ones. In
the following, the most promising priority values, we are aware of, are presented. For
this, letW be the start time restriction of any search node with S :� min ST(W) /∈ SR
and assume that k ∈ Rc :� {k ∈ R | rck (S) > Rk} is the chosen conflict resource for the
decomposition of ST(W). Furthermore, assume that (i1, i2, . . . , is) is a sequence of all
generated child nodes sorted by non-decreasing lower bounds on the project duration
with iμ ∈ V c

k :� Vk(S) � {i ∈ V | ruik(Si) > 0} for allμ ∈ {1, 2, . . . , s} and s ≤ |V c
k |,

so that iμ′ is explored before iμ′′ if μ′ < μ′′ holds. Then, the sequence between the
activities with equal lower bounds in (i1, i2, . . . , is) is additionally sorted by priority
values dependent on the chosen priority rule, where the corresponding activities can
be sorted by either non-decreasing (min) or non-increasing (max) priority values for
each rule. For the first two rules, a priority value πi is assigned to each activity i ∈ V c

k
based on the resource usage induced by schedule S, with πi � ruik(Si) for the so-called
resource usage rule (RU) andπi � ruik(Si)/pi for the resource-usage-processing-time-
ratio rule (RUPT). The delayed-start-time rule (DST) takes the minimum right-shift
of the currently start time Si for each activity i ∈ V c

k , caused by the resource usage
restriction of the enumeration process, into consideration, i.e., πi � �ik with

�ik :�
{
min{τ ∈ Wi (ūik) | τ ≥ Si } − Si , if {τ ∈ Wi (ūik) | τ ≥ Si } 	� ∅
maxWi − Si + 1, otherwise

and ūik :� ruik(Si)− 1. In contrast to the aforementioned priority rules, the following
rules are not dependent on the conflict resource k ∈ Rc. Instead, those rules are based
on float or slack times which are adapted to be able to take start time restrictions into
consideration. The first priority rule (TF) determines the so-called total float TFi for
each activity i ∈ V c

k , which is defined as the maximum right-shift of start time Si so

123

448 K. Watermeyer, J. Zimmermann

that in ST(W) any W -feasible schedule with a better project duration, than that one
of the best feasible solution found so far, exists. Thus, the priority value πi of each
activity i ∈ V c

k is given by

TFi :� LSUBi (W) − Si ,

with LSUBi (W) :� LSi (W , n + 1,UB − 1) and UB as the project duration of the best
feasible solution in case that any solution has already been found or UB :� d̄ + 1
otherwise. The last priority rule (EFF) is based on the early free float EFFi of an
activity i ∈ V c

k which is equal to the maximum possible right-shift of start time Si
so that all other activities of the project can still be started to their earliestW -feasible
start time. Hence,

EFFi :� max{τ ∈ Wi | τ ≤ min
j∈Succ(i)(S j − δi j)} − Si

represents the priority value πi for each activity i ∈ V c
k . Conclusively, for the priority

rules DST, TF and EFF a further variant has been implemented so that the number
of start times skipped in the corresponding start time restriction by the right-shift is
considered instead. That means πi � |]Si , Si +�i]∩Wi | with �i ∈ {TFi ,EFFi ,�ik}
is determined for each activity i ∈ V c

k for the corresponding rule, where these variants
are denoted by DSTI, TFI and EFFI, respectively. The ordering, based on the priority
values as described, can also be used to determine a sequence for the generation of all
child nodes of an enumeration node. For this generation strategy, a candidate list of
all child nodes is created, sorted by the priority values used for the ordering strategy
to determine the sequence to generate the child nodes (restrCL). It should be noted
that this strategy is just useful if the number of generated child nodes is restricted.

The last part of the search strategy is given by the branching strategy which deter-
mines the way to choose a conflict resource k ∈ Rc for any unexplored node to
decompose the corresponding feasible region ST(W). As the ordering of nodes, the
selection of any conflict resource k ∈ Rc is related to priority values as well. Based on
the priority rules for the ordering strategy, same named priority rules for the branch-
ing strategy are directly derived by assigning πk � ∑

i∈V c
k

πi/|V c
k | to each conflict

resource k ∈ Rc. This means, for example, that the branching strategy TF assigns
πk � ∑

i∈V c
k
TFi/|V c

k | to each conflict resource k ∈ Rc which is equal to the aver-
age total float over all activities in V c

k . Besides the priority rules which are related
to the priority values of the ordering strategies, additional rules are considered for
the branching strategy. These rules assign to the priority value πk of each conflict
resource k ∈ Rc the absolute resource conflict �k :� rck (S) − Rk (ARC), the rel-
ative resource conflict �k/Rk (RRC) and the number of consuming activities |V c

k |
(NCA). Concluding, the conflict resource for the decomposition of ST(W) is given
by

123

A branch-and-bound procedure for the RCPSP/max-π 449

k :� min

{

k′ ∈ Rc | πk′ � ext
l∈Rc

πl

}

,

where ext ∈ {min,max} determines if lower (min) or greater (max) priority values are
preferred.

Thus far, the different possibilities of the branch-and-bound procedure to build
the search tree have been considered. Next, we take a closer look on the procedures
applied on the search nodes to improve the performance. While the applications of
lower bounds and dominance rules covered in Sects. 6 and 7 are straightforward, the
consistency tests described in Sect. 5 require further explanations.

In general, different consistency tests are iteratively applied until any fixed point is
reached. In our case, this fixed point is uniquewhich can be deduced fromTheorem 2.2
in Dorndorf et al. (2000a) due to the monotony of all consistency tests used in this
work, i.e., γ (W) ⊆ γ (W ′) holds if W ⊆ W ′ is given. Algorithm 6 shows a procedure
to apply iteratively a set Γ β of domain-consistency tests on any start time restriction
W until either the unique fixed point is detected (W � W ′) or a maximum number
of iterations α is reached. This procedure is equal to Algorithm 2.1 in Dorndorf et al.
(2000a) except that an iteration limit is considered additionally. The outcome of the
algorithm is denoted by γ α

β (W) which is in general, due to the iteration limit, not equal
to the unique fixed point. For the computational studies as shown in Sect. 10, we have
examined the setsΓ B ,Γ D andΓ W of domain-consistency tests, whereΓ B comprises
the temporal-bound and the resource-bound consistency test, Γ D the temporal-bound
and D-interval consistency test and Γ W the temporal and the W -interval consistency
test. Since we assume that the D-interval andW -interval consistency test can both be
conducted either by considering all resources k ∈ R or only the resources k ∈ Ri

which are demanded by activity i ∈ V , we distinguish the corresponding outcomes of
Algorithm 6 by γ α

β [R] and γ α
β [Ri] for Γ D and Γ W , respectively. Conclusively, we

have additionally examined two alternatives for the maximum number of iterations
with α � 1 and α � ∞, where α � ∞ implies that Algorithm 6 determines the
unique fixed point with respect to Γ β .

123

450 K. Watermeyer, J. Zimmermann

Algorithm 7 outlines the framework of the branch-and-bound procedure, where in
order to improve the readability, it is assumed that a depth-first search is used and
that for each explored node all child nodes are generated. This means that all other
alternatives described above for the traversing and generation strategy are omitted in
Algorithm 7.

In the first step of Algorithm 7, the start time restriction W is initialized where
the Floyd–Warshall algorithm (Ahuja et al. 1993, Sect. 5.6) is used to determine the
distancematrixD or to prove that the project network contains a cycle of positive length
(S � ∅) with a time complexity of O(|V |3). Next, a preprocessing step is applied on
the start time restriction W , where the unique fixed point of set Γ W considering
all resources is calculated, i.e., W :� γ ∞

W [R](W) is determined. In case that the
preprocessing step cannot exclude the existence of a feasible schedule (ST(W) 	� ∅),
the global lower bound LBG is set to minWn+1 , where it should be noted that due to
the preprocessing step minWn+1 � LBDπ (W) holds. After that, the root node given
by a triple (W , S,LB) is put on stackΩ and the upper boundUB :� d̄+1 is initialized.

In each iteration, a triple (W , S,LB) is taken from stack Ω . If the corresponding
node cannot be pruned due to LB ≥ UB, consistency tests as described above are

123

A branch-and-bound procedure for the RCPSP/max-π 451

applied on the start time restrictionW . It should be noted that for the temporal-bound
and the temporal consistency test a maximum project duration of UB− 1 is assumed,
whereby it is taken into account that an optimal schedule has a project duration not
greater thanUB. Since the resource-bound,D-interval andW -interval consistency tests
are dependent on the given maximum project duration, this can increase the number
of inconsistent start times, respectively. If after the application of the consistency
tests there exists no W -feasible schedule with a lower project duration than UB, i.e.,
SUB
T (W) :� ŜT(W , n + 1,UB − 1) � ∅, then the corresponding node can be pruned.

Otherwise, in case that the consistency tests have removed any start time from W ,
schedule S is updated. If S is resource-feasible, a new best schedule has been found,
schedule S is stored by S∗ :� S, and the upper bound UB for the project duration is
set to S∗

n+1. In case that schedule S is not resource-feasible, the feasible region ST(W)
is decomposed as described in Sect. 3 based on the selected conflict resource k ∈ Rc

corresponding to the priority rule of the branching strategy. As explained in Sect. 8,
the decomposition could also be replaced by a partitioning of the feasible region.
For each generated child node, which does not exclude the existence of a W -feasible
schedule with a project duration lower than UB, S′ :� min ST(W ′) is determined. If
S′ is resource-feasible, S′ is stored as the best solution and UB is updated as described
above. Otherwise, dominance rules are applied on W ′ and the lower bound LB′ is
calculated if W ′ is not dominated by another node in Ω which is no ancestor of the
search node. Lower bound LB′ is either given by LB0π or LBDπ (W , S′

n+1,UB− 1) .
where in case of LB′ < UB the child node is stored in list Λ. After the generation of
all child nodes, the nodes in list Λ are put on stack Ω corresponding to the ordering
strategy, so that the child node with the best priority value is considered in the next
iteration. The described procedure is iteratively conducted until the stack Ω does not
contain any triple. Regarding the correctness of the enumeration scheme, Algorithm 7
returns an optimal schedule if and only if any feasible solution has been found which
is given by UB ≤ d̄ . Accordingly, the infeasibility of the considered instance is proven
by UB � d̄ + 1 at the end of the algorithm.

10 Performance analysis

In order to evaluate the performance of our branch-and-bound procedure, we have
conducted computational experiments on test instances comparing the branch-and-
bound procedure with the mixed-integer linear programming (MILP) solver IBM
CPLEX 12.8.0. Based on the binary linear program in Böttcher et al. (1999) for the
RCPSP/π , we have developed different mathematical programs for the RCPSP/max-
π which differ according to the considered type of decision variable. The different
types of decision variables we have used are well known as pulse and step variables
(see, e.g., Artigues 2017). Preliminary tests have shown that the program based on
step variables provides the best results. Accordingly, in the following we compare
our branch-and-bound procedure with the IBMCPLEX solver based on a formulation
with step variables which can be stated as follows:

123

452 K. Watermeyer, J. Zimmermann

The mathematical program for the RCPSP/max-π is a time-indexed formulation
with binary decision variables zit for each activity i ∈ V and all its time-feasible
start times t ∈ Ti :� {ESi , . . . ,LSi } , where zit takes value 1 if and only if activity
i ∈ V starts at time t or earlier. To improve the readability, we use ζi t :� zit − zi,t−1
and H+ :� H ∪ {0,−1, . . . ,−d̄} in the formulation. Accordingly, the constraints of
the program state that all temporal (2) and resource constraints (3) are satisfied with
Qik :� {τ ∈ T +

i | τ +1 ∈ Πk} and T +
i :� {ESi , . . . ,LSi + pi −1}, while the remaining

conditions ensure that each activity is started exactly once.
Since instances for the RCPSP/max-π are not available in the open literature, we

have used self-generated instances for the performance analysis. The new instance
sets are based on the well-known benchmark test sets UBO for the RCPSP/max which
were generated by the instance generator ProGen/max (Schwindt 1996, 1998b) and are
available via the project scheduling library PSPLIB (Kolisch and Sprecher 1997). In a
first step, for each of theUBO test sets with n � 10, 20, 50, 100, 200 real activities, we
have chosen three instances which were generated by ProGen/max with values 0.25,
0.5 and 0.75 for the so-called order strength. The order strength OS is an estimator
for the restrictiveness of a digraph which can be seen as a [0,1]-normalized control
parameter for the number of possible execution sequences of the activities of the
project with OS � 0 implicating a parallel and OS � 1 a series digraph. Since the
restrictiveness cannot efficiently be calculated, the order strength OS is used instead,
where it has been shown to provide the lowest mean relative error to the restrictiveness
among 40 evaluated estimators in Thesen (1977). Since the actual order strength
OS′ after the generation of an instance is in general not equal to the target value
OS, we have chosen for each UBO test set (n � 10, 20, 50, 100, 200) the instance
with the lowest number for which OS′ deviates less than 10% from the target value
OS � 0.25, 0.5, 0.75. Concluding, the project networks of the new instance sets for
the RCPSP/max-π are taken from the UBO test sets with n � 10, 20, 50, 100, 200
real activities which cover the processing times of the activities and all temporal
constraints.

Accordingly, it remains to consider the generation of the problem parameters con-
cerning the partially renewable resources. For the generation of the corresponding
parameters, we have used the procedure described in Schirmer (1999, Sect. 10) for the
instance generator ProGen/Π which is an extension of the instance generator ProGen
for the RCPSP (Kolisch et al. 1995). In Schirmer (1999), three [0,1]-normalized con-
trol parameters called horizon factor (HF), cardinality factor (CF) and interval factor
(IF) are used to determine Πk for each resource k ∈ R, where in line with Schirmer

123

A branch-and-bound procedure for the RCPSP/max-π 453

(1999), each instance contains 30 partially renewable resources. The horizon factor
determines an upper bound d̄R for the last period in Πk for each resource k ∈ Rwith
d̄R :� ESn+1 (1−HF) + d̄ ·HF, where we assume that for each instance a maximum
project duration d̄ :� ∑

i∈V max(pi ,max(i, j)∈E δi j) is given. Depending on d̄R, the
cardinality factor assigns a cardinality of |Π |:� 2 (1 − CF) + (d̄R − 1) CF to Πk of
each resource k ∈ R, where an upper bound for the number of components in Πk is
directly given by Ī :� min(|Π |, d̄R−|Π |+1) (Schirmer 1999, Lemma 10.2). Finally,
the interval factor determines the number of components for each resource k ∈ R by
Ik :� (1− IF)+ Ī · IF, so that after the assignment of |Π | periods to Ik components in
Πk and the determination of the number of periods between them, the period sets Πk

of all resources k ∈ R are defined. For further details, we refer the reader to Schirmer
(1999, Sect. 10). In order to control the average ratio of all resources used per real
activity i ∈ Vr :� V \ {0, n + 1}, the resource factor (RF) is used which is defined by

RF :� 1

|V r ||R|
∑

i∈Vr

∑

k∈R
aik aik :�

{
1, if rdik > 0
0, otherwise

,

where in a first step, as described in Kolisch et al. (1995), each real activity
i ∈ Vr is randomly assigned a number |Ri |∈ {a, . . . , a} of demanded resources
(|Ri |� ∑

k∈R aik), which is followed by a random selection of the corresponding
resource demands rdik from set {r , . . . , r}. For the generation of all instance sets
for the RCPSP/max-π , we have used the parameters a � 5, a � 25, r � 1 and
r � 10. Finally, the resource strength (RS) regulates the degree of scarcity of the
resources by specifying the amounts of resource capacities. As all control parame-
ters described before, the resource strength is restricted to values in [0,1] as well.
Dependent on the resource strength, for each resource k ∈ R the capacity is set to
Rk :� Rmin

k (1 − RS) + Rmax
k · RS with Rext

k :� ∑
i∈Vk ext{rcik(τ) |ESi ≤ τ ≤ LSi }

and ext ∈ {min,max} so that RS � 0 implicates the greatest scarcity and RS � 1 the
lowest.

For each instance taken from a UBO test set with n � 10, 20, 50, 100, 200 real
activities as described above with actual order strengths OS′ with lower deviations
than 10% from values OS ∈ {0.25, 0.5, 0.75}, instances for the RCPSP/max-π have
been generated based on a full factorial design with control parameters HF, CF, IF,
RF, RS ∈ {0.25, 0.5, 0.75} and a fixed number of 30 resources. Accordingly, we have
generated for each number n � 10, 20, 50, 100, 200 of real activities an instance
set containing 729 instances which are denoted by UBO10π , UBO20π , UBO50π ,

123

454 K. Watermeyer, J. Zimmermann

Table 1 Results of the performance analysis (300 s)

UBO10π UBO20π UBO50π UBO100π UBO200π

BnB CPX BnB CPX BnB CPX BnB CPX BnB CPX

#nTriv 693 621 527 484 466

#opt 534 534 500 499 145 134 79 40 79 0

#feas 534 534 578 574 486 457 465 458 466 458

#inf 159 159 40 40 3 21 0 0 0 0

#open 0 0 3 7 38 49 19 26 0 8

∅
CPU
opt 0.040 s 0.619 s 8.076 s 27.170 s 8.022 s 55.303 s 20.681 s 68.018 s 28.271 s –

∅
CPU
inf 0.004 s 0.278 s 8.006 s 1.997 s 0.279 s 55.508 s – – – –

UBO100π and UBO200π in the following. To provide a benchmark test set for the
RCPSP/max-π , we made these test sets available online.1

The computational experiments have been conducted on a PC with an Intel Core
i7-8700 3.2 GHz CPU and 64 GB RAM under Windows 10 with a time limit of 300 s.
The branch-and-bound algorithm and the binary linear program for the RCPSP/max-
π were both coded in C++ and compiled with the 64-bit Visual Studio 2017 C++
compiler where we used the IBM OPL C++ interface for the linear program. To
solve the program, we have applied the MILP solver IBM CPLEX 12.8.0 restricted
to a single thread in order to ensure a fair comparison with the branch-and-bound
algorithm which is conducted on a single thread as well.

Table 1 shows the results of the computational performance analysis with a time
limit of 300 s based on the settings given in Table 3 which are discussed later on. For
each instance set, the results of the branch-and-bound algorithm (BnB) and the MILP
solver IBM CPLEX 12.8.0 (CPX) are compared. In the first row, the number of non-
trivial instances (#nTriv) of the corresponding instance set is given where in line with
Alvarez-Valdes et al. (2008) an instance is callednon-trivial if andonly if scheduleES is
not resource-feasible. Since for each trivial instance an optimal solution can efficiently
be determined, all results in Table 1 are restricted to non-trivial instances only. The
following rows show the number of instances which were solved to optimality (#opt),
for which a feasible solution was found (#feas), the infeasibility could be proved (#inf)
or the instance status (feasible or infeasible) remained open (#open). Conclusively, the
last two rows list the average used CPU time in seconds over all instances which were
solved to optimality (∅CPU

opt) and which were proved to be infeasible (∅CPU
inf).

The results in Table 1 indicate that BnB outperforms CPX in finding for more
instances feasible solutions and in proving more solutions to be optimal over all
instance sets with more than ten activities, where the differences even increase with
the instance size. As a consequence, BnB is able to determine the status for more
instances as well. Additionally, it can be seen that BnB has also an advantage over
CPX regarding the average used CPU time over all instances which were solved to
optimality (∅CPU

opt). In contrast, CPXdominatesBnB in the sense of proving eithermore

1 http://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/forschung/benchmark-instances/.

123

http://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/forschung/benchmark-instances/

A branch-and-bound procedure for the RCPSP/max-π 455

Table 2 Comparison of the feasible solutions between BnB and CPX (300 s)

Instance set #∪
feas #∩

feas #<
feas #>

feas #∩,nv
feas #< #� #>

∅
�,abs
CPX ∅

�,rel
CPX

UBO20π 579 573 5 1 95 25 42 28 − 0.92 − 0.29%

UBO50π 488 455 31 2 332 310 7 15 − 86.60 − 17.09%

UBO100π 466 457 8 1 417 417 0 0 − 412.71 − 35.09%

UBO200π 466 458 8 0 458 458 0 0 − 1056.86 − 42.98%

instances to be infeasible or using less average CPU time for the proof considering
instance sets UBO20π and UBO50π .

The results of the performance analysis in Table 1 are supplemented by Table 2
which provides a closer look at the feasible solutions of BnB and CPX. The first
four columns of Table 2 investigate to what extent the solution procedures are able
to find feasible solutions for different instances. For this, the columns list the number
of feasibly solved instances by at least one solution procedure (#∪

feas) and by both
procedures (#∩

feas), followed by the number of instances for which only BnB (#<
feas)

or CPX (#>
feas) could find a solution. From the first part of Table 2, it can be seen

that the proportion of feasible instances which could only be shown to be feasible by
BnB is much greater than the proportion of CPX over all instance sets. The second
part of Table 2 addresses the quality of the solutions for all instances which could be
solved feasibly, but not verified as optimal by both solution procedures (#∩,nv

feas). These
instances are segmented in the following columns into instances for which BnB could
find a better solution thanCPX (#<), both procedures provided a solutionwith an equal
project duration (#�) orCPXwas able to detect a better solution thanBnB (#>). Finally,
the last two columns list the average deviations between the objective function values of
BnB and CPX. Given the corresponding objective function values by SBnBn+1 and SCPXn+1 ,
the first column shows the average absolute deviation �abs

CPX :� SBnBn+1 − SCPXn+1 over all

considered instances (∅�,abs
CPX) and the second column the average relative deviation

�rel
CPX :� �abs

CPX/SCPXn+1 to the objective function value of CPX (∅�,rel
CPX). Table 2 shows

that on average the quality of the solutions of BnB is better than the solutions of CPX
over all instance sets regarding both the absolute and relative deviation. It can also be
observed that the average deviations strongly increase with the instance size and that
BnB determines for much more instances a feasible solution with a better objective
function value than CPX.

The settings of BnB we have used for the computational experiments, dependent
on the instance size, are given in Table 3. The listed strategies and components applied
on an instance set can be seen as the setting with the best balance between the number
of instances which are solved to optimality and whose status remains open among all
settings we have tested. The terms used in Table 3 are in line with the descriptions in
Sect. 9, except for some additional specifications we discuss in the following. In the
first row, the values in brackets represent the predefined time span for the scattered-path
search until any of all not completely explored nodeswith lowest level in the search tree
is considered next. Furthermore, the values in brackets state the maximum number of
child nodes allowed to be generated in each exploration step for the generation strategy

123

456 K. Watermeyer, J. Zimmermann

Table 3 Settings of the branch-and-bound algorithm for the performance analysis

UBO10π UBO20π UBO50π UBO100π UBO200π

Traversing strategy DFS SPS+ [2 s] SPS+ [5 s] SPS+ [15 s] SPS+ [15 s]

Branching strategy NCA (min) NCA (min) DST (max) DSTI (max) DSTI (max)

Generation strategy all all all restrCL [10] restrCL [10]

Ordering strategy LB (min) LB (min) LB-DST (min) LB-DSTI (min) LB-DSTI (min)

Consistency tests γ ∞
B , γ 1

W [Ri , 10] γ ∞
B , γ 1

W [Ri , 10] γ ∞
B , γ 1

D[Ri] γ ∞
B , γ 1

D[Ri , 5] γ ∞
B

Lower bound LBDπ LBDπ LBDπ LB0π LB0π

Partitioning x x – – –

and the greatest search tree level on which the corresponding set of consistency tests
is applied (Consistency tests). For the branching and ordering strategy, the symbol
ext ∈ {min,max} which determines the ordering of the priority values is given in
parentheses. Finally, in the last row, “x” indicates that the enumeration scheme is
conducted based on the concepts described in Sect. 8, whereas “–” stands for the
application of the enumeration described in Sect. 3.

From Table 3, it can be seen that for small instances (UBO10π and UBO20π) the
partitioning of the feasible region of each search node is beneficial for the performance,
whereas computational experiments on greater instances have shown that this proce-
dure leads to a rather bad performance regarding the number of instances for which
the status can be determined. The reason for this could be caused by the fact that due to
the partitioning, each part of the feasible region S can just be reached by at most one
path in the enumeration tree which most likely results in a decrease in the probability
to find a feasible solution at all. Furthermore, Table 3 shows that it is important for the
performance to decrease the intensity of consistency tests, to restrict the number of
generated child nodes in each exploration step and to invest less computational effort
on the calculation of lower bounds with the increase in the instance size. It should
also be noted that the scattered-path search is already preferable to choose for instance
sets with more than ten activities and that the most promising priority values and their
orderings are dependent on the instance size as well.

Computational tests have shown that the application of dominance rules can
improve the performance of the branch-and-bound procedure for small instances as
well if the enumeration procedure is conducted without partitioning. To show this,
Table 4 compares the different techniques covered in this paper to avoid redundancies
in the search tree for instance set UBO10π with a time limit of 300 s. In the first row,
the results of BnB corresponding to the settings given in Table 3 without partitioning
are given, where the last columns show the average number of completely explored
nodes per instance (∅expl

nodes) and the total used CPU time over all instances (tcpu). The
following rows list the results if either only the Ū -dominance rule, theW -dominance
rule or both dominance rules (Ū/W) are applied in addition. From Table 4, it can be
seen that both dominance rules are able to reduce the average number of explored
nodes per instance and the total used CPU time accompanied by an increase in opti-
mally solved and infeasible proved instances where the W -dominance rule shows a

123

A branch-and-bound procedure for the RCPSP/max-π 457

Table 4 Comparison of
techniques to avoid redundancies
for instance set UBO10π (300 s)

#opt #feas #inf #open ∅
expl
nodes tcpu

w/o Partitioning 507 534 157 2 219,439 9745 s

Ū -dominance 521 534 158 1 100,451 5242 s

W -dominance 531 534 159 0 27,879 1824 s

Ū/W -dominance 531 534 159 0 24,060 1701 s

Partitioning 534 534 159 0 81 23 s

Table 5 Impact of components on the performance for instance set UBO10π (300 s)

#opt #feas #inf #open ∅
CPU
opt ∅

CPU
inf tcpu

BnB (basic version) 345 526 107 60 9.310 s 7.526 s 76,317 s

+Preprocessing 415 530 157 6 5.485 s 0.141 s 38,598 s

+LBDπ 438 532 157 4 6.387 s 0.022 s 32,201 s

+Consistency tests 507 534 157 2 2.061 s 0.004 s 9745 s

+Ū -dominance 521 534 158 1 1.949 s 0.167 s 5242 s

+W -dominance 531 534 159 0 1.483 s 0.084 s 1701 s

+Partitioning 534 534 159 0 0.040 s 0.004 s 23 s

better performance. Furthermore, it can be observed that the application of both dom-
inance rules shows a slightly better performance where three instances still remain
without an optimality proof. The last row presents the results if the feasible region
of each node in the search tree is partitioned as described in Sect. 8. These results
demonstrate the dominance of the partitioning technique over the dominance rules
with a tremendous decrease in the average number of explored nodes per instance and
the total used CPU time. Similar results could be observed for instance set UBO20π ,
whereas for greater instances neither the partitioning technique nor the dominance
rules were able to improve the performance.

Next, the impact of the different components of the branch-and-bound procedure
on the performance should be illustrated. For this, Table 5 shows the results of the
branch-and-bound procedure based on the search strategy and different combinations
of the components given in Table 3 for instance set UBO10π with a time limit of
300 s. The first row provides the results of the basic version of the branch-and-bound
procedure, whichmeans that the enumeration is donewithout partitioning and only the
lower bound LB0π is used. The following rows show the results in case that the given
component is applied in addition where it can be observed that each added component
improves the performance. Conclusively, it should be mentioned that similar results
are obtained for greater instances as well.

Finally, we compare our branch-and-bound algorithm with the only available exact
solution procedure for partially renewable resources which is given in Böttcher et al.
(1999) for the RCPSP/π (BOT). For this, Table 6 shows the results of a performance
analysis conducted on test sets with 10, 20, 30 and 40 real activities (j10, j20, j30,
j40) and 30 partially renewable resources, respectively, which have been generated by

123

458 K. Watermeyer, J. Zimmermann

Table 6 Comparison with the BnB algorithm in Böttcher et al. (1999)

j10 j20 j30 j40

BnB BOT BnB BOT BnB BOT BnB BOT

#nTriv 808 565 453 386

#opt 807 758 551 339 414 250 333 169

#feas 807 797 565 542 453 431 385 352

#inf 1 0 0 0 0 0 0 0

#open 0 11 0 23 0 22 1 34

∅
CPU
opt 10 ms n.a. 87 ms n.a. 206 ms n.a. 329 ms n.a.

∅
CPU
inf 1 ms – – – – – – –

ProGen/Π . The results for BOT in Table 6 are taken from Schirmer (1999, Sect. 10.4),
where BOT was implemented in C and tested on an IBM RS/6000 workstation with
66 MHz under AIX. For the comparison, we scaled the time limit by a factor of 50
corresponding to the clock pulse ratio of the different workstations (3, 200/66 ≈ 48.5)
so that we used time limits of 6 (6, 12, 24) s for BnBwhile 300 (300, 600, 1200) s were
chosen for BOT for instance set j10 (j20, j30, j40). It should be noted that nine instances
of test set j10 which were proved to be infeasible by BOT could not be provided to
us, so that they are not part of the comparison. Conclusively, Table 6 shows the great
dominance of BnB which has been applied with the settings for instance set UBO20π

from Table 3.

11 Conclusions

We have considered the resource-constrained project scheduling problem with par-
tially renewable resources and general temporal constraints with the objective to
minimize the project duration, which to the best of our knowledge has not been
considered in the open literature so far. For this problem, we have presented a branch-
and-bound procedure whose enumeration scheme is based on a stepwise reduction
in permitted resource usages by the activities of the project. To enhance the perfor-
mance of the solution procedure, we have developed consistency tests, lower bounds
and dominance rules whose efficiency could be confirmed by computational experi-
ments. Furthermore, it could be shown that the avoidance of redundancies in the search
tree, obtained by an adaptation of the enumeration scheme, significantly improves the
performance for small instances. A comparison with the mixed-integer linear pro-
gramming solver IBM CPLEX 12.8.0 on adaptations of benchmark test sets from
literature could reveal the great dominance of the branch-and-bound procedure if fea-
sible instances are considered. In contrast, it turned out that the solver IBM CPLEX
12.8.0 is better suited to prove instances to be infeasible. Finally, the good performance
of the branch-and-bound procedure could also be confirmed by a comparison with the
only exact solution procedure for the RCPSP/π .

123

A branch-and-bound procedure for the RCPSP/max-π 459

As the results of the computational study indicate, there is a great need for efficient
heuristics for the RCPSP/max-π . In this context, it could be an interesting field for
future research to develop heuristics which are based on the temporal planning proce-
dures and consistency tests presented in this work. Furthermore, the investigation of
alternative lower bounds and consistency tests seems to be a topic of great interest as
well.

Acknowledgement Open Access funding provided by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice-
Hall, Englewood Cliffs

Alvarez-Valdes R, Crespo E, Tamarit JM, Villa F (2006) A scatter search algorithm for project scheduling
under partially renewable resources. J Heuristics 12(1):95–113

Alvarez-Valdes R, Crespo E, Tamarit JM, Villa F (2008) GRASP and path relinking for project scheduling
under partially renewable resources. Eur J Oper Res 189(3):1153–1170

Alvarez-Valdes R, Tamarit JM, Villa F (2015) Partially renewable resources. In: Schwindt C, Zimmermann
J (eds) Handbook on project management and scheduling, vol 1. Springer, Cham, pp 203–227

ArtiguesC (2017)On the strength of time-indexed formulations for the resource-constrainedproject schedul-
ing problem. Oper Res Lett 45(2):154–159

Bartsch T, Drexl A, Kröger S (2006) Scheduling the professional soccer leagues of Austria and Germany.
Comput Oper Res 33(7):1907–1937

Bartusch M, Möhring RH, Radermacher FJ (1988) Scheduling project networks with resource constraints
and time windows. Ann Oper Res 16(1):201–240

Bianco L, Caramia M (2012) An exact algorithm to minimize the makespan in project scheduling with
scarce resources and generalized precedence relations. Eur J Oper Res 219(1):73–85

Böttcher J, Drexl A, Kolisch R, Salewski F (1999) Project scheduling under partially renewable resource
constraints. Manag Sci 45(4):543–559

Briskorn D, Fliedner M (2012) Packing chained items in aligned bins with applications to container trans-
shipment and project scheduling. Math Methods Oper Res 75(3):305–326

De Reyck B, Herroelen W (1998) A branch-and-bound procedure for the resource-constrained project
scheduling problem with generalized precedence relations. Eur J Oper Res 111(1):152–174

Dorndorf U, Pesch E, Phan-Huy T (2000a) Constraint propagation techniques for the disjunctive scheduling
problem. Artif Intell 122(1):189–240

Dorndorf U, Pesch E, Phan-Huy T (2000b) A time-oriented branch-and-bound algorithm for resource-
constrained project schedulingwith generalised precedence constraints.Manag Sci 46(10):1365–1384

Drexl A, Salewski F (1997) Distribution requirements and compactness constraints in school timetabling.
Eur J Oper Res 102(1):193–214

Drexl A, Juretzka J, Salewski F (1993) Academic course scheduling under workload and changeover
constraints. Working paper 337, University of Kiel

Fest A, Möhring RH, Stork F, Uetz M (1999) Resource-constrained project scheduling with time windows:
a branching scheme based on dynamic release dates. Technical report 596, revised version, Technical
University of Berlin

FranckB,NeumannK, SchwindtC (2001a) Project schedulingwith calendars.ORSpektrum23(3):325–334

123

http://creativecommons.org/licenses/by/4.0/

460 K. Watermeyer, J. Zimmermann

Franck B, Neumann K, Schwindt C (2001b) Truncated branch-and-bound, schedule-construction,
and schedule-improvement procedures for resource-constrained project scheduling. OR Spektrum
23(3):297–324

Klein R, Scholl A (1999) Computing lower bounds by destructive improvement: an application to resource-
constrained project scheduling. Eur J Oper Res 112(2):322–346

Knust S (2010) Scheduling non-professional table-tennis leagues. Eur J Oper Res 200(2):358–367
Kolisch R, Sprecher A (1997) PSPLIB: a project scheduling problem library. Eur J Oper Res 96(1):205–216
Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of resource-

constrained project scheduling problems. Manag Sci 41(10):1693–1703
Kreter S (2016) Projektplanung mit Kalendern (project scheduling with calendars): Struktureigenschaften

und Lösungsmethoden (structural characteristics and solution procedures). Shaker, Aachen
Kreter S,Rieck J,Zimmermann J (2016)Models and solutionprocedures for the resource-constrainedproject

scheduling problem with general temporal constraints and calendars. Eur J Oper Res 251(2):387–403
Murty KG (1968) An algorithm for ranking all the assignments in order of increasing cost. Oper Res

16(3):682–687
Neumann K, Schwindt C (1995) Projects with minimal and maximal time lags: construction of activity-on-

node networks and applications. Report WIOR-447, University of Karlsruhe
NeumannK,SchwindtC,Zimmermann J (2003)Project schedulingwith timewindows and scarce resources,

2nd edn. Springer, Berlin
Okubo H, Miyamoto T, Yoshida S, Mori K, Kitamura S, Izui Y (2015) Project scheduling under partially

renewable resources and resource consumption during setup operations. Comput Ind Eng 83:91–99
Schirmer A (1999) Project scheduling with scarce resources: models, methods, and applications. Kovač,

Hamburg
Schutt A, Feydy T, Stuckey PJ, WallaceMG (2013) Solving RCPSP/max by lazy clause generation. J Sched

16(3):273–289
Schwindt C (1996) Generation of resource-constrained project scheduling problems with minimal and

maximal time lags. Report WIOR-489, University of Karlsruhe
Schwindt C (1998a) A branch-and-bound algorithm for the resource-constrained project duration problem

subject to temporal constraints. Report WIOR-544, University of Karlsruhe
Schwindt C (1998b) Generation of resource-constrained project scheduling problems subject to temporal

constraints. Report WIOR-543, University of Karlsruhe
Schwindt C (1998c) Verfahren zur Lösung des ressourcenbeschränkten Projektdauerminimierungsprob-

lems mit planungsabhängigen Zeitfenstern (solution procedures for the resource-constrained project
duration problem with schedule-dependent time windows). Shaker, Aachen

Talbot FB, Patterson JH (1978) An efficient integer programming algorithm with network cuts for solving
resource-constrained scheduling problems. Manag Sci 24(11):1163–1174

Thesen A (1977) Measures of the restrictiveness of project networks. Networks 7(3):193–208

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A branch-and-bound procedure for the resource-constrained project scheduling problem with partially renewable resources and general temporal constraints
	Abstract
	1 Introduction
	2 Problem description
	3 Enumeration scheme
	4 Temporal planning with start time restrictions
	4.1 Earliest and latest start times
	4.2 Minimum and maximum time lags

	5 Consistency tests
	6 Lower bounds
	7 Dominance rules
	8 Partitioning the feasible region
	9 Branch-and-bound procedure
	10 Performance analysis
	11 Conclusions
	Acknowledgement
	References

