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Abstract Many retailers discriminate among their customers based on their value
to the firm. Instead of losing a customer due to this discrimination or lack of inven-
tory, a retailer might prefer to place a transshipment request with other retailers to
satisfy the customer’s demand. The system as a whole can benefit from this type of
transshipments. In this paper, we study a problem of a centrally controlled system
with multiple retailers. Each retailer serves two types of customers: high priority and
low priority. Each retailer employs a rationing policy with a rationing level k in the
context of a continuous-review (r, Q) inventory replenishment model. The overall
policy is referred to as an (r, k, Q) policy. Retailers can transship items from either
other retailers or a more expensive central depot. We propose an enumeration-based
approximation to find the cost-minimizing policy parameters for the individual retail-
ers and an approximation procedure to solve the combined rationing and transshipment
problem. The latter relies on adjusting the demand arrival rates and the unit transship-
ment costs for both types of customers at all retailers. An extensive numerical study
highlights the impact of transshipments on the retailers’ rationing policies. Without
transshipment opportunities among each other, retailers set their policy parameters so
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that the resulting service levels are high for both types of customers. Allowing trans-
shipments results in more aggressive rationing policies, and retailers with aggressive
rationing policies benefit from the transshipments the most.

Keywords Rationing · Transshipment · Approximation procedure

1 Introduction

Practitioners and academics have proposedmultiple strategies for achieving significant
cost and service benefits that increase the competitiveness of multi-echelon inventory
systems. Some of these benefits can be achieved by physical pooling of inventories
(Eppen 1979). As demands across different locations are aggregated, it becomes more
likely that a high demand from one customer is offset by a low demand from another.
A similar and commonly employed strategy is to allow the movement of inventories
among the locations belonging to the same echelon. These stockmovements are called
lateral transshipments.1 Transshipments are similar in the sense that they allow stock
sharing, but without the need to physically stock inventories in the same location.
While risk pooling represents physical integration, transshipments are often considered
virtual integration through information sharing. Transshipments provide an efficient
mechanism for correcting mismatches between locations demands and their available
inventories. They can improve customer service levels and lead to cost reductions
without the need to increase stock.

Most models in the supply chain literature assume that the demands arising from
different sources are handled in the sameway. In practice, however, for a single product,
different customers may have different stockout costs or service-level requirements,
or may be of different importance to the supplier. Therefore, it can be appropriate to
distinguish between classes of customers and use different policies in satisfying their
demands. Transshipments can be especially helpful in this case. When the retailer
chooses not to satisfy the demands of its low-priority customers due to low inventory
levels, it might request another retailer in its supply chain to satisfy these customers’
demands via transshipment. Although transshipping can be expensive, it might be
more expensive not to satisfy a customer’s demand, even if it is of low priority.

Multiple demand classes occur naturally in many inventory systems. Consider,
for example, a spare parts system. In such a system a part may be required for the
production of multiple products, but may be more crucial for one product than for
others. Here, products can be viewed as different demand classes. Another example is
a firm that has some customers who have a contract for its products and are guaranteed
a certain service level, as well as “off-the-street” customers to whom the firm has no
such obligation.

The easiest policy to use for a single-location system with multiple demand classes
is simply to hold a separate inventory for each demand class. Although this policy is
easy to implement in practice, it does not take advantage of the risk-pooling effect
(Eppen 1979) and would therefore result in no inventory savings. On the other hand,

1 In the rest of the paper, we refer to “lateral transshipments” as “transshipments.”
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using the same pool of inventory to satisfy demands from different customer classes
without differentiating themwould result in increased inventory costs, since the highest
required service level is generally used to determine inventory levels. Rationing lies
between these two cases.

Rationing, which we also refer to as a critical-level policy, is defined as the practice
of reserving part of the stock for high-priority demand classes (Melchiors et al. 2000). It
has been demonstrated that rationing is an effective way of handling different demand
classeswith different stockout costs and service-level requirements (Kleijn andDekker
1998). In a rationing policy, when the inventory level drops to a certain point, called
the critical level, demands from lower-priority customers are no longer satisfied. This
policy can be extended to more than two customer demand classes by considering
multiple critical levels.

In general, an optimal critical-level policy should take into account the remaining
time until the arrival of the next replenishment order. The reason is that, if the inventory
level is below the critical level, but it is known that a replenishment order will arrive
within a short period of time, it may not be optimal to refuse a low-priority demand
arrival, especially if the probability of a high-priority demand arrivalwithin the remain-
ing lead time is very small. However, from a practical point of view, employing such
a dynamic rationing policy would be extremely difficult. We study a static rationing
policy without taking the remaining time of the arrival of the next replenishment into
account.

We consider amulti-retailer system inwhich each retailer has two customer demand
classes. The demand of each customer class at each retailer has a Poisson distribution.
Each retailer2 employs a critical-level policy in the context of a continuous-review
(r, Q) inventory model. This policy is referred to as an (r, k, Q) policy (Nahmias and
Demmy 1981), where r is the reorder point, k is the critical level, and Q is the order
quantity. Whenever a retailer is out of stock or cannot satisfy a demand because of
its rationing policy, it can request an item from another retailer in the system and
satisfy the demand of its customer. If this retailer is out of stock as well, the original
retailer places a transshipment request with another retailer, and so on. We assume
that each retailer has a fixed sequence of preferred retailers from which to request
transshipments. This sequence can be based, for example, on the distance between the
retailers. We assume a static sequence, i.e., it does not depend on retailers’ inventory
levels or other state variables. If none of the retailers can satisfy the transshipment
request, it is satisfied by a central depot. We refer to this type of shipment from
the depot also as a transshipment, distinguishing it from a replenishment shipment.
The transshipping location sends the item directly to the customer, and the demand is
assumed to be satisfied as soon as the item is shipped. The system incurs a cost for each
unit transshipped. The aim of a centralized decision maker is to determine the policy
parameters for all retailers with an objective of minimizing the total cost of the system.

The main motivation behind this study is the increased need for companies facing
fierce competition to satisfy all of their customers’ demands. It is important to satisfy
not only the demand of high-priority customers, but also the demand of low-priority

2 We use the term “retailer,” but the model could equally well apply to other echelons.
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customers who may constitute a higher percentage of the total demand. This research
can benefit many companies in the automotive, high-tech and apparel industries. It can
especially benefit online-retailing companies with multiple stock-keeping locations
since customers typically have no preference regarding the location from which their
goods are shipped, as long as they arrive when promised. For online-retailing compa-
nies, high-priority customers are the ones who pay more and request fast shipments,
while low-priority customers pay less and accept to wait longer for the shipment of
their products. In this context, independent of the location satisfying her demand, a
high-priority customer always has high priority and a low-priority customer always
has low priority. The benefits of transshipments are heightened by recent regulations
that force Amazon and similar online-retailing companies to collect sales tax in more
andmore states in the USA. This makes them less price competitive. According to arti-
cles in DailyFinance (Brownell 2013) and Slate (Manjoo 2012), Amazon’s response
has been to construct distribution centers in these states and promise 1-day delivery to
match what local brick-and-mortar merchants can do. For example, a high-end cam-
era may be offered locally by some merchant and Amazon must work hard to keep
its one-day delivery pledge to be competitive. Rationing comes in when the item is
one for which Amazon finds itself in a highly competitive situation in some state.
That particular Amazon distribution center will not transship this item elsewhere after
reaching a critical level needed to stay competitive locally.

Motivated by these examples, we provide an approximation procedure to solve
transshipment problems, which involve multiple stock-keeping locations receiving
demands from two customer types. Through our numerical analysis, we provide
insights into how transshipments affect the inventory replenishment policies of retail-
ers. Our insights help company managers in making decisions on how to make use of
transshipments in reducing their operational costs.More specifically, depending on the
retailers’ pre-transshipment inventory replenishment policies, managers can design a
transshipment policy for guaranteeing substantial cost reductions. The design should
tell whether high- and low-priority customer demands have the same or different
priorities at the other retailers. It should also tell whether it is enough to transship
high-priority customer demands only. This study provides insights to help in such
design decisions.

The remainder of this paper is organized as follows: In Sect. 2, we provide a brief
reviewof the literature on transshipment and rationing policies. In Sect. 3,we introduce
the notation, define the problem and summarize our solution procedure. We explain
the single-retailer problem and our enumeration-based approximation to solve it in
Sect. 4. We introduce our approximation procedure for the multi-retailer problem in
Sect. 5. In Sect. 6, we summarize the results of our numerical analysis. Finally, we
present our conclusions and suggest future research directions in Sect. 7.

2 Literature review

The research presented in this paper considers two key issues: (i) transshipments and
(ii) inventory rationing. In this section, we briefly review the existing literature in these
areas.
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2.1 Transshipments

Typically, lateral transshipment models are divided into two categories: reactive
(emergency) transshipments and proactive (preventive) transshipments. Reactive
transshipments refer to transshipment requests made by a retailer with no stock from
another retailer with positive stock. This type of transshipment responds to stockouts.
On the other hand, proactive transshipments imply redistribution of the stock among
retailers as a result of anticipated future stockouts; retailers do not need to wait until
one has no stock to transship. In this paper, we study a continuous-review policy with
reactive transshipments. The transshipping location does not hold back any inventory.
Next, we briefly summarize the most relevant literature on reactive transshipments.
The interested readers are referred to Paterson et al. (2011) for an extensive literature
review on periodic-review inventory models and continuous-review inventory models
with proactive transshipments.

An important problem in the transshipment literature is the determination of the
retailer to transship from. In this paper, we consider the unit transshipment cost to
decide which retailer to transship from. The same selection criterion is studied in
multiple papers (Kukreja et al. 2001;Archibald 2007). In an earlyworkLee (1987) tests
several other rules for selecting the retailer to transship from, including using random
selection, maximum stock on hand and smallest number of outstanding orders. He
reports no significant differences in the performances of the three selection rules and
concludes that, independent of the selection rule, reactive transshipments reduce total
system costs. The same is concluded in Seidscher and Minner (2013). Another option
is the distance-based transshipment rule, which implies that the items are transshipped
from a nearby location with adequate supply (Hu et al. 2005; Kukreja and Schmidt
2005). Axsäter (1990) assumes transshipments from a randomly selected location that
has stock on hand at the moment the request is placed. The random selection rule
is commonly assumed in the literature. In fact, Comez-Dolgan and Fescioglu-Unver
(2015) state that this rule performsquitewell.Archibald et al. (2009) suggest a different
selection criterion based on the fair charge for the transshipped inventory. They report
substantial cost savings compared to other policies.

The standard (r, Q) policy is widely used in the transshipment literature. Needham
and Evers (1998) provide a mathematical tool as an aid to make transship or do-
not-transship decisions. Similarly, Evers (2001), Axsäter (2003b), Axsäter (2003a),
Minner et al. (2003), Xu et al. (2003), Minner and Silver (2005), Ching et al. (2003)
and Olsson (2009) study (r, Q) policies with an objective of providing rules for trans-
shipment decisions.

Most of the studies on reactive transshipments assume that transshipments only
happen when a stockout occurs. In our paper, the transshipments for low-priority
demands occur even if all locations have positive stocks. However, even in a setting
with a single customer type, it might be optimal to request transshipments whenever
the inventory hits a threshold level (Zhao et al. 2006; Grahovac and Chakravarty
2001). The resultingmodels are quite difficult to analyze due to the additional decision
variable. In fact, Archibald et al. (1997) prove that the optimal transshipment policy
has two threshold-level characteristics. They show that (i) if it is optimal to satisfy a
transshipment request at a given stock level, it is also optimal to do the same at higher
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stock levels and (ii) if at a given time it is optimal to satisfy a transshipment request,
it is also optimal to do the same at times that are closer to the next replenishment
moment.

In this paper we assume that each transshipment request is for a single item. Given
that transshipments are not for free, it might be cost-effective to transship multiple
units in anticipation of future shortages. These are called hybrid transshipments since
they are both reactive and proactive. There are a limited number of papers that study
hybrid transshipments (Paterson et al. 2012; Glazebrook et al. 2015).

As discussed in Sect. 1, our study can especially benefit online-retailing com-
panies with multiple stock-keeping locations. Yang et al. (2014) also consider an
online-retailing company with dynamic demand and develop heuristic transshipment
strategies. In a related work, Torabi et al. (2015) study an online-retailing company
and, for specific demand data, develop amodel to determine the optimal order-delivery
plan that minimizes the transportation and transshipment costs.

Another application field for our problem/model is the spare part inventory systems
that serve installed bases of advanced machines. In the transshipment literature, there
exist multiple studies that are motivated by spare part inventory systems. Examples
include Kranenburg (2006), Tiacci and Saetta (2011), van Wijk et al. (2012), Yang
et al. (2013) and Olsson (2015). Our model differs from these examples and there-
fore contributes to this field by differentiating among spare part demands, i.e., some
demands for spare parts have higher priority than others.

This paper is also related to previous work on dual-channel retail systems where
retail stores (direct channel) serve in-store customers and use excess stock to fill some
online orders (indirect channel). Serving online orders through excess stock implies
transshipments, but in contrast to our work, transshipments happen in one direction;
hence, they are asymmetric. Researchers suggest significant profit gains, improved
service levels and reduced inventories through integration and coordination of direct
and indirect channels (Seifert et al. 2006; Liang et al. 2014; Zhao et al. 2016).

2.2 Inventory rationing

Problems involving several demand classes and the concept of a “critical-level policy”
was first introduced by Veinott (1965). Subsequently, Topkis (1968) proves the opti-
mality of this policy for both backordering and lost sales cases. Topkis (1968) argues
that optimal critical levels are decreasing functions of the time remaining until the
next replenishment request. Kaplan (1969) and Evans (1968) obtain the same results
as Topkis (1968), independently, for two customer demand classes. Following these
seminal works, many authors study the critical-level policy under different settings.
We refer to Teunter and Haneveld (2008) for a thorough review. In this section we
give a brief review on the latest articles which are most relevant to our study.

In this paper, we study an (r, Q) inventory policy with a static critical level k. This
policy has been studied extensively in the literature. Assuming at most one outstanding
order, Nahmias and Demmy (1981) derive expressions for the expected backorders
and service levels for each demand class. The same problemwith multiple outstanding
orders is studied by Deshpande et al. (2003). The authors design a threshold clearing
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mechanism and develop an efficient solution algorithm for computing policy param-
eters. The same clearing mechanism is studied by Wang et al. (2013). Fadiloglu and
Bulut (2010) handle the problem with multiple outstanding orders by adjusting the
inventory level by including outstanding orders.

In our study, each retailer employs an (r, k, Q) policy with lost sales. The same
policy is studied byMelchiors et al. (2000),Wang et al. (2015) and Isotupa andSamanta
(2013). Assuming constant replenishment lead times, Melchiors et al. (2000) propose
an exact optimization procedure to find the optimal reorder and critical levels. Wang
et al. (2015) prove that the optimal rationing policy is a combination of a static policy
before order release and a dynamic policy during the replenishment lead time. Isotupa
andSamanta (2013) extend the results inMelchiors et al. (2000) by assuming arbitrarily
distributed lead time.

Fadiloglu and Bulut (2010) show that a dynamic rationing policy, which allows the
critical level to change, can outperform a constant critical-level policy. The interested
reader can refer to Hung et al. (2012), Chew et al. (2013), Wang and Tang (2014) and
Liu et al. (2015) for recent findings on dynamic rationing policies.

2.3 Contribution

Our research contributes to the literature on rationing and transshipments by providing
a formulation for multiple-retailer, multiple-demand-class problems with rationing
and transshipment policies and introducing an approximation procedure for solving
these problems. To the best of our knowledge, the combined problem of rationing and
transshipments has been studied previously only by Alvarez et al. (2014). Alvarez
et al. (2014) assume lateral transshipments for high-priority customers only. However,
companies facing fierce competition have an increased need to satisfy not only the
demand of high-priority customers, but also the demand of low-priority customerswho
may constitute a higher percentage of the total demand. Based on this need, we allow
transshipments for both types of customers and provide an approximation procedure
to solve transshipment problems. In addition, through our numerical analysis, we
provide insights into how transshipments affect the inventory replenishment policies
of retailers who ration their customers’ demands.

Our model allows transshipments among any number of retailers. In fact, when a
retailer cannot satisfy its customer’s demand either due to stockouts or because its
inventory level is below the critical level, it places a transshipment request either with
other retailers in the system or with the central depot. Hence, our model enables practi-
tioners to employ rationing policieswithout losing their customers. Our approximation
procedure relies on solving single-retailer problems without considering transship-
ments and then linking these problems by redirecting the unsatisfied demands to other
locations.

3 Model framework

In this section, we introduce the notation and define our problem.
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3.1 Notation and preliminaries

We consider a centrally controlled, single-item continuous-review inventory system
with one central depot and N retailers. We use index i to represent the retailer. If
not stated otherwise, the following definitions apply for all i ∈ {1, 2, . . . , N }. Each
retailer has two types of customers: high priority and low priority. Index j represents
the customer type, with j = 1 being high priority and j = 2 being low priority.
Retailer i follows a continuous-review (ri , ki , Qi ) policy, which operates as follows:
Whenever the inventory level drops to the reorder level ri , a replenishment order of size
Qi is placed with the central depot. The replenishment lead time Ti is constant. Both
classes’ demand is satisfied whenever the inventory level exceeds or equals the critical
level, ki . If the inventory level is less than ki , only high-priority demand is satisfied
from the stock on hand and low-priority demand is satisfied through transshipments.
If the inventory level is zero, both classes’ demand is satisfied through transshipments.

Let Di, j (t), j = 1, 2, be a random variable denoting the demand from type- j
customers during t time units. Di (t) := Di,1(t)+Di,2(t) is the total demand at retailer
i during t time units. We assume unit Poisson demand with arrival rate λi, j , j = 1, 2.
The total demand rate is λi = λi,1 + λi,2. Defining E[X ] as the expectation of the
random variable X , we have E[Di, j (t)] = λi, j t and E[Di (t)] = λi t .

Retailer i’s cost of not satisfying a demand from demand class j directly from its
own stock is πi, j , with πi,1 ≥ πi,2 > 0. For retailer i , the fixed ordering cost is Ki

and the unit holding cost per unit time is hi > 0.
Similar to Hadley and Whitin (1963), Nahmias and Demmy (1981) and Melchiors

et al. (2000), we restrict ourselves to policies in which there is at most one outstanding
replenishment order. This implies that at the time a replenishment order is placed,
the net inventory and the inventory position are identical. A sufficient condition to
ensure that at most one order is outstanding is ri < Qi . This condition ensures that
when an outstanding order arrives, the inventory level goes above ri , which implies
that another outstanding order does not exist. In addition, we require ki < Qi , for the
model to be tractable. We note that, for the problem under consideration, although we
use an (r, k, Q) policy, the optimal policy is unknown. It is possible to combine other
inventory replenishment policies with the critical-level policy. However, given that
the (r, Q) policy is preferred and widely used in practice and is, in fact, the optimal
inventory replenishment policy under our assumptions (Axsäter 2015), we assume the
(r, k, Q) inventory and rationing policy.

Next, we clarify the transshipment process. When retailer i ∈ {1, 2, . . . , N } cannot
satisfy a demand immediately, it can place a transshipment request with other retailers.
Let Oi be the ordered list of retailers that retailer i can request transshipments from.
Hence, Oi is a vector with N − 1 elements indicating the rankings. We have Oi =
[oi (n)]N−1

n=1 , where oi (n) is retailer i’s nth choice of retailer to transship from. For
example, if N = 3 and O2 = [o2(1), o2(2)] = [3, 1], in case of a stockout, retailer
2 initially considers requesting an item from retailer 3. If the demand is from a high-
priority customer, retailer 3 satisfies the demand as long as he has positive inventory.
If, on the other hand, the demand is from a low-priority customer, retailer 3 satisfies
the demand if his inventory level is above k3. If retailer 3 cannot satisfy retailer 2’s
demand, retailer 2 places a transshipment request with retailer 1. If all retailers fail
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to satisfy the demand, a transshipment request is placed with the central depot. We
assume that the central depot always has enough inventory to satisfy all transshipment
requests. Transshipments from both retailers and the central depot are instantaneous.
The unit cost of satisfying retailer i’s type- j demand via transshipment from retailer
oi (n), referred to as the “transshipment cost,” is ci, j,oi (n), and the unit cost of satisfying
it from the central depot is ci, j,d . Transshipments among retailers are cheaper than
transshipping from the central depot, i.e., ci, j,d > ci, j,oi (n),∀n ∈ {1, 2, . . . , N − 1}.
When companies group the retailers among which transshipments are allowed they
rely on distance. The central depot is typically far frommost groups. Therefore, it costs
more to ship an item from the depot to a customer who normally needs to be served
from one of the retailers, which is located closer to the customer. We assume that the
sequence Oi is determined based on the unit transshipment costs. Our approximation
procedure is flexible enough to handle any other static sequencing rule.

If transshipments among retailers are not allowed, each retailer can only place
transshipment requests with the central depot. The unit cost of transshipping retailer
i’s type- j demand from the central depot equals retailer i’s cost of not satisfying a type-
j demand. Hence, without any transshipment opportunities among the retailers, we
have ci, j,d = πi, j ,∀i ∈ {1, 2, . . . , N } and j = 1, 2. For the casewhere transshipments
among the retailers are allowed we propose an approximation procedure to calculate
the unit cost of not satisfying the demand directly from stock. (Refer to Sect. 5.)

We assume that a type- j demand at retailer i is again a type- j demand for the
retailers in the rest of the system. In reality, a high-priority customer of one retailer
might be a low-priority customer for another retailer. Our approximation procedure
can be easily modified to handle this case, but we make the simpler assumption for
ease of exposition. (Refer to Sect. 6.5.1 for the modified case.)

3.2 Problem definition

We let r := [ri ]Ni=1, k := [ki ]Ni=1 and Q := [Qi ]Ni=1 be the vectors of retailers’ reorder
levels, critical levels and order quantities, respectively, and define the following long-
run averages:

• Ii (r, k, Q) the average inventory level at retailer i ,
• Ai (r, k, Q) the average number of replenishment orders placed by retailer i per
unit time,

• Si, j,oi (n)(r, k, Q) the average number of type- j demands of retailer i satisfied via
transshipment from retailer oi (n) per unit time,

• Si, j,d(r, k, Q) the average number of type- j demands of retailer i satisfied via
transshipment from the central depot per unit time.

The problem is to determine the optimal stocking and rationing policies of all the
retailers to minimize the total expected cost. Defining C(r, k, Q) as the total expected
cost, we express our problem as:

min C(r, k, Q) =
N∑

i=1

⎡

⎣hi Ii (r, k, Q) + Ki Ai (r, k, Q) +
2∑

j=1

(
ci, j,d Si, j,d(r, k, Q)
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+
N−1∑

n=1

ci, j,oi (n)Si, j,oi (n)(r, k, Q)

)]

s.t. ri < Qi ∀i ∈ {1, 2, . . . , N }
ki < Qi ∀i ∈ {1, 2, . . . , N }
ri ≥ 0, ki ≥ 0, Qi ≥ 0 ∀i ∈ {1, 2, . . . , N } . (1)

(1) is a nonlinear optimization problem. The long-run averages defined in Sect.
3.2 depend on policy parameters r, k and Q. These dependencies make the problem
difficult to solve to optimality. This is why we propose an approximation procedure,
which relies on solving single-retailer problems without considering transshipments
and then linking these problems by redirecting the unsatisfied demands to retailers
in Oi ,∀i ∈ {1, 2, . . . , N }. The details of the single-retailer problem (SiReP) and the
approximation procedure for the multi-retailer problem (MuReP) are in Sects. 4 and
5, respectively.

4 Single-retailer problem (SiReP)

Melchiors et al. (2000) consider a single-retailer problem with two demand classes.
Their assumptions are the same as our assumptions for individual retailers. They study
the (r, k, Q) policy and provide a procedure to optimize r and k. In this section, we
provide a brief explanation of the procedure and outline our contribution to it.

For ease of exposition, we drop the index i .We define X (t) as the on-hand inventory
level at time t . The corresponding stochastic process {X (t), t ≥ 0} is a regenerative
process. By defining a cycle as the time between two consecutive replenishment order
requests, we can use the renewal-reward theorem to find the average cost per unit
time. We consider two different scenarios with k < r and k ≥ r . Figure 1a, b depicts
the behavior of X (t) when k < r and k ≥ r , respectively. When k < r , the retailer
starts to reject the low-priority customers’ demands after placing a replenishment
order. In Fig. 1a, H is the time from placing a replenishment order until the time
when the low-priority customers’ demands start to be rejected. H has an Erlang dis-
tribution with parameters r − k and λ. When k ≥ r , the retailer starts to reject the
low-priority customers’ demand before placing a replenishment order. In Fig. 1b,

Fig. 1 Inventory process
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Table 1 Expressions for L1, L2 and CL

k < r k ≥ r

L1 ED1(T−H)

[
D1(T − H) − k

]+
ED1(T )

[
D1(T ) − k

]+

L2 ED2(T−H)

[
D2(T − H)

]
ED2(T+τ)

[
D2(T + τ)

]

CL T + Q+E[R]−r
λ

T + Q+E[R]−k
λ

+ k−r
λ1

τ := {t ≥ 0 : D1 ≥ k − r} is the time between the start of rejecting low-priority cus-
tomers and placing an order. We have E[τ ] = k−r

λ1
. R stands for the inventory level

just before a replenishment order arrives. For both cases R takes values between 0 and
r . The distribution of R is

P(R = w) =

⎧
⎪⎨

⎪⎩

P(D1(T − H) ≥ k), for w = 0,

P(D1(T − H) = k − w), for 0 < w ≤ k,

P(D(T ) = r − w), for k < w ≤ r.

This distribution can be simplified when k ≥ r since for this case the hitting time H
is not defined. The point of equality where k = r is not a special point. We include
the equality in k > r -type policy and write k ≥ r since H is not defined for k = r or
k > r . Using the distributions and necessary moments of the random variables H , τ
and R, it is straightforward to write exact expressions for the cycle costs, cycle lengths
and, therefore, the average costs.

A particular performance measure that plays an important role in the multi-retailer
problem is the expected proportion of demands met directly from stock. Define β j as
the expected proportion of type- j demands met directly from stock. The percentage
of demands from class j that cannot be met immediately from stock is given by

L j
λ jCL

,
where L j is the expected number of unmet demands per cycle for type- j customers

and CL is the expected cycle length. Hence, β j = 1 − L j
λ jCL

. In Table 1 we provide
the formulas for L1, L2 and CL.

Our numerical analysis shows that the evaluation of a single (r, k, Q) policy using
the method by Melchiors et al. (2000) is quite time-consuming because it involves
numerical integration. Our solution for the overall problem with multiple retailers
relies on solving the single-retailer problem multiple times. In order to facilitate the
procedure, we replace the random variable H with its expectation, E[H ] = r−k

λ
,

thereby removing the need for integration over the randomvariable H in the calculation
of the policy parameters. This approximation only affects the analysis for the case
with k < r . The average cost is affected slightly by this approximation. Based on
our numerical analysis, we observe that optimal policy parameters, the calculations of
which are explained next, are not affected much. (See Sect. 6.1.)

The optimization procedure by Melchiors et al. (2000) relies on enumeration and
bounding. The authors assume that Q is given, and they provide an algorithm to find
the corresponding optimal values of r and k, denoted r∗(Q) and k∗(Q). Given that
D(T ) is the total demand during the replenishment lead time, T , they prove an upper
bound for r∗(Q) given by
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r̄(Q) = min

{
r ≥ 0 : P(D(T ) ≥ r + 1) ≤ h

h + (π1λ1+π2λ2)
Q

}
.

In order to find r∗(Q), we need to enumerate all possible values from 0 to r̄(Q). In
addition, an enumeration is needed to find the cost-minimizing value of k, satisfying
k(Q) < r∗(Q). Let this value be k1(Q). When k ≥ r∗(Q), for fixed values of r and
Q, the average cost function is either convex or concave in k and it is easy to find k
to minimize TCk≥r , i.e., the total average cost when k ≥ r . Let k2(Q) be this value.
k∗(Q) is k1(Q) if TCk1(Q)<r∗(Q) < TCk2(Q)≥r∗(Q), and k∗(Q) is k2(Q), otherwise.

In contrast to Melchiors et al. (2000), we replace H by E[H ] and use enumera-
tion over Q to find the values of r , k and Q to minimize the approximated cost. We
refer to this approximate solution for the single-retailer problem as an enumeration-
based approximation. Define Q∗(r, k) as the optimal value of Q for given values
of r and k. We use 1 and Q∗(0, 0) as the lower and upper bounds for Q, respec-
tively. For each value of Q, we find r∗(Q) and k∗(Q) and calculate the average cost,
C(r∗(Q), k∗(Q), Q). We choose the solution with the lowest average cost as our final
solution.

5 Multi-retailer problem (MuReP)

Given that we know how to solve the problems of individual retailers, we now intro-
duce our approximation procedure to solve the overall problem with transshipment
opportunities among retailers.

The first step of the procedure is to solve N single-retailer problems without trans-
shipments by using the enumeration-based approximation for SiReP described in Sect.
4 to find the policy parameters ri , ki and Qi ,∀i ∈ {1, 2, . . . , N }.

In the second step of the procedure, we introduce the transshipments and we adjust
the demand rates and the penalty costs. Define γi, j,oi (n) as the expected demand rate
of type- j items retailer i requests from retailer oi (n). As defined in Sect. 3.2, oi (n) is
the retailer that is in the nth position in the ordered list Oi . γi, j,oi (n) is calculated as
follows:

γi, j,oi (n) = (1 − βi, j )λi, j

[
�n−1

m=1(1 − βoi (m), j )
]
βoi (n), j ∀i ∈ {1, 2, . . . , N } ,

∀ j = 1, 2,∀n ∈ {1, 2, . . . , N − 1} .

Here, βi, j is the expected proportion of type- j demands met directly from inventory
at retailer i and, hence, (1 − βi, j )λi, j is the expected number of retailer i’s type-
j demands requested from other retailers. The product �n−1

m=1(1 − βoi (m), j ) is the
probability of stockout at the retailers who are before retailer oi (n) in the sequence
Oi . This product is the probability that retailers whose order is less than n are unable
to satisfy retailer i’s transshipment request. Similarly, βoi (n), j is the probability of
no stockouts at retailer oi (n) and with this probability, oi (n) can satisfy retailer i’s
transshipment request. Note that, although suppressed, the βi, j values depend on the
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retailers’ rationing policy parameters and, therefore, so do the expected flow rates of
transshipments.

Defining λ̂i, j as the total demand rate at retailer i for type- j demands after all
transshipment requests, we have

λ̂i, j = βi, jλi, j +
∑

w|i∈Ow

γw, j,i . (2)

If none of the retailers can respond to the transshipment request of retailer i for type- j
demand, retailer i requests an item from the central depot. Define γi, j,d as the expected
demand rate of type- j items retailer i requests from the central depot d. We have

γi, j,d = λi, j (1 − βi, j ) −
N−1∑

n=1

γi, j,oi (n).

The last equality ensures that retailer i requests transshipments for all unsatisfied
demands, i.e., λi, j (1−βi, j ) = γi, j,d +∑N−1

n=1 γi, j,oi (n). Note that the following equal-
ity, which ensures that all demand is distributed among the retailers and the central
depot, holds:

∑

∀i∈N

∑

j=1,2

λi, j =
∑

∀i∈N

∑

j=1,2

(
λ̂i, j + γi, j,d

)
.

As stated before, the cost of not satisfying the demand immediately from stock
is actually the transshipment cost to retrieve an item from another site. Suppose that
retailer i requests an item from another retailer and needs to pay a high transshipment
cost. This implies that it is very expensive for retailer i not to satisfy the demand of
his customer for this item.

Given that ci, j,oi (n) is the unit cost to transport a type- j demand from retailer oi (n)

to retailer i and ci, j,d is the unit cost to transport a type- j demand from the central depot
to retailer i , the expected cost to meet a type- j demand at retailer i via a transshipment,
π̂i, j , can be determined. Note that ci, j,d = πi, j . We have

π̂i, j =
∑N−1

n=1 γi, j,oi (n)ci, j,k + γi, j,dci, j,d∑N−1
n=1 γi, j,oi (n) + γi, j,d

. (3)

The third step of the approximation procedure is to solve the single-retailer problems
using λ̂i, j and π̂i, j instead of the original values λi, j and πi, j . Therefore, each retailer
re-optimizes its policy parameters given its new demand rates and penalty costs of not
satisfying the demands directly from stock.

Let (r̃, k̃, Q̃) be the solution of the approximation procedure. We summarize the
procedure to solve the rationing and transshipment optimization problem (1) as fol-
lows:

Step 1 Determine ri , ki and Qi for j = 1, 2 and ∀i ∈ {1, 2, . . . , N } using the
enumeration-based algorithm for SiReP proposed in Sect. 4.
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Step 2 Calculate λ̂i, j and π̂i, j for j = 1, 2 and ∀i ∈ {1, 2, . . . , N } using Eqs. (2)
and (3), respectively.

Step 3 Set λi, j to λ̂i, j and πi, j to π̂i, j for j = 1, 2 and ∀i ∈ {1, 2, . . . , N } and
repeat Step 1.

Step 4 Set r̃i to ri , k̃i to ki and Q̃i to Qi for j = 1, 2 and ∀i ∈ {1, 2, . . . , N }.
Adjusting the demand rates at the locations to reflect the effect of transshipments is

an approach utilized by other researchers (Axsäter 2003b). In addition to the demand
rates, we adjust the penalty costs. This approach enables decoupling of the single-
retailer problems. Note that an important advantage of the approximation procedure
is that it applies to transshipment problems in which the retailers use any inventory
policy, not just (r, k, Q) policies.

6 Numerical analysis

In this section, we investigate the performances of the enumeration-based approxi-
mation for SiReP and the approximation procedure for MuReP. In addition, we seek
the answers for the following questions: How does the system benefit from transship-
ments? How is the rationing policy of a retailer affected by transshipments? Which
system parameters affect the average cost the most?

6.1 Performance of the enumeration-based approximation for SiReP

We test the performance of the enumeration-based approximation for SiReP by gen-
erating 500 random parameter combinations with h ∼ U [1, 3], π1 ∼ U [100, 10000],
π2 ∼ U [5, 100], K ∈ {100, 200, 500, 1000, 1500}, T = 1, λ1 = 1 and λ2 ∼

U [1, 10]. We choose these parameter values using the numerical setup in Melchiors
et al. (2000) as a reference. For each parameter combination, we determine the optimal
and approximate values of the policy parameters. Let (r̃ , k̃, Q̃) be our approximate
solution, (r∗, k∗, Q∗) be the optimal solution and C(r, k, Q) be the average cost of
the SiReP. As a performance measure of our algorithm we use the percentage cost
deviation (error), %ε, calculated as

%ε = 100
C(r̃ , k̃, Q̃) − C(r∗, k∗, Q∗)

C(r∗, k∗, Q∗)
. (4)

In 94% of the problem instances our enumeration-based approximation finds the same
result. The average and standard deviation of the cost error for the non-optimally
solved instances are ε̄ = 0.1066% and σε = 0.0783%, respectively. The maximum
percentage cost error is 0.1786%. If we use the approximate policy parameters and the
approximate average cost (that is, replace C(r̃ , k̃, Q̃) with the approximate average
cost function with arguments r̃ , k̃ and Q̃ in (4)), the percentage difference with the
optimal results has an average, a standard deviation and a maximum value of 0.0854,
0.1089 and 0.4545%, respectively. Hence, even if we calculate the final average cost
with our approximation, the percentage error is small.
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Our approximation relies on replacing the random variable representing the time
between the placement of a replenishment order and the rationing of inventory, i.e.,
H , by its mean. The approximation removes the need for integration over this random
variable in the optimization of the policy parameters. This approximation results in
a reduction in computational time. The average computational time reduction per
cost evaluation is 0.02 s (more than 50% of the original computational time). As
explained in Sect. 4, the determination of Q∗ relies on enumeration. The average
cost needs to be calculated for each possible value of Q ∈ {1, 2, · · · , Qmax}. Let
the average value of Qmax be Q̄max. The overall problem MuReP with N retailers
requires 2N optimizations: one for the problem without transshipments (to calculate
the new demand rates and penalty costs) and one with transshipments. Note that this
approximation affects the case with r > k only. Assume that half of the retailers are of
type r > k. Therefore, for a single stock-keeping unit (SKU), the average reduction in

the computational time is 2∗0.02∗Q̄maxN
2 = 0.02Q̄maxN . For example, if Q̄max = 100,

the computational time is reduced by approximately 2 seconds per SKU. Considering
that even small retailers may stock tens of thousands of SKUs, and that large retailers
such asAmazonmay stockmillions of SKUs, this computational savings is significant.

6.2 Performance of the approximation procedure for MuReP

Before using our approximation procedure for MuReP, we first test its performance
under a simpler policy. Note that our approximation procedure can be applied to trans-
shipment problems in which the retailers use any inventory policy, not just (r, k, Q)

policies.
In this section, we assume that there is a single customer type and there are no fixed

ordering costs, i.e., Ki = 0,∀i ∈ N . Hence, each retailer uses a continuous-review
base-stock policy, i.e., (s−1, s) policy, to replenish its inventories,with transshipments
allowed among retailers as described in Sect. 3.2.We use our approximation procedure
in Sect. 5 to calculate the approximate base-stock levels. We compare these with the
base-stock levels and the cost obtained through an enumeration-based simulation.
Assuming a very high value for themaximumbase-stock level, we consider all possible
base-stock-level combinations and for each combination, we simulate the system to
find the average cost. Then, we pick the solutionwith theminimumcost as the solution.
This procedure is quite time-consuming. If wewere to use enumeration for our original
policy, i.e., the (r, k, Q) policy, we would need to enumerate 3|N | parameters, which
would be prohibitively slow.

The replenishment lead times are constant. Thedemand at each retailer has aPoisson
distribution, and unsatisfied customer demands are lost. For a given base-stock level,
s, Karush (1957) obtains the following expressions for the stockout probability SP (s)
and the average inventory level I (s):

SP(s) = f (s)

F(s)
, I (s) =

s∑

j=0

(s − j)
f ( j)

F(s)
= s − λT + λT (SP(s)),
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Table 2 Parameter values for
the experiment testing
performance of MuReP
procedure

Parameter Values

N 3

T 1

λ 1; 2; 3

hi ∼ U [0.5, 2.5]
ci, j,k ∼ U [5, 30]
ci, j,d ∼ U [30, 60]

Seq =
⎛

⎝
O1
O2
O3

⎞

⎠

⎛

⎝
2 3
3 1
1 2

⎞

⎠;

⎛

⎝
2 3
1 3
1 2

⎞

⎠

where f denotes the Poisson probability mass function with mean λT and F the
corresponding cumulative distribution function. For a given unit lost sales cost c and
unit holding cost per unit time h, the average cost can be calculated by C(s) =
cλSP(s) + hI (s) and it is straightforward to determine the optimal base-stock level.

Given this solution to the single-retailer problem, we introduce transshipments and
use our approximation procedure in Sect. 5 to solve the multi-retailer problem. Table
2 summarizes the data we use. Note that the retailer sequences given in the table are
not based on transshipment costs, but are simply given.

We tested 540 instances. The average percentage cost error of our procedure is
6.63% with standard deviation 9.21%. Since the simulation results rely on enumera-
tion, we have chosen system parameters (in Table 2) that generate small base-stock
levels. Therefore, even a difference of 1 in the base-stock levels can translate to a large
percentage cost difference. We would expect the differences to be smaller for more
realistic system parameters.

6.3 The effect of transshipments on the rationing policies

In this section, we report the results of our numerical analysis for the rationing problem
with transshipments. In Sect. 6.3.1, we provide a detailed example that shows the effect
of transshipments, and in Sect. 6.3.2, we perform an extensive numerical analysis to
show how transshipments change the rationing policy type.

6.3.1 Base case

In their numerical analysis, Melchiors et al. (2000) consider two base cases and they
call these Example 1 and Example 2. In this section, we study a system with two
retailers and we use the data in Example 1 and Example 2 as the parameters for
retailer 1 and retailer 2, respectively. The data are in Table 3.

Based on the definition of unit transshipment costs from the central depot, we have
c1,1,d = 1000, c1,2,d = 10, c2,1,d = 500 and c2,2,d = 6. In addition, we set the
unit transshipment costs between retailer 1 and retailer 2 as c1,1,2 = c2,1,1 = 300
and c1,2,2 = c2,2,1 = 3. Note that transshipments from retailers are cheaper than
transshipments from the central depot. Using these parameters, we solve for the policy
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Table 3 Parameter values for
retailer 1 and retailer 2 (taken
from Melchiors et al. 2000)

Retailer Ti hi Ki (λi,1, λi,2) (πi,1, πi,2

i = 1 1 1 100 (1,10) (1000,10)

i = 2 1 2 200 (1,5) (500,6)

Table 4 Results for the base case

Results No transshipments Transshipments

(r̃1, k̃1, Q̃1) (14, 2, 49) (17, 1, 56)

(r̃2, k̃2, Q̃2) (3, 12, 28) (2, 15, 17)

(C1,C2,Ctotal) (52.48, 60.76, 113.24) (59.41, 36.81, 96.22)

parameters of retailers when transshipments are not allowed and when transshipments
are allowed. The results are in Table 4.

According to these results, before allowing transshipments, for retailer 1 it is better
to place orders before starting to reject low-priority customers, i.e., retailer 1 is k < r
type.On the other hand, for retailer 2 it is better to start rejecting low-priority customers
before placing a replenishment order, i.e., retailer 2 is k ≥ r type. Hence, when we
introduce transshipments to this system, we expect some of retailer 2’s low-priority
customers’ demands to be directed to retailer 1. The results in Table 4 suggest that,
when transshipments are allowed, retailer 1 places more frequent orders of higher
quantity, while retailer 2 places less frequent orders of lower quantity. In addition,
retailer 2 employs an even harsher rationing policy, i.e., starts rejecting low-priority
customer demands earlier. Transshipments result in a cost increase at retailer 1 by
13.21%, while the average cost decreases at retailer 2 by 39.41%. The total cost
reduction is 15.02%. Each cost change is calculated as CR = C0−CTr

C0 , where C0 is the

cost before transshipments and CTr is the cost after transshipments.
Our approximation procedure relies on updating the demand rates. After transship-

ments we obtain λ̂1,1 = 1.0063, λ̂1,2 = 14.4385, λ̂2,1 = 0.9936 and λ̂2,2 = 0.1303.
Observe that retailer 1’s demand rates increase for both types of customers and espe-
cially for low-priority customers. On the other hand, retailer 2’s demand rates decrease
for both types of customers and especially for low-priority customers. It is easy to
explain the logic behind the redistribution of the demand rates for low-priority cus-
tomers. Remember that according to the rationing policies of the two retailers, retailer
2 is more likely to reject low-priority demands than retailer 1 is. Hence, it places
transshipment requests with retailer 1. The two main reasons to have an increase in
the high-priority demand rate of retailer 1, from 1 to 1.0063, are that retailer 1 keeps
more inventory than retailer 2 and that retailer 2’s unit lost sales cost for high-priority
demands is half the corresponding cost for retailer 1.

The unit costs of not satisfying the demands directly from stock are π̂1,1 =
304.69, π̂1,2 = 9.36, π̂2,1 = 300.38 and π̂2,2 = 3.05. These costs are much lower
compared to the original costs in Table 3. The decrease in these costs explains why
after allowing transshipments both retailers decrease the portion of demand satisfied
directly from stock.
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6.3.2 Changes in the rationing policies

According to the example in the previous section transshipments allow retailers to
employ rationing policies that suggest rejecting more low-priority customers than
before. Although it is not the case in the example, it might be better for a retailer
following a k < r -type rationing policy without transshipments to change to a k ≥ r -
type policy after transshipments are allowed. In order to test the correctness of this
claim, we perform an extended numerical analysis. We use the data in Table 5.

When there are two retailers, there are 4 possible policy combinations: (i) k1 <

r1, k2 < r2, (ii) k1 < r1, k2 ≥ r2, (iii) k1 ≥ r1, k2 < r2 and (iv) k1 ≥ r1, k2 ≥ r2.
The data in Table 5 are constructed so that there are at least 200 instances for each
pre-transshipment policy combination. We test 1000 instances in total and check how
the policy combinations change once transshipments are introduced. In Table 6, we
report the percentage of times a starting policy combination remains unchanged and
changes to another one. In addition, we report the average cost reductions.

According to the results in Table 6, when transshipments are allowed between
retailers, retailers start to incline toward a policy of type k ≥ r , since now they have an
option of satisfying their low-priority customers’ demands from the other retailer for
a relatively cheaper price. Retailers start rejecting low-priority customers even earlier
by changing the policy from k < r type to k ≥ r type. Hence, transshipments enable
having more aggressive rationing policies and cost reductions at the same time. The
greatest cost reductions occur when retailers are policy-wise similar before and after
transshipments. Even if neither of the retailers’ policies changes, the system benefits
from transshipments.

6.4 Sensitivity analysis

The results in the previous section suggest that transshipments help in reducing the
total system cost. Next, we perform sensitivity analysis to understand how the system
parameters affect the percentage cost reduction. In this section, we use the data in
Table 3 and change one parameter at a time to observe its effect.

Table 5 Data for extended numerical analysis—MuReP

Parameter Value

(λ1,1, λ1,2) (1, 1)

(λ2,1, λ2,2) (∼ U [1, 10], ∼ U [1, 10])
(h1, h2) (∼ U [1, 2], ∼ U [1, 2])
(c1,1,d , c1,2,d ) (∼ U [500, 1500], ∼ U [5, 10])
(c2,1,d , c2,2,d ) (∼ U [500, 1500], ∼ U [5, 10])
(c1,1,2 = c2,1,1, c1,2,2 = c2,2,2) (∼ U [200, 400], ∼ U [1, 5])
(K1, K2) (∼ U [50, 250], ∼ U [50, 250])
(T1, T2) (1, 1)
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Table 6 Results from the extensive numerical analysis—MuReP

Before trans. After trans. %of cases Avg. cost reduction

k1 < r1, k2 < r2 k1 < r1, k2 < r2 0.40 3.71

k1 < r1, k2 ≥ r2 4.27 9.98

k1 ≥ r1, k2 < r2 5.39 14.78

k1 ≥ r1, k2 ≥ r2 89.93 26.75

k1 < r1, k2 ≥ r2 k1 < r1, k2 < r2 0.00 –

k1 < r1, k2 ≥ r2 72.26 14.49

k1 ≥ r1, k2 < r2 0.00 –

k1 ≥ r1, k2 ≥ r2 27.74 16.14

k1 ≥ r1, k2 < r2 k1 < r1, k2 < r2 0.00 –

k1 < r1, k2 ≥ r2 0.00 –

k1 ≥ r1, k2 < r2 68.47 13.70

k1 ≥ r1, k2 ≥ r2 31.53 15.69

k1 ≥ r1, k2 ≥ r2 k1 < r1, k2 < r2 0.00 –

k1 < r1, k2 ≥ r2 0.00 –

k1 ≥ r1, k2 < r2 0.00 –

k1 ≥ r1, k2 ≥ r2 100.00 23.33
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Fig. 2 a Inter-transshipment costs. b Depot transshipment costs. Effects of the unit transshipment costs on
the percentage cost reduction

Intuitively, we expect transshipments to be most beneficial when it is cheap to
transfer items among retailers. Figure 2a shows how c1,1,2 = c2,1,1 and c1,2,2 = c2,2,1
affect the percentage cost reductions achieved as a result of transshipments. When the
unit cost of transshipping is low, more items are transshipped among retailers and the
average cost of transshipments constitutes a significant portion of the total average
cost. Hence, even a small increase in the unit cost can cause significant changes in the
overall cost. In addition, our previous results suggest that most transshipments are for
low-priority demands. This explains the sharper decreases in the cost reduction for
low unit costs compared to high unit costs.

Figure 2b shows how the unit cost of transshipping an item from the central depot
affects the cost reductions. Initially, observe that c1,1,d , c1,2,d and c2,1,d have very
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Fig. 3 Effects of the demand
rates on the percentage cost
reduction
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insignificant effects on the cost reductions. Since retailer 1 does not use transship-
ments to satisfy either demand class, its transshipment costs do not contribute to cost
reductions enjoyed via transshipments. Similarly, retailer 2 satisfies most of its own
high-priority customer demands, so increasing c2,1,d does not affect cost reductions
much. On the other hand, c2,2,d plays quite a significant role, as Fig. 2b suggests.
This figure might seem counterintuitive, since having a lower unit cost results in lower
percentage cost reduction, while increasing the unit cost increases the percentage cost
reduction. To understand this, note that when transshipments are allowed, we require
them to bemade between retailers first, and then from the depot, whereas when retailer
transshipments are not allowed, transshipments come only from the depot. Therefore,
if the transshipment cost from the depot is low (ci, j,d < ci, j,w), the benefits of trans-
shipments decrease, with the trend reversing as the depot transshipment cost increases.

Figure 3 shows the effect of demand rates on the percentage cost reduction achieved
by allowing transshipments between retailer 1 and retailer 2. Note that the percent-
age cost reductions are quite insensitive to λ1,1 and λ1,2, the demand rates at retailer
1. Transshipments have a slight effect on retailer 1’s inventory replenishment and
rationing policy. Hence, any change in the demand of either type of customer does not
result in change in the cost reduction, i.e., the demand rates affect the average costs
before and after transshipments in the same directions and magnitude. On the other
hand, retailer 2’s demand rates play a more significant role in percentage cost reduc-
tions. As the rate of high-priority customer demands at retailer 2, i.e., λ2,1, increases,
transshipments are still beneficial, but their benefit decreases since transshipping high-
priority demands is expensive. On the other hand, as the rate of low-priority customer
demands at retailer 2, i.e., λ2,2, increases the benefit of transshipments increases.
When we compare the inventory and rationing policies of retailer 2 for low and high
values of λ2,2, we observe that before allowing transshipments, the main difference
is in the order quantity Q2; the higher the demand rate, the bigger the order quantity.
However, retailer 2 has a high unit holding cost. Therefore, before allowing trans-
shipments, increasing λ2,2 results in higher average cost. When transshipments are
allowed, retailer 2 does not need to increase its order quantity as there is another
cheaper option to satisfy its low-priority demands. The average cost increases slightly
as λ2,2 increases, but the increase is much less than the increase in the cost before
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Fig. 4 a Fixed ordering costs. b Unit holding costs. Effects of the fixed ordering and the unit holding costs
on the percentage cost reduction

transshipments. This explains the increase in the percentage cost reduction as λ2,2
increases (Fig. 3).

Our sensitivity analysis on the effects of the fixed ordering costs K1 and K2 and the
unit holding costs h1 and h2 suggests that retailer 1’s cost parameters slightly affect
the percentage cost reduction; the higher the K1 and h1, the lower the percentage cost
reduction. Increasing K1 results in less frequent orders, and increasing h1 results in
lower order quantities at retailer 1. These imply that the inventory level at retailer
1 gets lower and is not enough to satisfy all transshipment requests from retailer 2.
retailer 2’s cost parameters do not affect the percentage cost reduction (Fig. 4).

When the system consists of more than two retailers, each retailer chooses which
retailer to request items from first. Under our objective of minimizing the total system
cost, we claim that it is generally better to sort the retailers in N\i in increasing order
of their unit transshipment cost in order to determine the sequence. In order to test this
claim, we perform a numerical study using the data in Table 7.

Note that we have c1, j,2 = c2, j,1 ≤ c1, j,3 = c3, j,1 ≤ c2, j,3 = c3, j,2 for j = 1, 2,
which is consistent with Seq2. For 100 random parameter combinations, we solve the
problem for both sequence lists, and in all instances, we observe that Seq2 provides
lower average costs. Table 8 summarizes the percentage cost benefits achieved by using
Seq2 instead of Seq1, i.e., 100

C1(r,k,Q)−C2(r,k,Q)
C1(r,k,Q)

. Here, Cm(r, k, Q) is the average
system cost when sequence list Seqm is used. We calculate similar percentages for
each individual retailer as well.

The only difference between Seq1 and Seq2 is that in Seq1, retailer 2 places trans-
shipment requests initially with retailer 3, although it is cheaper to transship from
retailer 1. According to the results in Table 8, retailer 2 benefits the most from chang-
ing the sequence of its requests. This change benefits the overall system as well.

6.5 Inventory systems with more than three retailers

The approximation procedure for MuReP can be used for systems with any number
of retailers. In this section, we summarize our results for 5-retailer and 10-retailer
systems. For both systems, we consider two types of retailers. We fix T to 1. The rest
of the data are in Table 9.
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Table 7 Parameter values for the experiment testing the effects of transshipment sequence

Parameter Values

N 3

T 1

λi,1 1

λi,2 ∼ U [0, 10]
hi ∼ U [0.5, 1.5]
[c1,1,2 = c2,1,1, c1,2,2 = c2,2,1] [∼ U [50, 100], ∼ U [1, 5]]
[c1,1,3 = c3,1,1, c1,2,3 = c3,2,1] [c1,1,2+ ∼ U [0, 50], c1,2,2+ ∼ U [0, 5]]
[c2,1,3 = c3,1,2, c2,2,3 = c3,2,2] [c1,1,3+ ∼ U [0, 50], c1,2,3+ ∼ U [0, 5]]
ci,1,d ∼ U [500, 1500]
ci,2,d ∼ U [15, 20]
Ki 200

Seq1 =
⎛

⎝
O1
O2
O3

⎞

⎠, Seq2 =
⎛

⎝
O1
O2
O3

⎞

⎠

⎛

⎝
2 3
3 1
1 2

⎞

⎠,

⎛

⎝
2 3
1 3
1 2

⎞

⎠

Table 8 Percentage cost benefit
of Seq2

Stats Ret. 1 Ret. 2 Ret. 3 System

Avg. − 0.51 22.74 0.62 8.92

SD 0.42 11.36 0.46 5.70

Max. −0.01 51.19 2.15 25.61

Table 9 Parameter values for
the retailer types

Parameter Retailer type 1 Retailer type 2

λi,1 1 1

λi,2 ∼ U [0, 5] ∼ U [0, 10]
hi ∼ U [2.5, 3.5] ∼ U [0.5, 1.5]
ci,1,w ∼ U [10, 95] ∼ U [10, 95]
ci,2,w ∼ U [0, 10] ∼ U [0, 10]
ci,1,d ∼ U [200, 500] ∼ U [500, 1000]
ci,2,d ∼ U [10, 15] ∼ U [20, 30]
Ki 400 100

We use the enumeration-based approximation for SiReP to solve problems (without
transshipments) for retailers of types 1 and 2 with 500 different parameter combina-
tions. In all the instances, the policies for type 1 and type 2 retailers are of type k < r
and k ≥ r , respectively.

Next, we allow retailers to transship and use the approximation procedure for
MuReP to solve 5-retailer and 10-retailer problems. For all the instances we assume
that each retailer uses a cost-ordered sequence list. For both problems, we consider
multiple numbers of each retailer type. The average cost reductions are summarized
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Table 10 Results for 5-retailer and 10-retailer systems

5 Retailers (5, 0) (4, 1) (3, 2) (2, 3) (1, 4) (0, 5)

Avg. cost reduction 28.21 29.43 30.42 30.87 33.26 41.33

10 Retailers (10, 0) (8, 2) (6, 4) (4, 6) (2, 8) (0, 10)

Avg. cost reduction 34.45 34.84 35.33 36.59 38.06 45.45

in Table 10. The notation (n1, n2) in the header rows specifies that there are n1 and
n2 retailers of type 1 and type 2, respectively.

The results in Table 10 suggest that, independent of the number of retailers, the
system enjoys significant cost reductions when transshipments among retailers are
allowed. There exists a consistent cost reduction pattern when the combination of the
number of type 1 and type 2 retailers changes. As the number of retailers with pre-
transshipment policy of k < r type increases, the percentage cost reductions increase.
We observe that when transshipments are allowed, retailers start to incline toward a
policy of type k ≥ r and the greatest cost reductions occur when more retailers are
of type k < r before transshipments and of type k ≥ r after transshipments. These
results are consistent with the results in Table 6.

In today’s competitive environment, most retailers do not want to lose any of their
customers. On the other hand, customers benefit from having multiple competing
retailers and prefer buying from the one that offers the same product for a lower
price. This makes them low-priority customers. In fact, for many retailers, low-priority
customers constitute a higher percentage of the total demand. This is why retailers
incline toward the k < r -type policy. Our results indicate that by satisfying each
other’s customer demands through transshipments, these retailers can change their
policy to the k ≥ r type and still enjoy significant cost benefits.

6.5.1 Alternative prioritization rule

In all the analysis and numerical results so far we assume that a type- j demand at
retailer i is again a type- j demand for the retailers in the rest of the system. We claim
that our approximationprocedure forMuRePcanbe easilymodified tohandle anyother
alternative prioritization rule. In this section, we assume that all transshipment requests
have low priority. This change requires modifications in the expressions introduced in
Sect. 5.

γi, j,oi (n) is the expected demand rate of type- j items retailer i requests from retailer
oi (n) ∈ Oi . Now, since all the requests are of low priority, for j = 1, 2, we have

γi, j,oi (n) =
(
(1 − βi, j )λi, j

)[
�n−1

m=1(1 − βoi (m),2)
]
βoi (n),2,∀n ∈ {1, 2, . . . , N − 1} .

Here, (1 − βi, j )λi, j is the expected number of retailer i’s type- j demands requested
from other retailers. The product�n−1

m=1(1−βoi (m),2) is the probability that the retailers
who are before retailer oi (n) in the sequence Oi reject low-priority demands. Hence,
this is the probability of not satisfying retailer i’s transshipment request. βoi (n),2 is
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Table 11 Results for 5-retailer systems when all transshipment requests have low priority

5 Retailers (5, 0) (4, 1) (3, 2) (2, 3) (1, 4) (0, 5)

Avg. cost reduction 19.38 3.27 2.09 1.43 1.09 0.01

the probability that the nth retailer in the list satisfies retailer i’s the transshipment
request. The expressions for total demand rate at retailer i for type- j demands after
all transshipment requests, λ̂i, j , are

λ̂i,1 = βi,1λi,1,

λ̂i,2 = βi,2λi,2 +
2∑

j=1

∑

w|i∈Ow

γw, j,i .

The expressions for γi, j,d and π̂i, j remain the same. Although the priority level of
high-priority customers changes as retailers request transshipments, the cost of losing
a customer still depends on the original priority level of the customer. This is why the
expressions for π̂i, j remain the same.

We compare this alternative prioritization rule with the original rule, where a
retailer’s high-priority demands have high priority and low-priority demands have
low priority at other retailers. The results in Tables 10 and 11 are obtained using
exactly the same realizations of random parameters. Here, we report our results for
the systems with 5 retailers only since the results for the systems with 10 retailers are
similar.

When retailers use the alternative prioritization rule to satisfy the transshipment
requests the benefit of transshipments decreases. In Table 11, we report the percentage
reductions in average percentage cost reductions. Hence, if CRorg and CRalt repre-
sent the average percentage cost reductions due to transshipments in the original and
alternative prioritization rule, respectively, the numbers in Table 11 are obtained by

100CR
org−CRalt

CRorg .
In the alternative prioritization rule all transshipment requests have low priority.

This is why the customers who originally have high priority are more likely to be
rejected by other retailers. Since it is costly to reject high-priority demands, the overall
system cost is higher compared to the original prioritization rule. However, according
to the results in Table 11, the system still enjoys significant cost reductions. The
difference between the prioritization rules decreases as more retailers become k < r
type. Retailers who follow k < r -type policy have a tendency to reject a smaller
number of low-priority customers. For the alternative prioritization rule, this implies
fewer rejects for the customers who originally have high priority. This is why the
cost benefits of the rules become similar as more retailers are k < r type. Therefore,
companies with multiple retailers can use the alternative prioritization rule without
losing any benefit if before allowing transshipments most of the retailers are k < r
type.
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Table 12 Results for 5-retailer systems when transshipments are allowed for high-priority demands only

5 Retailers (5, 0) (4, 1) (3, 2) (2, 3) (1, 4) (0, 5)

Avg. cost reduction 0.00 4.30 15.44 32.61 61.13 88.79

6.5.2 Transshipments for high-priority demands only

In all the analysis and numerical results so far we assume that the retailers can place
transshipment requests for both types of customer demands. In this section, we assume
transshipments for high-priority customer demands only. The rejected low-priority
customer demands are satisfied directly from the central depot. We assume that a
retailer’s high-priority demands have high priority at other retailers.

We compare this settingwith the original setting. The results in Tables 10 and 12 are
obtained using exactly the same realizations of random parameters. Similar to Sect.
6.5.1, we report our results for the systems with 5 retailers only since the results for
the systems with 10 retailers are similar.

When transshipments are allowed for high-priority customer demands only, the
benefit of transshipments is lower compared to the original setting. In Table 12, we
report the percentage reductions in average percentage cost reductions (calculated as
explained in Sect. 6.5.1). According to the results, the difference between the original
setting and the setting where transshipments are allowed for high-priority customer
demands decreases as more retailers become k ≥ r type. When all retailers are k ≥ r
type, the low-priority customer demands are rejected, i.e., satisfied from the central
depot, more often anyway. This is why there is almost no difference between the
original setting and the alternative setting where transshipments are allowed for high-
priority customer demands only. Therefore, companies with multiple retailers can use
the alternative setting without losing any benefit if before allowing transshipments
most of the retailers are k ≥ r type.

7 Conclusions and future research directions

In this paper, we study a multi-retailer system with two types of customers. Each
retailer employs a rationing, critical-level policy in the context of a continuous-review
(r, Q) inventory model. We propose an accurate approximation procedure to solve the
joint rationing and transshipment problem.We elaborate on how transshipments affect
optimal policies of individual retailers and identify the types of systems that benefit
from transshipments the most.

According to our results, transshipments reduce the penalty cost of not satisfying
the customer demands directly from stock. Therefore, retailers keep less inventory
and enjoy cost reductions even if they operate with lower service levels. Retailers
with pre-transshipment rationing policies that suggest rejecting low-priority customer
demands more aggressively, i.e., k ≥ r , benefit from the transshipments the most. Our
results indicate that when transshipments are allowed among retailers, retailers start
to incline toward a policy of type k ≥ r . Our sensitivity analysis suggests that cheap
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transshipment options bring cost benefits. When the objective is cost minimization,
a sequencing rule based on unit transshipment costs seems to perform better than a
random rule.

We provide insights to help company managers in making decisions on how to
make use of transshipments in reducing their operational costs. Depending on the
retailers’ pre-transshipment inventory replenishment policies, managers can design a
transshipment policy for guaranteeing substantial cost reductions. More specifically,
we show that as the number of retailers with pre-transshipment policy of k < r
type increases, the cost benefit of using transshipments increases. We also study an
alternative prioritization rule, in which all transshipment requests have low priority.
We conclude that the difference between the original rule and the alternative rule
decreases as more retailers have a policy of k < r type before transshipments. In
the original setting the retailers can place transshipment requests for both types of
customer demands. We alternatively analyze the setting in which transshipments are
used to satisfy high-priority demands only. We conclude that the companies with
multiple retailers can use the alternative setting without loss of any benefit if before
allowing transshipments most of the retailers are k ≥ r type. Consequently, if a
company has many retailers with policies of k < r type before transshipments, we
advise transshipments for all types of customer demands. Both prioritization rules can
work. On the other hand, if a company has many retailers with policies of k ≥ r type
before transshipments, we advise that high-priority customers are given high priority
and low-priority customers are given low priority at other retailers. Transshipping only
high-priority customer demands provides most of the benefit the transshipments bring,
hence, can be a preferred setting.

Although our approximation procedure is robust enough to handle the case where
low-priority demands of one retailer can be viewed as high-priority demands by other
retailers, we do not study this in our numerical analysis. It might be interesting to
see how the policy parameters change in this variation. Determination of the optimal
prioritization rule is an interesting problem, too. In addition, the robustness of the
procedure allows us to use it for problems with more than two customer demand
classes. Here the challenge is to calculate the policy parameters for the pure rationing
problem; if that can be done, we can use our algorithm to solve the problem with
transshipments. This, too, can be a possible future research direction.

Our analysis is based on the assumption that the transshipping location does not
hold back any inventory. An alternative pooling policy suggests holding back part of
the inventory to cover future demand. The combination of rationing and this alternative
policy would require two critical levels: one for the rationing policy and another for
the transshipment requests. Although incorporating another decision variable makes
the problem challenging, it would be interesting to investigate the interplay between
these two critical levels.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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