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Abstract In this paper, we compare different formulations of themulti-depot fleet size
and mix vehicle routing problem (MDFSMVRP). This problem extends the multi-
depot vehicle routing problem and the fleet size and mix vehicle routing problem,
two logistics problems that have been extensively studied for many decades. This
difficult vehicle routing problem combines complex assignment and routing decisions
under the objective of minimizing fixed vehicle costs and variable routing costs. We
first propose five distinct formulations to model the MDFSMVRP. We introduce a
three-index formulation with an explicit vehicle index and a two-index formulation in
which only vehicle types are identified. Other formulations are obtained by defining
aggregated and disaggregated loading variables. The last formulation makes use of
capacity-indexed variables. For each formulation, we summarize known and propose
new valid inequalities, including symmetry breaking, lexicographic ordering, routing,
and rounded capacity cuts. We then implement branch-and-cut and branch-and-bound
algorithms for these formulations, and we fed them into a general purpose solver. We
compare the bounds provided by the formulations on a commonly used set of instances
in theMDFSMVRP literature, containing up to nine depots and 360 customers, and on
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newly generated instances. Our in-depth analysis of the five formulations showswhich
formulations tend to perform better on each type of instance. Moreover, our results
have considerably improved available lower bounds on all instances and significantly
improved quality of upper bounds that can be obtained bymeans of currently available
methods.

Keywords Vehicle routing problem · Multi-depot · Heterogeneous fleet · Formula-
tion · Mathematical model · Exact solution

1 Introduction

Distribution problems are central to the performance of many industries. The area of
transportation has been widely studied, notably the vehicle routing problem (VRP)
(Toth and Vigo 2014) which has attracted the interest of many researchers for more
than 50 years (Laporte 2009) and is still among the most prominent and widely studied
combinatorial optimization problems. Several different exact and heuristic algorithms
have been proposed since the seminal paper of Dantzig et al. (1954), and in the past
decade a myriad of practical applications have emerged, describing many variants of
the classical capacitatedVRP (Lahyani et al. 2015b;Coelho et al. 2016). These variants
often incorporate ad hoc decisions or constraints to address challenging problems
observed from practice.

In this paper, we model and solve the multi-depot fleet size and mix vehicle routing
problem (MDFSMVRP). This problem is a direct generalization of the classical VRP
by considering multiple depots and different types of vehicles to serve a set of cus-
tomers with known demands. It combines three decisions simultaneously: selecting
the number of vehicles of each type, planning vehicle routes and assigning routes to
depots. Each vehicle is characterized by a fixed and a variable cost proportional to
the traveled distance. The number of available vehicles of each type is assumed to
be unlimited. The simultaneous optimization of the best fleet composition, the best
vehicle routes and the depot choice substantiates the challenges of this problem. The
MDFSMVRP consists of designing a set of vehicle routes, each starting and ending
at the same depot, visiting each customer exactly once, and respecting the capacity of
the vehicles. The objective is to minimize the total fixed and variable routing costs.

The literature dealing explicitly with the MDFSMVRP is not well furnished as
the problem includes several prominent problems as special cases, such as the multi-
depot VRP (MDVRP) and the FSMVRP. We are aware of four works focusing on the
MDFSMVRP. A seminal work on this specific variant is due to Salhi and Sari (1997).
The authors propose a multi-level composite heuristic based on integrating and mod-
ifying efficient heuristics designed for the single depot fleet size and mix vehicle
routing problem (FSMVRP). Their method relies on switching to a more powerful
and expensive neighborhood when moving to a superior level. The authors integrate
reduction tests and refinement modules in the heuristic to speed up some of its steps.
Seventeen years later, Salhi et al. (2014) propose a mixed integer linear program to
formulate the problem and a set of valid inequalities to tighten it. They also propose a
variable neighborhood search metaheuristic. The method distinguishes between cus-
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tomers served from their nearest depots and borderline customers. It makes use of
local search heuristics and Dijkstra’s algorithm to refine the tours constructed for
each depot separately. The authors derive lower and upper bounds using a 3-h execu-
tion of CPLEX and provide percentage gaps computed using the best known bounds.
Recently,Vidal et al. (2014) propose a unified algorithmic framework tackling different
classes of multi-depot VRPs with and without fleet mix. They present two meta-
heuristics, i.e., a multi-start iterated local search and a hybrid genetic algorithm. Both
methods rely on a bidirectional dynamic programming approach to efficiently evaluate
customer-to-depots assignments. The three published works described above assess
the performance of their methods on the same testbed. Finally, Mancini (2016) tackles
a real and new variant of the MDFSMVRP with multiple periods and different levels
of incompatibility between customers and vehicles, and between customers and days.
The author proposes an adaptive large neighborhood search metaheuristic and demon-
strates the performance of her method on a new set of randomly generated instances.

Many papers and book chapters have been devoted to study separately the two
straightforward reductions of the MDFSMVRP. The primary decision related to the
fleet consists to determine the optimal size of the fleet, which may be limited for the
heterogeneous fleet vehicle routing problem (HFVRP) or unlimited for the FSMVRP.
Dealing with the fleet composition goes back to the seminal papers by Gheysens et al.
(1984) and Golden et al. (1984). Since then, several variants of the FSMVRP have
been addressed in the literature, including those with time windows (Koç et al. 2015),
pickups and deliveries (Qu and Bard 2014), multi-trip (Prins 2009), and more recently
green routing (Juan et al. 2014; Saka et al. 2017), andmulti-compartment (Derigs et al.
2011; Lahyani et al. 2015a). Several metaheuristics (Euchi and Chabchoub 2010; Liu
2013) addressed large-scale instances of the FSMVRP, while exact methods (Yaman
2006; Baldacci and Mingozzi 2009) manage smaller-size ones. For more details, we
refer to recent surveys proposed by Baldacci et al. (2008), Andersson et al. (2010),
Irnich et al. (2014a) and Koç et al. (2016b).

The literature for the MDVRP is also rich. This problem first appeared in the liter-
ature in the works of Kulkami and Bhave (1985) and Carpaneto et al. (1989). More
intricate and extended variants of theMDVRP have also been studied. Mancini (2016)
and Rahimi-Vahed et al. (2015) consider a closely related problem with multiple peri-
ods. Time-related constraints including static and fuzzy time windows for customers
and depots have also received increased attention in the last few years, e.g., Bettinelli
et al. (2011), Xu and Jiang (2014), Adelzadeh et al. (2014) and Koç et al. (2016a)
along with the consideration of open vehicles routes, e.g., Liu et al. (2014), Lalla-
Ruiz et al. (2015). Besides, several works focused on studying the MDVRP combined
with the location problem, e.g., Contardo et al. (2013) and Prodhon and Prins (2014).
The great amount of solution methods proposed for the MDVRP has been focused on
the design of metaheuristic algorithms, e.g., genetic algorithms (Thangiah and Salhi
2001; Vidal et al. 2012) and adaptive large neighborhood search algorithm (Pisinger
and Ropke 2007) for large-scale cases as well as exact algorithms (Baldacci and Min-
gozzi 2009; Contardo et al. 2013; Contardo and Martinelli 2014) for smaller scale
instances. An extensive survey of all methods is outside the scope of this section, and
we refer to Karakatič and Podgorelec (2015) and Montoya-Torres et al. (2015) for
focused and recent surveys for the MDVRP. In Karakatič and Podgorelec (2015) the

123



128 R. Lahyani et al.

authors focused on reviewing genetic algorithms designed for solving MDVRPs and
compared them to other existing approaches, both exact and heuristic for solving this
same problem. In Montoya-Torres et al. (2015) the authors presented a systematic
review of MDVRP literature and an analysis of both single- and multiple-objective
multi-depot problems.

The MDFSMVRP is an NP-hard combinatorial problem since the VRP is NP-
hard. Several authors explicitly outline the difficulty of solving to optimality either the
FSMVRP instances or the MDVRP instances, or even finding tight bounds (Pessoa
et al. 2009; Salhi et al. 2014).

Our contributions lie in adapting and proposing new formulations and valid inequal-
ities for the MDFSMVRP. Specifically, we propose a model based on a three-index
VRP formulation introduced by Laporte and Nobert (1987), to which we include new
dimensions to account for each vehicle type, as in Vidal et al. (2014). We then present
a formulation derived from the two-index VRP model of Laporte (1986), in which
we create copies of the graph for each vehicle type, but we do not identify individual
vehicles. Our third formulation is derived from the commodity flow model proposed
in Salhi and Rand (1993) and Yaman (2006), which we modify to consider multi-
ple depots. This formulation makes use of loading variables to model capacity and
subtour elimination constraints. We obtain our fourth formulation by disaggregating
the loading variables by vehicle type, as in Yaman (2006). Finally, the last formula-
tion we propose is derived from the model of Pessoa et al. (2009) for the FSMVRP,
which is compact enough to enumerate all variables and constraints, and to which
we incorporate new procedures to reduce the number of variables. We compare these
five formulations in order to provide tighter bounds for this difficult routing prob-
lem. The focus of the paper is on the last three compact formulations since the first
two path-based formulations have been extensively studied in the VRP literature. We
compare the last three formulations against the one proposed by Salhi et al. (2014).
The five formulations are intended to be solved with a general purpose solver. We
also describe the thinking path and the conceptual motivation behind the proposition
of the five formulations. A subproduct of this research is to identify the origins and
give credits to the main ideas used by our community to formulate many distribution
problems. Thus, for each proposed formulation, we provide the main references that
have put forward the modeling techniques and the valid inequalities used.

The remainder of this paper is organized as follows. In Sect. 2, we provide a formal
description of theMDFSMVRP, followed by the introduction of the five mathematical
models. Section 3 presents a description and discussion of several theoretical analysis
for the VRP and lays down some theoretical comparison for our five models. The
algorithms used to solve these formulations are briefly presented in Sect. 4. The results
of extensive computational experiments are presented in Sect. 5. Section 6 is devoted
to our conclusions.

2 Problem description and mathematical formulations

The MDFSMVRP is formally defined on a directed graph G = (V,A), where V is
the vertex set and A is the arc set. The vertex set V is partitioned into two subsets
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Vd = {1, . . . ,m} representing m depots, and Vc = {m + 1, . . . ,m + n} representing
n customers, such that V = Vd ∪ Vc. Each customer i ∈ Vc is associated with a
nonnegative demand qi , while qi = 0, i ∈ Vd . The distance between nodes i and
j ∈ V is βi j . In the following, we use the terms cost and distance interchangeably.
The use of loop arcs (i, i) is not allowed including loop arcs between customers i ∈ Vc

and loop arcs between depots i ∈ Vd . This is imposed by defining βi i = ∞ for all
i ∈ V . Also, back-and-forth arcs connecting two different depots are forbidden by
imposing βi j = ∞ for all i, j ∈ Vd , i �= j . Graph G is assumed to be complete as
it includes all the arcs connecting the vertex pairs, with the exception of loops. If the
distance matrix is asymmetric, the arc setA is composed of {(i, j) : i, j ∈ V, i �= j}.
Otherwise, i.e., when βi j = β j i , the arc setA is replaced by a set of undirected edges,
E such that E is composed of edges {(i, j) : i, j ∈ V, i > j}. A fleet of heterogeneous
vehicles K = {1, . . . , K } with different capacities and housed in multiple depots
d ∈ Vd is available. Each vehicle type k ∈ K is associated with a capacity Qk , a fixed
cost Fk and a variable cost αk per unit of distance. Each vehicle must start and end
its journey at the same depot. We define a set H as a fleet including n copies of each
vehicle type k, with |H| = nK . Each vehicle has an index t ∈ H that represents its
number. Each vehicle t ∈ H is associated with a capacity Qt , a fixed cost Ft and a
variable cost αt which are equal to the capacity Qk , the fixed cost Fk , and the variable
cost αk of its corresponding type k.

A solution to the problem must determine routes that minimize the total costs such
that each route must start and end at the same depot, each customer is visited exactly
once, and the total demand of each route does not exceed the capacity of the selected
vehicle. Also, when solving this problem, the vehicle fleet composition will be found
for all depots as well as for each depot. An illustration of this problem is shown in
Fig. 1 where each route is performed by a different vehicle.

We now provide five different formulations for the MDFSMVRP. In Sect. 2.1 we
present a vehicle flowmodel which explicitly considers all edges, vehicles and depots.
In Sect. 2.2 we show an adaptation of the two-index formulation, notably extending it
to handle an heterogeneous fleet. Section 2.3 presents a commodity flow formulation
in which capacity and subtour elimination constraints are expressed using flows. In
Sect. 2.4 we introduce a model based on disaggregated loading variables by vehicle
type. In Sect. 2.5 we present a capacity-indexed formulation for the problem at hand.

2.1 Explicit formulation

We first provide a three-index vehicle flow formulation for the symmetric case with an
explicit vehicle index. The extension to an asymmetric version is straightforward. This
formulation is based on the model proposed by Golden et al. (1977) for the multiple
depot vehicle routing problem with length restrictions, on the three-index vehicle
flow formulation proposed by Laporte and Nobert (1987) for the asymmetrical multi-
depot VRP with homogeneous fleet, on the model proposed by Toth and Vigo (2002)
for the single depot VRP, and on the model proposed by Vidal et al. (2014) for the
MDFSMVRP. Note that as required for this symmetric case, the arc setA is replaced
by the set of undirected edges, E = {(i, j) : i, j ∈ V, i > j}, because as it was
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Fig. 1 Solution for the MDFSMVRP with 2 depots, 10 customers and 3 vehicle types

stated in Toth and Vigo (2002) and Irnich et al. (2014b), it is not necessary to know in
which direction edges are traversed by the vehicles. We define routing variables xtdi j
to indicate the number of times (0, 1, 2) edge (i, j)(i > j) is used in the solution. xtdi j
equal to one if edge (i, j) is traversed by vehicle t housed at depot d, and equal to
two for a round trip to customer j . Binary variables ytdi are equal to one if node i is
visited by vehicle t from depot d. Note that, as in Vidal et al. (2014), in formulation
F1 t refers to the vehicle index, not the vehicle type since all the available vehicles
are explicitly considered. However, unlike Vidal et al. (2014), we define different
assignment variables ytdi . The problem can then be formulated as follows:

(F1) minimize
∑

i∈Vd

∑

t∈H

∑

d∈Vd

Ft ytdi +
∑

(i, j)∈E

∑

t∈H

∑

d∈Vd

αtβi j x
td
i j (1)

subject to

∑

t∈H

∑

d∈Vd

ytdi = 1 i ∈ Vc (2)

∑

j∈V,i> j

x tdi j +
∑

j∈V, j>i

x tdji = 2ytdi i ∈ V, t ∈ H, d ∈ Vd (3)

ytdi ≤ ytdd i ∈ Vc, t ∈ H, d ∈ Vd (4)
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ytdd ≤
∑

(i, j)∈E
xtdi j t ∈ H, d ∈ Vd (5)

2ytdd ≤
∑

i∈Vc

x tdid t ∈ H, d ∈ Vd (6)

∑

i∈Z

∑

j∈Z,i> j

x tdi j ≤
∑

i∈Z
ytdi − ytdz Z ⊆ Vc, |Z| ≥ 2, z ∈ Z, t ∈ H, d ∈ Vd

(7)∑

i∈Vc

qi y
td
i ≤ Qt t ∈ H, d ∈ Vd (8)

xtdi j ∈ {0, 1} (i, j) ∈ E, t ∈ H, d ∈ Vd (9)

xtdi j ∈ {0, 1, 2} i ∈ Vc, j ∈ Vd , t ∈ H, d ∈ Vd (10)

ytdi ∈ {0, 1} i ∈ V, t ∈ H, d ∈ Vd . (11)

The objective function (1) minimizes the total cost composed of fixed vehicle costs
and variable routing costs. Constraints (2) impose that all customers must be visited
exactly once. Constraints (3) are degree constraints and constraints (4) impose that if a
customer is served by vehicle t housed at depot d, then vehicle t must leave the depot.
Constraints (5) and (6) link the two types of variables of the problem. They ensure that
if a vehicle t of depot d is used, then at least one customer i must be visited by this
vehicle. Constraints (7) forbid subtours. Constraints (8) impose vehicle capacities.
The domain of the variables is enforced by constraints (9)–(11). This formulation
contains O(2n) subtour elimination constraints whose number grows exponentially
with n. This is a large formulation which strongly depends on the number of available
vehicles.

Model F1 is sufficient to represent the MDFSMVRP; however, we can add some
valid inequalities and lift some constraints to strengthen it. Constraints (12) enforce
restrictions related to the vehicle use. Specifically, each vehicle t housed at depot d is
allowed to perform at most one trip.

∑

j∈Vc

x tdjd ≤ 2 t ∈ H, d ∈ Vd . (12)

To avoid symmetries due to the presence of identical vehicles at each depot, we
introduce vehicle symmetry breaking constraints. Observe that (13) and (14) are only
valid if the fleet is homogeneous. We define the set Hk ⊂ H containing only the
homogeneous vehicles of type k. Thus, constraints (13) state that vehicle t can only
be dispatched if vehicle t − 1 is already dispatched. Constraints (14) rank identical
vehicles according to the index of the customers visited. These constraints are defined
for each depot. They are inspired by those presented inAdulyasak et al. (2013), Coelho
and Laporte (2013), Coelho and Laporte (2014), and Lahyani et al. (2015a).

ytdd ≤ yt−1,d
d t ∈ Hk\{Hk

1},Hk ⊂ H, k ∈ K, d ∈ Vd (13)
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ytdi ≤
∑

j∈Vc, j<i

∑

h∈Vd

yt−1,h
j i ∈ Vc, t ∈ Hk\{Hk

1},Hk ⊂ H, k ∈ K, d ∈ Vd ,

(14)

where Hk
1 represents the first element of Hk .

We also introduce a set of logical inequalities that enforce the relationships between
routing and visiting variables. They are defined as follows:

ytdd ≤
∑

i∈Vc

ytdi t ∈ H, d ∈ Vd (15)

xtdid ≤ 2ytdi i ∈ Vc, t ∈ H, d ∈ Vd (16)

xtdi j ≤ ytdj i, j ∈ Vc, i > j, t ∈ H, d ∈ Vd (17)
∑

j∈Vc

ytdj ≤
∑

(i, j)∈E
xtdi j t ∈ H, d ∈ Vd (18)

2ytdj ≤
∑

i∈Vc

x tdid j ∈ Vc, t ∈ H, d ∈ Vd (19)

∑

j∈V,i> j

∑

t∈H

∑

d∈Vd

x tdi j +
∑

j∈V,i< j

∑

t∈H

∑

d∈Vd

x tdji = 2 i ∈ Vc (20)

⌈∑
i∈Vc

qi

max{Qt }
⌉

≤
∑

i∈Vc

∑

t∈H

∑

d∈Vd

x tdid . (21)

Constraints (15)–(20) are referred to as routing cuts. The first ones replace the right
hand side of constraints (5) by enforcing that at least one customer must be visited by
vehicle t of depot d if this vehicle is used. We also note that constraints (15) are the
sum over the customers in inequalities (4). Constraints (16) remove all edges (i, d)

if customer i is not visited by vehicle t of depot d. Constraints (17) further remove
variables by forbidding the use of edge (i, j) if customer j is not visited by vehicle
t housed at depot d. Constraints (18) impose that the sum of customers visited by
vehicle t is less than or equal to the sum of edges traversed by vehicle t . Constraints
(19) impose the condition that if vehicle t of depot d is not used, then customer j
cannot be visited by this vehicle. Equations (20) further define the degree constraints
by imposing that each customer is visited once. Finally, constraints (21) are referred to
as rounded capacity cuts (Naddef and Rinaldi 2002; Pessoa et al. 2009). They impose
a lower bound on the number of used vehicles. However, in the case it is not necessary
to use the vehicle with the biggest capacity in one trip, and if there is a considerable
difference between max{Qt } and the capacity of the used vehicle, then the left hand
side of constraints (21) may give a poor lower bound. Even if these constraints are
redundant in this context, they are known to help the mathematical programming
solvers derive new cuts and improve the overall algorithmic performance (Coelho and
Laporte 2014; Gendron and Crainic 1994; Jena et al. 2015b, a; Lahyani et al. 2015a).

Constraints (22) and (23) are lexicographic ordering constraints. They are inspired
from the ones defined in Sherali and Smith (2001) and Adulyasak et al. (2013). Given

123



Alternative formulations and improved bounds for the… 133

the large coefficients that arise when dealing with large instances, these constraints
are only added for small and medium size instances containing up to 60 customers.

j∑

i=m+1

2( j−i)ytdi ≤
j∑

i=m+1

2( j−i)yt−1,d
i j ∈Vc, t ∈Hk\{Hk

1},Hk ⊂ H, k ∈ K, d ∈ Vd

(22)∑

i∈Vc

2(m+n−i)ytdi ≤
∑

i∈Vc

2(m+n−i)yt−1,d
i t ∈ Hk\{Hk

1},Hk ⊂ H, k ∈ K, d ∈ Vd .

(23)

2.2 Implicit vehicle index formulation

FormulationF1 has the drawback that the number of variables and constraints increases
when the number of vehicles increases. These variables are dependent on the number
of customers n.

We now propose a formulation with implicit vehicle assignment as proposed in
Laporte (1986), and Toth and Vigo (2002) for the single depot VRP.

This formulation uses the same type of variables defined in Sect. 2.1 but using the
index k instead of t which refers to vehicle types instead of individual vehicles. This
has the advantage of having one type of variable per vehicle type, instead of creating
one variable per vehicle of each type. For the sake of briefness, we do not restate the
whole definition of the variables and constraints (in this section and for the remainder
of this paper), and refer to the ones already defined in Sect. 2.1 when the interpretation
is straightforward. The only difference consists in to replace parameter t by parameter
k while defining the variables and the sets. This implicit vehicle index formulation can
then be defined as follows:

(F2) minimize
∑

j∈Vc

∑

k∈K

∑

d∈Vd

0.5Fkxkdjd +
∑

(i, j)∈E

∑

k∈K

∑

d∈Vd

αkβi j x
kd
i j (24)

subject to (2)–(6), (9)–(11) and to

∑

i∈S

∑

j∈S,i> j

xkdi j ≤ |S| − r(S) S ⊆ Vc,S �= ∅, k ∈ K, d ∈ Vd . (25)

When using a compact variables definition, the objective function (24) is expressed by
the variables xkdi j . Constraints (25) simultaneously replace constraints (7) and (8)where
r(S) is a lower bound on the number of vehicles required to serve the customers in S.
They correspond to generalized subtour elimination constraints, and prevent capacity
violation on each vehicle. This formulation has a number of linear subtour elimination
constraints growing exponentially with n. F2 is much more compact than F1 since it
depends on the number of vehicle types.

Several of the valid inequalities previously defined remain valid, namely (15)–(21).
Alternatively, we can reinforce subtour elimination (25) by introducing inequalities
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(7). Constraints (7) are known to be efficient when solving the problem with a branch-
and-cut algorithm. Both families of constraints (7) and (25) have a cardinality growing
exponentially with n.

Vehicle symmetry breaking constraints and lexicographic ordering constraints no
longer hold for this formulation because they require distinguishing between vehicle
index and not vehicle types.

2.3 Compact formulation with loading variables

A main disadvantage of model F2 presented in Sect. 2.2 is that capacity constraints
are not explicitly defined, requiring cuts to be added dynamically. This might lead
to weak bounds at the early stages of its optimization. To overcome this situation,
formulation F3 proposed in this section makes use of stronger constraints to handle
capacity restrictions.We define additional continuous variables to help control the load
of the vehicles. This model is based on the commodity flow formulation proposed by
Garvin et al. (1957) for anoil deliveryproblemand later extendedbyGavish andGraves
(1982) to VRP variants. A similar formulation for the single depot VRP is given in
Toth and Vigo (2002). Later, Baldacci et al. (2008) extended this formulation for the
VRP with heterogeneous fleet, Salhi and Rand (1993) and Yaman (2006) extended it
for the FSMVRP, Salhi et al. (2014) modified it to handle a VRP with multiple depots,
and Koç et al. (2016a) amended it for the fleet size and mix location-routing problem
with timewindows. The formulation proposed in this section is quite different from the
one proposed in Salhi et al. (2014) for the MDFSMVRP as we define new assignment
variables ykdi in addition to xkdi j . Indeed, Bosch and Trick (2005) highlight that adding
variables and/or constraints to a formulation may strengthen the linear relaxation and
provide improved formulations. They also state that for many problems, the use of
integer variables, even when it is not required, may expand the capability of the model
and help find an optimal solution.

The formulation is derived by defining new continuous variables zi j representing
the remaining load on the vehicle when traversing arc (i, j), i.e., after visiting node
i and before visiting node j . Note that the loading variables could be defined only
for the asymmetric version of the problem since the complete graph is considered. In
this graph, a vehicle must return to the depot empty. We also use the same four-index
binary variables xkdi j and the visiting binary variables ykdi defined in Sect. 2.2 but on

a directed graph. Indeed, in this model, (i, j) belongs to the arc set A and xkdi j takes
value one if arc (i, j) ∈ A traversed by vehicle type k housed at depot d is used
in the solution, and zero otherwise. In what follows, we restate all the constraints of
the problem dealing with routing variables xkdi j , since they are expressed differently
from the constraints defined in models F1 and F2, despite having the same role. The
formulation is defined by:

(F3) minimize
∑

i∈Vc

∑

k∈K

∑

d∈Vd

Fkxkddi +
∑

(i, j)∈A

∑

k∈K

∑

d∈Vd

αkβi j x
kd
i j (26)
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subject to (2), (4) and to:

∑

j∈V
xkdi j +

∑

j∈V
xkdji = 2ykdi i ∈ Vc, k ∈ K, d ∈ Vd (27)

∑

i∈V
xkdi j =

∑

i∈V
xkdji j ∈ V, k ∈ K, d ∈ Vd (28)

ykdd ≤
∑

(i, j)∈A
xkdi j k ∈ K, d ∈ Vd (29)

2ykdd ≤
∑

j∈Vc

xkdjd +
∑

j∈Vc

xkdd j k ∈ K, d ∈ Vd (30)

∑

i∈V
zi j −

∑

i∈V
z ji = q j j ∈ Vc (31)

∑

i∈Vd

∑

j∈Vc

zi j =
∑

j∈Vc

q j (32)

zi j ≤
∑

k∈K

∑

d∈Vd

(Qk − qi )x
kd
i j i ∈ V, j ∈ Vc (33)

xkdi j ∈ {0, 1} (i, j) ∈ A, k ∈ K, d ∈ Vd (34)

ykdi ∈ {0, 1} i ∈ V, k ∈ K, d ∈ Vd (35)

zi j ≥ 0 i, j ∈ V. (36)

The objective function (26) minimizes the total routing costs. Equations (2) enforce
that each customer must be visited exactly once. Constraints (27) and (28) replace
the flow conservation constraints (3) defined in model F1. Constraints (4), (29) and
(30) are equivalent to constraints (4)–(6) in model F1. They enforce that only used
vehicles may serve customers. Constraints (31)–(33) are specific to the commodity
flow formulation. They impose both the connectivity of the solution and the vehi-
cle capacity constraints. In particular, constraints (31) guarantee that each customer
demand is satisfied. Summing up these constraints yields constraint (32) which states
that the total load leaving all depots must be equal to the total customer demands.
Constraints (33) bound the load on each arc (i, j), i.e., after visiting node i the load
on arc (i, j) plus the demand of node i cannot exceed the capacity of the vehicle used.
Constraints (34)–(36) define the domain and nature of the variables. Formulation F3
has the advantage that connectivity constraints are polynomial in size, unlike mod-
els F1 and F2 which require a branch-and-cut algorithm to dynamically add subtour
elimination constraints which are exponential in number.

Because of the way new variables zi j are defined, it is possible to further tighten this
formulation. We introduce bounding constraints as in Salhi et al. (2014). Constraints
(37) impose a lower bound on loading variables. They state that the total load of arc
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(i, j) must be at least equal to the demand of node i .

zi j ≥
∑

k∈K

∑

d∈Vd

q j x
kd
i j i ∈ Vc, j ∈ Vc (37)

Constraints (38) and (39) enhance the flow conservation of the problem by impos-
ing that the total flow entering a node must equal to the total flow leaving the node.
Karaoglan et al. (2012) have introduced several classes of valid inequalities for the
location-routing problem with simultaneous pick-up and delivery. Some of these con-
straints have been extended to the fleet size and mix location-routing problem with
time windows in Koç et al. (2016a). We adapt these constraints in (40)–(42) to the
MDFSMVRP. They exclude illegal vehicle routes that do not start and end at the same
depot. Constraints (43) represent a special case of subtour elimination constraints on
two-node sets. Constraints (44) bound the number of vehicles trips.

∑

i∈V

∑

k∈K

∑

d∈Vd

xkdi j = 1 j ∈ Vc (38)

∑

j∈V

∑

k∈K

∑

d∈Vd

xkdi j = 1 i ∈ Vc (39)

∑

k∈K
xkdid ≤

∑

k∈K
ykdi i ∈ Vc, d ∈ Vd (40)

∑

k∈K
xkddi ≤

∑

k∈K
ykdi i ∈ Vc, d ∈ Vd (41)

∑

k∈K
xkdi j +

∑

k∈K
ykdi +

∑

k∈K

∑

h∈Vd ,h �=d

ykhj ≤ 2 i, j ∈ Vc, i �= j, d ∈ Vd (42)

xkdi j + xkdji ≤ 1 i, j ∈ Vc, k ∈ K, d ∈ Vd (43)
⌈∑

i∈Vc
qi

max{Qk}
⌉

≤
∑

i∈Vc

∑

k∈K

∑

d∈Vd

xkddi . (44)

2.4 Compact formulation with disaggregated loading variables

In this section, we propose a more detailed formulation based on F3 for the MDFS-
MVRP, referred to as F4. The motivation is to carry information related to the vehicle
type on each arc by disaggregating the loading variables zi j . We define new continu-
ous variables zki j , such that zi j = ∑

k∈K zki j . This model is inspired from the work of
Yaman (2006) for the FSMVRP. The model is defined by minimizing (26) subject to
(2), (4), (27)–(30), (34), (35) and to:

∑

i∈Vd

∑

j∈Vc

∑

k∈K
zki j =

∑

j∈Vc

q j (45)

∑

i∈V
zki j −

∑

i∈V
zkji =

∑

d∈Vd

q j y
kd
j j ∈ Vc, k ∈ K (46)
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zki j ≤
∑

d∈Vd

(
Qk − qi

)
xkdi j i ∈ V, j ∈ Vc, k ∈ K (47)

zki j ≥ 0 i, j ∈ V, k ∈ K. (48)

Constraints (45)–(47) have a similar meaning as constraints (31)–(33) of model F3.
The only exception is that they provide more precision on the vehicle type carrying
the load on arc (i, j). Formulation F4 has more continuous variables and constraints
compared to F3.

Model F4 can also be strengthened by (38)–(44), while constraints (37) must be
replaced by (49):

zki j ≥
∑

d∈Vd

q j x
kd
i j i ∈ Vc, j ∈ Vc, k ∈ K. (49)

2.5 Capacity-indexed formulation

In this section, we make use of a novel formulation to model VRPs, referred to as
capacity-indexed formulation. This type of formulation has only appeared a few times
for basic variants of VRPs. A seminal paper proposing a capacity-indexed formulation
for the time-dependent traveling salesman problem is due to Picard and Queyranne
(1978). Godinho et al. (2008) used it for the case of unitary demands. Later, Pessoa
et al. (2008) and Poggi de Aragão and Uchoa (2014) propose a similar formulation
for the asymmetric VRP, and Pessoa et al. (2007) and Pessoa et al. (2009) extend this
model to handle the asymmetric VRP with heterogeneous fleet.

We define new binary variables xkdqi j equal to one if and only if vehicle type k
housed at depot d traverses arc (i, j) with a load of q units. This variable indicates
the load of a given vehicle type housed at a given depot on a given arc, unlike the
commodity flow formulations (F3 and F4) that require the definition of continuous
variables to convey similar information. Vehicles returning to the depot must have a
load q equal to zero and a vehicle k traversing arc (i, j) must not carry a load q lower
that the demand of node j . This model can then be formulated as follows:

(F5) minimize
∑

i∈Vc

∑

k∈K

∑

d∈Vd

Qk∑

q=1

Fkxkdqdi +
∑

(i, j)∈A

∑

k∈K

∑

d∈Vd

Qk∑

q=0

αkβi j x
kdq
i j (50)

subject to

∑

j∈V

∑

k∈K

∑

d∈Vd

Qk∑

q=1

xkdqji = 1 i ∈ Vc (51)

∑

i∈Vc

Qk∑

q=1

xkdqdi =
∑

i∈Vc

xkd0id k ∈ K, d ∈ Vd (52)
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∑

j∈V
xkdqji =

∑

j∈V
xkd(q−qi )
i j i ∈ Vc, k ∈ K, d ∈ Vd , q = {qi , . . . , Qk} (53)

xkdqi j ∈ {0, 1} i, j ∈ V, k ∈ K, d ∈ Vd , q = {0, . . . , Qk}. (54)

The total routing costs are minimized in (50). Equation (51) consists of in-degree
constraints. They ensure that each customer is visited exactly once. Constraints (52)
ensure flow conservation and guarantee that if a vehicle of type k leaves a depot d with
a load q then it must return to this depot with a load equal to 0. The connectivity of the
solution and the vehicle capacity requirements are ensured due to constraints (53). If
vehicle k carrying a load qi ≤ q ≤ Qk enters a node i , then it must leave it with a load
equal to q − qi . Constraints (54) define the domain of the capacity-indexed variables.
In order to reduce the research space when using capacity-indexed variables, one
can further remove unnecessary variables. We eliminate variables related to vehicle k
traversing an arc (i, j) with an irrelevant load, i.e., after visiting a node i , the vehicle
should not carry a load between Qk − qi and the capacity of vehicle k, Qk . Those
unnecessary variables are removed with equalities (55):

xkdqi j = 0 i ∈ V, j ∈ Vc, k ∈ K, d ∈ Vd , Q
k − qi < q ≤ Qk . (55)

Solving the MDFSMVRP directly with this formulation is practical only for small
values of Qk . We derive new valid inequalities in the form of balance and capacity
constraints and routing constraints, which impose bounds on the binary variables.
Constraints (56) and (57) are inspired from those proposed in Pessoa et al. (2009). They
impose a lower bound on the number of vehicle routes and the number of variables,
respectively. Equation (58) consists of balance constraints. They state that if vehicle
k traversing arc (i, j) enters node i , then the load delivered to node i must be exactly
qi .

⌈∑
i∈Vc

qi

max{Qk}
⌉

≤
∑

i∈Vc

∑

k∈K

∑

d∈Vd

Qk∑

q=qi

xkdqdi (56)

∑

i∈Vc

qi ≤
∑

i∈V

∑

j∈Vc

∑

k∈K

∑

d∈Vd

Qk∑

q=qi

qxkdqi j (57)

∑

j∈V

∑

k∈K

∑

d∈Vd

Qk−q j∑

q=qi

qxkdqji −
∑

j∈V

∑

k∈K

∑

d∈Vd

Qk−qi∑

q=q j

qxkdqi j = qi i ∈ Vc. (58)

Constraints (59)–(61) are referred to as routing constraints, as a way to ensure that if
there is an arc (i, j) related to vehicle k and linking two customers i and j , i.e., (59)
holds, then there must be at least one arc traversed by k and returning to depot d, i.e.,
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(60) holds. Equalities (61) are outgoing arcs, and they reinforce equation (51).

Qk−qi∑

q=q j

xkdqi j ≤
∑

h∈Vc

xkd0hd i, j ∈ Vc, k ∈ K, d ∈ Vd (59)

xkd0hd ≤
∑

i∈V

∑

j∈Vc

Qk−qi∑

q=q j

xkdqi j h ∈ Vc, k ∈ K, d ∈ Vd (60)

∑

j∈V

∑

k∈K

∑

d∈Vd

Qk∑

q=0

xkdqi j = 1 i ∈ Vc. (61)

3 Theoretical insights

A large number of formulations have been proposed for the VRP. However, a much
smaller number of papers have discussed the theoretical formulations of these models,
comparing their structures and dominance (Letchford and Salazar-González 2006).
Many researchers have focused on studying the polyhedral structure of one particular
model at a time (Laporte and Nobert 1984; Araque et al. 1990; Campos et al. 1991;
Cornuéjols and Harche 1993; Augerat 1995; Gouveia 1995b; Letchford et al. 2002;
Godinho et al. 2008; Gouveia and Salazar-González 2013; Gouveia et al. 2013; Bektaş
and Gouveia 2014). Very few compare different formulations, e.g., Gouveia (1995b),
Letchford and Salazar-González (2006) andYaman (2006). Inwhat followswe discuss
their main results and relations to the models presented in Sect. 2.

The seminal work of Gouveia (1995b) describes the set of feasible solutions of a
one-commodity flow formulation for the one-unit VRP (Gavish and Graves 1982),
comparing the polyhedral structure against existing weaker variants of that formula-
tion. Based on these results, the author proposed a new and better extended formulation
for the problem, besides generalizing the results for VRPs with non-unit demands.
These families of commodity flow formulations use two sets of variables: routing
variables to describe the design of the routes, and another set of continuous loading
variables to capture the load of the vehicle traversing each arc. The load variables
are then used to enforce capacity and subtour elimination constraints. This idea is
exploited in formulations F3 and F4 proposed in Sects. 2.3 and 2.4. Gouveia (1995b)
stated that flow-based formulations used for capacitated problems can lead to good
lower bounds, and yield interesting results when used in combinations with some
families of valid inequalities. This has been successfully used to solve the capacitated
minimal spanning tree problem (Gouveia 1995a), the VRP (Toth and Vigo 2002) and
the FSMVRP (Yaman 2006). Moreover, Gouveia (1995b) stated that the commodity
flow formulation using loading variables to enforce subtour and capacity constraints,
such as (31)–(33), performs better than models exploiting binary variables and gen-
eralized subtour elimination constraints of the form (25). The information regarding
load variables leads to a more compact formulation, with fewer constraints that are
easier to lift. The author demonstrated that result by analyzing the projection of the
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commodity flow formulation into the two-index vehicle flow space. Toth and Vigo
(2002) have later revalidated the same results. The authors have stated that two- and
three-index vehicle flow formulations using binary routing variables to enforce capac-
ity and subtour elimination constraints, i.e., the models on which formulations F1 and
F2 of Sects. 2.1 and 2.2 are based, cannot be used efficiently to solve problems with
some operational constraints, such as those with a fixed vehicle cost depending on
its type. The authors have also stated that the linear programming (LP) relaxation of
these two models is very weak.

Letchford and Salazar-González (2006) have later proposed the commodity flow
formulation as an alternative for the two- and three-index vehicle flow formulations,
based on the fact that these latter require an exponential number of constraints to
enforce connectivity. Moreover, they have shown that the integer relaxation of the
commodity flow model is generally not dominated by that of the vehicle flow models.
Gouveia (1995b) had suggested using the linear relaxation of the commodity flow for-
mulation strengthened by inequalities (33) when starting a branch-and-cut procedure.
However, since the number of (33) is exponential in n, the author points out that the
size of the linear programming problem may become an issue.

This latter disadvantage may be overcome by using a more compact model replac-
ing binary routing variables by binary ones indicating the flow on each arc (Gouveia
1995b). By doing this, one replaces O(n2) constraints of type (33) by O(n) constraints
of type (53). This is the idea exploited by model F5 presented in Sect. 2.5. Recently,
Yaman (2006) have performed a deep theoretical analysis of several different formula-
tions and valid cuts for the heterogeneous VRP. She has compared LP bounds of flow
formulations andMiller–Tucker–Zemlin (MTZ) formulations through projection. The
main result indicates that the LP bounds of formulations with capacity and subtour
elimination constraints modeled with MTZ constraints (Miller et al. 1960) and binary
routing variables give raise to a weak estimate of the optimal value compared to the
LP bounds of the formulations using flow variables to express the capacity and the
subtour elimination constraints. The author has also shown that the LP relaxation of
the formulations with disaggregating flow variables outperforms that of the original
aggregated flow formulation, which in turn outperforms the LP relaxation of vehicle
flow formulations.

In Sect. 5, we provide a comparison of the performance of the five proposed models
from an empirical perspective. As has been the choice of several other researchers,
we will analyze and discuss the results of the LP relaxation, the bounds obtained,
and the efficiency of some families of the proposed valid inequalities with a focus on
the compact formulations. All tests will be performed on various publicly available
instances.

4 Solution algorithms

The formulations presented in Sects. 2.3, 2.4, and 2.5 can be explicitly generated and
one can enumerate all variables and constraints. These can then be fed into a general
purpose solver and solutions are obtained by branch-and-bound. However, the models
presented in Sects. 2.1 and 2.2 cannot be fully generated due to constraints (7) and (25)
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which are in the order of O(2n). Thus, one needs to dynamically generate them only
if they are found to be violated in a partial solution. The exact algorithm we present
is then a classical branch-and-cut which works as follows. At a generic node of the
search tree, a linear program including a subset of the subtour elimination constraints
is solved, a search for violated constraints is performed, appropriate valid inequalities
are added to eliminate subtours, and the current subproblem is then reoptimized. This
process is reiterated until a feasible or dominated solution is reached, or until no more
cuts can be added. At this point, branching on a fractional variable occurs. We provide
a sketch of the branch-and-cut scheme in Algorithm 1.

Algorithm 1 Pseudocode of the proposed branch-and-cut algorithm
1: At the root node of the search tree, generate and insert all valid inequalities into

the program.
2: Subproblem solution. Solve the LP relaxation of the node.
3: Termination check:
4: if there are no more nodes to evaluate then
5: Stop.
6: else
7: Select one node from the branch-and-cut tree.
8: end if
9: while the solution of the current LP relaxation contains subtours do
10: Identify connected components as in Padberg and Rinaldi (1991).
11: Determine whether the component containing the supplier is weakly connected

as in Gendreau et al. (1997).
12: Add violated subtour elimination constraints.
13: Subproblem solution. Solve the LP relaxation of the node.
14: end while
15: if the solution of the current LP relaxation is integer then
16: Go to the termination check.
17: else
18: Branching: branch on one of the fractional variables.
19: Go to the termination check.
20: end if

Finally, the model presented in Sect. 2.5 can be fully enumerated for most small
and medium size instances. However, it is easy to observe that some variables are
never used in the model, e.g., those for which values of q cannot be obtained by
any combination of demands. These variables can be generated and fed to the solver,
which will set them to zero in any feasible solution. If one can identify these variables
beforehand, it is possible to set them to zero and remove then from the model at a
preprocessing phase. Thus, one can (substantially) decrease the size of the model and
thememory usage by preprocessing themodel and the instance a priori, identifying the
subset of variables that should not be generated. We have then implemented a subset
sum algorithm to identify all possible values of q from 1 to Qk that can be achieved
by any combination of demands qi . The ones that are found not to be feasible are not
generated and we could substantially reduce the size of the model. Details regarding
the improvements provided by this algorithm are presented in Sect. 5.3.

123



142 R. Lahyani et al.

5 Computational experiments

In this section we provide details on the implementation, benchmark instances, and
describe the computational experimentswe have performed. Implementation and hard-
ware information is provided in Sect. 5.1. The description of the existing and new
benchmark instances we have used are presented in Sect. 5.2, followed by the results
of our extensive computational experiments in Sect. 5.3.

5.1 Implementation details

All the formulations described in Sect. 2 were implemented in C++ and solved with
IBMCPLEXConcert Technology 12.5.1. We have used the nearest neighbor heuristic
to provide the solver with a trivial initial solution. To better exploit our resources, we
allow CPLEX to invoke up to 12 parallel threads and to run for 3 h on each execution.
All other parameters are kept to a default setting, as our tests have shown no significant
gains could be obtained. The separation of the subtour elimination constraints was
performed with the Concorde package of Applegate et al. (2011) and the CVRPSEP
package of Lysgaard et al. (2004).

We have run all instances described in the next section using all models described
in Sect. 2 with a time limit of 3 h and a maximum of 96 Gb of memory. The machines
used are all equipped with Intel Xeon™ processors running at 2.66 GHz with 96 GB
of RAM installed per node, with the Scientific Linux 6.1 operating system.

5.2 Description of the instances

In order to compare the performance of our models and algorithms, we have used a
set of 14 test instances proposed by Salhi and Sari (1997) for the MDFSMVRP. These
instances were inspired from older benchmarks for other vehicle routing problems
proposed byGillett and Johnson (1976), Perl andDaskin (1985) andChao et al. (1993).
They are commonly used in the VRP literature. They have been used in previous
researches to evaluate the performance of heuristic algorithms, namely the multi-level
composite heuristic of Salhi and Sari (1997), the variable neighborhood search of Salhi
et al. (2014), and the hybrid genetic search with advanced diversity control of Vidal
et al. (2014). The only lower bounds and solutions obtained with an exact approach
existing for these instances were obtained by a branch-and-bound algorithm applied
to a mathematical model presented in Salhi et al. (2014).

These instances contain between 50 and 360 customers, and between two and nine
depots. There are five vehicle types, i.e., K = 5, in all instances. The vehicle capacities
are generated centered around the value of the vehicle capacity (Q̂) of the original
instances designed for of the MDVRP data sets. The vehicle capacities Qk along with
the vehicle variable cost Fk and the vehicle fixed cost αk are derived based on the
following formulas: Qk = (0.4+ 0.2k)Q̂, Fk = 70+ 10k and αk = 0.7+ 0.1k, with
k = 1, . . . , 5.

We have also generated ten smaller instances to better evaluate the performance of
the different formulations in terms of lower and upper bounds, and of running times.
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These instances were created by randomly selecting subsets of customers from the
smaller instances of Salhi and Sari (1997), namely instances 4-55-100 and 4-50-80.
Our instances contain two and three depots, from 10 to 30 customers, five vehicle
types, and different demands distribution. Table 1 contains a list of all instances used
in this paper and provides additional information on their origins and sizes. An asterisk
is used to distinguish between the newly generated instances having the same number
of customers, depots and vehicle capacity, but different demands and node location.

5.3 Computational experiments

In this section, we describe the results of computational experiments carried out in
order to assess the performance of the proposedmodels and algorithms. Table 2 recalls
the configurations of the five formulations tested and their origins.

As stated inSect. 4, FormulationF5 canbedefinedonly for the values ofq that canbe
attained, which can significantly reduce its size. For the existing instances described
in Table 1, the average number of variables of F5 is reduced from 22,395,311 to
19,636,711 when applying the preprocessing step with the subset sum algorithm. We
note that for the largest instance of the testbed, 9-360-60, which contains nine depots
and 360 customers, the number of required variables could not be enumerated due
to memory usage (it required more than 100 Gb of RAM memory). We also observe
that the efficiency of the preprocessing phase is highly dependent on the scale and
the distribution of the demands. For example, if all demands are multiples of 20, then
the number of variables is reduced by almost 20-fold; however, if they are all small
and some are unitary, then almost all values of Qk can be obtained by combining
the demands of some customers. In this testbed, the number of generated variables is
reduced by more than 16 times for instance 4-55-100, while it remains unchanged for
2-100-100. These values can be observed for all instances in Table 3.

5.3.1 Linear programming relaxation

Solving the linear programming relaxation (LR) can be quite useful as it provides a
bound on the optimal value of the integer programs, and it highlights the difference
between the formulations. The first experiment we conduct in this section consists of
solving the LRs of the five formulations for both data sets with a time limit of 2 h. We
include all the valid inequalities presented in the previous sections. Table 4 summarizes
the results of this test. For each model and each solved instance, we provide the LR
value and the running time in seconds. In all tables, if an instance cannot be solved, we
mentionNF indicating not found status, andNC if the number of required variables and
constraints could not be enumerated. Boldface is used to indicate the new best results.
The results indicate that the LR of model F1 is quite poor. This is due to the drawbacks
of this formulationmentioned before, particularly the fact of enumerating the available
vehicles. Formulation F1 does not provide a solution to the linear relaxation within 2 h
for any instance of the first data set. Furthermore, comparing the last four formulations
substantiates thatmodels F3 andF4 performextremelywell on both data sets compared
to model F2. The average of the LR values, only over solved instances (from instance
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Table 3 Number of generated
variables for model F5 before
and after the preprocessing
phase

Instance Before preprocessing After preprocessing

4-55-100 7,031,620 417,720

3-85-100 11,732,160 696,960

3-85-160 18,701,760 998,976

4-50-80 4,723,920 4548,960

4-50-160 9,389,520 9,214,560

5-75-140 22,560,000 22,400,000

2-100-100 10,508,040 10,508,040

2-100-200 20,912,040 20,912,040

3-100-100 16,072,635 16,072,635

4-100-100 21,848,320 21,848,320

2-80-60 4,101,640 4,101,640

4-160-60 32,813,120 32,813,120

6-240-60 110,744,280 110,744,280

9-360-60 Out of memory Out of memory

Average 22,395,311.92 19,636,711.62

4-55-100 to 2-80-60), equals 790.94, 1554.14, and 1649.38 while the average running
time is increasing from55 to77and to574 s formodelsF2, F3, andF4, respectively.The
average computation time of model F4 is almost seven times the average computation
time of model F3, whereas the difference between the LRs of these two formulations is
small. This implies that disaggregating loading variables requires more computational
time to find slightly better relaxations. Model F5 provides better LR values for all 15
solved instances compared to all other formulations. Over all models, the average time
taken to solve the LRs is not negligible. This is due to the high number of variables
and constraints required to model the problem.

5.3.2 Comparison of upper and lower bounds

We now present the computational results of the solutions we have obtained when
applying branch-and-bound and branch-and-cut for the five proposed formulations.
Table 5 summarizes the results after 3 h of running time with CPLEX. We report the
upper bound (UB) and the lower bound (LB) of each formulation for each instance,
if they are found. We provide the average percentage gaps over the two testbeds. The
percentage gap is given by the ratio (UB−LB

UB 100). We also give the average time in
seconds spent to solve the new testbed. Bold face is used to indicate the best results.

A deeper analysis of the formulations highlights a remarkable improvement over all
the lower bounds and the number of solved instances compared to the LRs results. The
results clearly show that formulation F1 is outperformed by all the other formulations,
even on small instances. The largest instance size that can be solved by formulation
F1 is 4-5-160. Model F1 could identify a feasible solution only for three (out of 14)
instances, whereas formulation F2 is able to solve all the instances of the two testbeds.
This implies that the compact formulation, reducing the number of generated variables,

123



Alternative formulations and improved bounds for the… 147
Ta

bl
e
4

L
in
ea
r
pr
og

ra
m
m
in
g
re
la
xa
tio

ns
fo
r
th
e
fiv

e
fo
rm

ul
at
io
ns

In
st
an
ce

Fo
rm

ul
at
io
n
F1

Fo
rm

ul
at
io
n
F2

Fo
rm

ul
at
io
n
F3

Fo
rm

ul
at
io
n
F4

Fo
rm

ul
at
io
n
F5

V
al
ue

T
im

e
(s
)

V
al
ue

T
im

e
(s
)

V
al
ue

T
im

e
(s
)

V
al
ue

T
im

e
(s
)

V
al
ue

T
im

e
(s
)

4-
55

-1
00

N
F

72
00

57
4.
32

17
13

13
.5
4

29
13

54
.4
1

58
13

59
.9
9

56

3-
85

-1
00

N
F

72
00

84
1.
57

43
20

27
.9
8

66
20

79
.0
1

45
6

20
94

.4
2

15
7

3-
85

-1
60

N
F

72
00

63
1.
65

44
13

47
.3
9

77
14

11
.3
1

50
5

14
35

.1
9

35
7

4-
50

-8
0

N
F

72
00

64
2.
90

23
13

22
.3
0

21
13

81
.6
3

58
14

16
.0
5

43
48

4-
50

-1
60

N
F

72
00

49
6.
07

10
80

7.
47

17
89

0.
99

89
N
F

72
00

5-
75

-1
40

N
C

72
00

70
7.
52

62
13

62
.4
7

10
2

14
78

.4
1

53
0

N
F

72
00

2-
10

0-
10

0
N
C

72
00

96
6.
10

53
20

95
.8
4

94
21

91
.7
3

81
6

N
F

72
00

2-
10

0-
20

0
N
C

72
00

74
9.
49

54
12

62
.3
7

80
13

82
.3
4

10
21

N
F

72
00

3-
10

0-
10

0
N
C

72
00

95
2.
52

84
19

90
.0
5

14
3

21
06

.6
5

10
74

N
F

72
00

4-
10

0-
10

0
N
C

72
00

95
1.
76

16
6

19
93

.1
8

19
7

21
03

.2
9

14
22

N
F

72
00

2-
80

-6
0

N
C

72
00

11
86

.3
5

48
15

73
.0
3

24
17

63
.4
5

28
7

17
90

.1
7

68
61

4-
16

0-
60

N
C

72
00

N
F

72
00

30
63

.7
1

10
90

N
F

72
00

N
F

72
00

6-
24

0-
60

N
C

72
00

N
F

72
00

N
F

72
00

N
F

72
00

N
F

72
00

9-
36

0-
60

N
C

72
00

N
F

72
00

N
F

72
00

N
F

72
00

N
C

72
00

2-
10

-6
0

26
8.
51

5
26

8.
58

0
39

9.
87

0
40

9.
55

0
42

2.
33

3

2-
15

-6
0

35
5.
68

50
35

6.
02

0
60

0.
23

0
62

7.
41

1
65

0.
23

9

3-
20

-8
0

33
3.
43

54
0

33
4.
30

0
59

4.
47

1
62

6.
40

2
64

0.
66

11
7

3-
25

-8
0

39
5.
63

18
80

39
7.
93

1
70

6.
59

1
74

4.
38

6
75

9.
54

21
8

3-
30

-8
0

N
F

72
00

43
8.
25

2
82

8.
87

3
86

6.
25

7
88

4.
23

39
3

2-
10

-6
0*

24
5.
29

3
24

6.
38

0
44

8.
59

0
45

9.
77

0
46

8.
59

0

2-
15

-6
0*

31
6.
37

43
31

8.
53

0
64

6.
36

0
65

9.
91

1
68

1.
01

0

3-
20

-1
00

25
5.
55

20
6

25
5.
41

1
52

5.
82

1
54

4.
05

2
54

4.
71

2

3-
25

-1
00

30
3.
23

12
99

30
3.
47

1
63

1.
16

1
65

8.
49

4
66

0.
80

3

3-
30

-1
00

38
2.
75

22
16

38
3.
20

1
78

4.
34

2
82

0.
20

9
82

4.
98

5

123



148 R. Lahyani et al.

has a positive impact on the model performance. Model F2 provides tighter bounds
compared to F1 but is still uncompetitive compared to the other formulations. The
results of Table 5 distinctly show the performance of the last three formulations to
solve the MDFSMVRP. Model F4 could generally provide better bounds compared
to all other formulations, especially on the first testbed, despite the fact that model
F3 yields better UBs. We observe that there is a difference between models F3 and
F4 regarding the overall gaps. The solutions provided by F4 are 8.2 and 1.2% better
than the solutions provided by F3 on the two testbeds, respectively. Model F4 provides
eight best LBs and five best UBs over 14 instances, while F3 provides eight best UBs
on the first testbed. This implies that disaggregating the commodity flow variables is
likely improving the model performance. Model F5 has better bounds on the first three
instances compared to all other formulations and provides the best gap for instances
2-100-100 and 2-80-60. This is due to the fact that few variables are generated in
these test instances, characterized by a regular distribution of customers demands
and/or a small number of customers. However, even if model F5 provides six best
LBs over 14 instances, its overall average gap is about three times the overall average
gap of model F4 since seven instances out of 14 are not solved. Regarding the small
generated instances, F5 outperforms all the other formulations and provides eight
optimal solutions over 10, with an average gap equal to 0.57% and an average running
time of 2390 s. F4 provides competitive solutions with slightly better average gap
(0.49%) than F5 within less computation time (1832 s). However, formulation F4
proves the optimality only for the smallest instance with two depots and 10 customers.
The computation times and the average gaps provided by formulations F1 and F2 on
these small instances are quite high. In particular they require, on average, 8590 and
8841 s to solve instances with up to three depots and 30 customers.

These results point out again that formulations F3, F4 and F5 are the most suitable
among the five proposed to solve small-, medium-, and large-size instances of the
MDFSMVRP. Particularly, if the aim is to provide good upper bounds to compare
with an heuristic, then it would be better to use formulation F3 on large instances
and formulation F5 on small instances. Similarly, if major problems of running out of
memory occur, one should use formulation F5 as fewer variables will be generated,
especially with a regular distribution of customers demands. Finally, if the goal is to
get a good trade-off between solution quality and running time, one should choose
formulation F4 as disaggregating continuous variables is likely improving the model
performance.

A transversal analysis over Tables 4 and 5 allows us to remark that the deductions
derived after solving the models with integrality restrictions confirm the preliminary
results derived from the LR experiment. This analysis also shows that the experimental
results reassert the theoretical findings discussed in Sect. 3. In addition, we observe
that, on average, the values of the LR of models F3 and F4 over the first 11 solved
instances in Table 4 is equal to almost 0.7 and 0.8 times the UBs of the 3-h execution of
these models. Thereby, one can conclude that the last three compact models proposed,
especially the commodity flow formulations are good enough as they provide strong
linear relaxations. Finally, we can derive some comments on the relative difficulty of
the problem. We observe that the average gaps remain large, especially on instances
with more than two depots and 100 customers.
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5.3.3 Comparison against the best known solutions

As it was mentioned, the literature devoted to the MDFSMVRP is rather scarce and
the published works on this specific variant are focused on heuristic methods. We are
only aware of the exact bounds recently obtained by the 3-h CPLEX execution of
Salhi et al. (2014). The performance of the proposed formulations is assessed with
respect to the available lower bounds provided in Salhi et al. (2014) and to the best
upper bounds given heuristically by Vidal et al. (2014). Table 6 presents the results
of the best formulations proposed in Sect. 2 compared to the state-of-the-art methods.
For completeness, we have also reported the percentage gap between the best LBs
and UBs obtained over the proposed formulations in the column Best gap (%). The
results in Table 6 show that the proposed formulations could often identify a feasible
solution for all the instances, even for the largest instance considered with nine depots
and 360 customers, unlike the exact solution method of Salhi et al. (2014). The largest
instance solved by this method includes four depots and 100 customers. Models F3
and F4 yield better optimality gaps than that work on all instances. Note also that the
improvement with respect to the bounds given by Salhi et al. (2014) are significant.
We have improved all the LBs and UBs with respect to that work. The average LB is
increased by 8.63% for the first eleven instances solved by Salhi et al. (2014), and the
average UB is reduced by 21.30%. One particular example is that of instance 3-85-160
for which the gap was 47.29% and is now just 2.13%. The average gap over all the
instances of the first testbed has decreased from 51.00 to 17.84%. The comparison
of our best results against the heuristic of Vidal et al. (2014) show that we could not
improve the UBs found heuristically but our gaps are tight. Even though the quality
of the UBs is not improved, the introduction of these different formulations helps
providing very good lower bounds.

5.3.4 Effect of valid inequalities

Wenowbriefly analyze the effect of the valid inequalities proposed for eachmodel.We
study the effect of valid inequalities in each model on the gap. We have decided not to
study the impact of each valid constraint proposed in each model because this would
lead to a combinatorial and unmanageable comparison between valid inequalities,
which is not the focus of this paper. We have compared the average gaps between
two configurations of each formulation, without and with valid inequalities, on each
testbed, with the maximum computing time limit of 3 h. Table 7 summarizes these
results. On average, they clearly show the benefits of using valid inequalities especially
for the explicit formulation. The average gap of model F1 is reduced by almost 50%
on the new smaller instances. We can also observe that the introduction of valid
inequalities is more relevant for formulations which explicit the index of the vehicle
because it is hard to generate efficient valid inequalities for variables that do not carry
at least the vehicle type traversing an arc, as it is the case of formulation F3.

We have also reported the effect of some families of valid inequalities, and the
average gap yielded by models F3, F4, and F5. Specifically, we have assessed the
performance of routing constraints (40)–(42) which have been adapted from Koç
et al. (2016a) to formulations F3 and F4. Table 8 shows that these new configurations
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Table 7 Average percentage gaps with and without valid inequalities

Instances Formulation F1 Formulation F2 Formulation F3 Formulation F4 Formulation F5

Without
VI

With
VI

Without
VI

With
VI

Without
VI

With
VI

Without
VI

With
VI

Without
VI

With
VI

Existing 94.66 90.99 61.79 61.65 29.45 28.88 25.52 20.29 62.43 56.94

New 57.68 21.76 40.76 38.82 2.05 1.64 0.69 0.49 1.18 0.57

Table 8 Average percentage gaps for different configurations of formulations F3, F4, and F5

Average gap Average gap Average gap
F3 F4 F5

Without any VI 29.45 25.52 62.43

Without (40)–(42) 28.93 25.50 –

With all VI 28.88 20.29 56.94

With VI (56)–(58) – – 57.43

With VI (59)–(61) – – 57.78

substantiate the low efficiency of these constraints especially for the commodity flow
formulation, with aggregated flow variables. Table 8 shows also the effect of capacity
constraints (56)–(58) and of routing inequalities (59)–(61) for model F5. It shows that
their introduction improves the performance, reducing the average gap from 62 to
57%. The combination of both sets of inequalities yields an average gap of 56.94%.

6 Conclusions

In this paper we have modeled and solved the MDFSMVP. We have presented five
different formulations for this difficult distribution problem. The first one is a three-
index VRP formulation with an explicit vehicle index, and the second one is more
compact, in which individual vehicles are not explicitly identified. The third and the
fourth models are commodity flow formulations without a vehicle index. They are
based on loading variables to model capacity and connectivity requirements. The fifth
and lastmodel is a capacity-indexed formulation,which is a basedmore compact single
commodity flow. We have also provided a survey on how these formulations relate to
each other from a theoretical perspective. We have proposed several valid inequalities
to strengthen the formulations and we have solved them by branch-and-cut and by
branch-and-bound.

We compared the bounds of these formulations on existing instances and on newly
generated ones. The results show that the commodity flow formulations and the
capacity-indexed formulation provide better bounds. Our results also show that com-
pact formulations represent a very promising research avenue. On classical benchmark
instances our methods could improve all previous lower bounds, and we have obtained
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the best upper bounds and gaps when compared to another exact method from the lit-
erature.
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Koç Ç, Bektaş T, Jabali O, Laporte G (2016a) The fleet size and mix location-routing problem with time
windows: formulations and a heuristic algorithm. Eur J Oper Res 248(1):33–51
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