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Abstract Given the constantly raising world-wide energy demand and the accom-
panying increase in greenhouse gas emissions that pushes the progression of climate
change, the possiblymost important task in future is to find a carbon-low energy supply
that finds the right balance between sustainability and energy security. For renewable
energy generation, however, especially the second aspect turns out to be difficult as the
supply of renewable sources underlies strong volatility. Further on, investment costs
for new technologies are so high that competitiveness with conventional energy forms
is hard to achieve. To address this issue, we analyze in this paper a non-autonomous
optimal control model considering the optimal composition of a portfolio that consists
of fossil and renewable energy and which is used to cover the energy demand of a
small country. While fossil energy is assumed to be constantly available, the supply of
the renewable resource fluctuates seasonally.We further on include learning effects for
the renewable energy technology, which will underline the importance of considering
the whole life span of such a technology for long-term energy planning decisions.
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1 Introduction

Facing the impacts of climate change, the rapid economic growth coming along with a
higher energy demand as well as the fact that one of the main contributors to the con-
stantly increasing green house gas emissions is given by the energy sector, the possibly
biggest problem of this century will be to find a carbon-low, sustainable, and simulta-
neously secure energy supply. Therefore, the incentives for developing and improving
renewable energy technologies have changed during the past decades. Originally, the
driving force has been given by the rapidly narrowing horizon of depletion of fossil
fuels. However, due to the development of new extraction techniques and the discovery
of new sources nowadays, the threats of global warming play a major role. Mitigation
policies supporting investments into renewable energy technologies should reduce the
emissions and slow down the global warming process. The available alternatives of
energy generation in the future, however, strongly depend on structural and technolog-
ical changes together with the accompanying investment decisions right now, because
the development and the diffusion of a new technology is a time-intensive dynamic
process (cf.Harmon2000). This underlines the importance of timely planing for energy
technology choices. In contrast to conventional energy generation, renewable energy
technologies have high investment costs and, therefore, investment decisions for a
new technology are often postponed until they get cheaper. This, however, strongly
restricts the scale of alternative energy generation (cf. Berglund and Söderholm 2006;
Rong-Gang 2013). Therefore, it is important to consider the whole life span of a new
technology for energy planning decisions to include the diffusion process and the cost
reduction that come along with implementing the new technology. Another challenge
of renewable energy generation is the fact that the supply of renewable sources is not
constant at all but fluctuating.

To investigate this issue we consider a small country in which a representative deci-
sionmaker of the energy sector optimizes a portfolio consisting of fossil and renewable
energy. We postulate for simplicity that full information about the energy demand that
has to be covered is available and that it is stationary, as done in Coulomb (2011).
Instead of assuming that the energy demand depends on the GDP of the country, as
done in Chakravorty et al. (2012), or on the electricity price, we followMessner (1997)
and consider the energy demand to be exogenous and, further on, constant. Given this
demand and considering the fact that the supply of the used renewable sources is
fluctuating seasonally, the representative energy sector decision maker optimizes this
portfolio to find the most cost-effective solution. We focus especially on solar energy
and follow Chakravorty et al. (2006) in omitting completely the possibility of storage
so that the generated energy has to be used immediately or otherwise is lost.

In the literature of recent years, some important developments in macroeconomics
and energy economics can be observed, dealingwith the issue of technological change.
While in some modeling approaches technological change, if considered at all, has
been included as an exogenous increase in energy conversion efficiency, more recently
the aim has been to model it endogenously, especially in form of learning-by-doing
effects which sometimes is also considered as technological learning (see for example
Chakravorty et al. 2008, 2011; Köhler et al. 2006; Messner 1997; Reichenbach and
Requate 2012). To include the aspects of learning by doing in our model, we use
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a log-linear learning curve to model decreasing investment costs as a function of
accumulated experience.

As we consider in our approach the seasonal fluctuations in the supply of renew-
able sources, this optimal control problem with one state and two controls exhibits a
particular mathematical property by being non-autonomous. Solving this problem by
applying Pontryagin’s maximum principle, we are looking for a periodic solution that
solves the non-autonomous canonical system, which makes the problem numerically
sophisticated and which differs from the usual steady-state analysis of autonomous
approaches.

The paper is organized as follows: We briefly present first the concept of learning
by doing in energy planing models in Sect. 2. In Sect. 3 we then give a detailed
description of the model formulation, while Sect. 4 deals with the solution of the
problem. The numerical results are presented and interpreted in Sect. 5. As it turns
out that the optimal long-run solution is sensitive with respect to the fossil energy
price, the learning coefficient, as well as to geographical site specific parameters, we
conduct a sensitivity analysis with respect to these parameters in Sect. 6. Finally, we
summarize our findings, give conclusions and a brief outlook on future work in Sect. 7.

2 The learning curve concept

The development of the learning curve originates from Wright (1936) who observed
that in airplane-manufacturing the number of working-hours spent for the production
of an airframe is a decreasing function of the total number of the previously produced
airframes of the same type. In other words, this means that the unit costs of labor
declined with experience measured in cumulative output. Later, Arrow (1962) used
cumulative gross investments in form of cumulative production of capital goods as an
index of experience so that each new machine produced and used in the production
process changes the production environment and leads to a learning process with
continual incentive. There exist someother references in the literature, however, stating
that interruptions of the production process could also cause negative learning effects,
referred to as forgetting by not doing (e.g. see Argote et al. 1990; Argote and Epple
1990; Benkard 2000; Epple et al. 1991), and, hence, rather net investments are a
better index for experience. In all different forms, the learning curve concept has
been applied in many fields of research and has become an important tool to measure
cost-effectiveness of technologies. Given the goal of achieving adequate technology
policies to mitigate climate change, the implementation of endogenous technological
change via the learning curve in models of future energy scenarios is essential (e.g.
see Gerlagh et al. 2003; Grübler and Messner 1998). The learning curve provides an
important tool to measure the cost effectiveness of policy decisions to support new
technologies. It connects expected future costswith current investments so that the cost
of the new technology depends on earlier developments reflected by the cumulative
capacity. This comes along with the path dependence of technological competition.

The learning curve quantifies empirically the impact of learning by doing on the
production costs of an industry or a firm by considering the investment costs as a
declining function of cumulative capacity or cumulative output. Both of these factors
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are an approximation of knowledge (cf. Argote et al. 1990). In literature, a variety of
different functional forms modeling these interrelationship can be found; the probably
most common one, however, is the log-linear function to its simplicity and its observed
good fit with data. In this case, the progressive decrease is explained by the so-called
progress rate given as

PR = 2−α,

whereα > 0 is the learning coefficient. The progress rate corresponds to the percentage
change in costs, when the cumulative capacity is doubled. Therefore, a progress rate of
80%means that the costs are reduced to 80%of its previous valuewhen the cumulative
capacity doubles. This reduction of 20% is referred to as the learning-by-doing rate
and is given by

LDR = 1 − PR = 1 − 2−α.

The costs then are calculated as

Ct = C0

(
Kt

K0

)−α

, (1)

where Ct are the investment costs at time t , Kt is the cumulative capacity at time t ,
K0 is the initial cumulative capacity at time t = 0, and C0 are the initial investment
costs. This scaling expresses that for an initially low cumulative capacity, it takes more
efforts and investments to produce a given level of energy than for an initially high
cumulative capacity (cf. Van der Zwaan et al. 2002). Taking the logarithm of Eq. (1)
yields an expression which can be estimated econometrically to get a reasonable value
for α, and, therefore, for the learning-by-doing rate LDR. This, of course, strongly
depends on the type of technology and is crucial for the speed of learning (a survey on
estimates of learning rates for a set of energy technologies can be found in McDonald
and Schrattenholzer 2001). Equation (1) is also referred to as the single- or one-factor-
learning curve. The so-called break-even point is reached, when so much experience
is accumulated that the new technology gets competitive with the conventional one.

3 The model

To investigate the challenges of including renewable energy into a power system
under the aspect of learning by doing, we consider an economy of a small country
in which both fossil and renewable energy can be used as perfect substitutes to cover
an exogenously given energy demand. Due to the size of the country, we assume that
there are no or at least not enough available fossil resources and, therefore, fossil
energy has to be imported from other countries for the current market price. As far as
renewable energy is concerned, harvesting is for free and the generation is possible
within the own country. In contrast to fossil energy, which is assumed to be constantly
available, the supply of renewable energy seasonally fluctuates. In order to use this
renewable energy resource, capital is necessary for the energy generation for which
investments have to be undertaken. We consider for our model a representative energy
sector decision maker who chooses the optimal energy portfolio composition for the
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Fig. 1 a Average global radiation per month in Austria, b deterministic function to describe the varying
global radiation over 1 year (t = 1)

whole country. It is postulated that this representative energy sector decision maker
has full information about the energy demand that has to be covered at each point of
time. Therefore, he/she decides on the most cost-effective portfolio consisting of these
two energy types, taking into account the seasonal fluctuations of renewable energy
supply, the investment costs for renewable energy generation capital which decline
with experience, and the import costs of fossil energy. One important implication of the
size of the country is that the representative energy sector decision maker is assumed
to be a price taker and, therefore, his/her decision has no influence on the market price.

We take the considered fossil energy as an aggregate of fossil energy sources (e.g.
coal, gas, etc.) and focus on solar energy as renewable resource. To give an example
for the seasonal supply of solar energy, Fig. 1a shows the average global radiation per
month inAustria.One can clearly observe the seasonal differences that pose a challenge
to a constant renewable energy supply over the whole year. Saving, of course, would
be supportive in the short-run, but as we rather are interested in long-run solutions
and, for this time frame, saving possibilities are limited, we completely omit storage
in our model approach and focus only on the change in the portfolio composition. To
include these seasonal fluctuations in ourmodel,weuse adeterministic time-dependent
function

vR(t) = ν sin2(tπ) + τ,

which is plotted inFig. 1b.Theperiod length of thefluctuation is 1 year, τ is theminimal
supply in winter, and ν is the maximal increment during summer. To get reasonable
parameter values, we have used Austrian data (ZAMG 2012) for estimation. Note that
we only consider annual fluctuations and do not include daily fluctuations as well as
changes due to weather conditions. To convert solar radiation into energy, specific
capital in form of PV cells is necessary. This capital is accumulated by investments
IS(t) and depreciates with a factor δS . The capital accumulation function in our model
reads as follows:

K̇S(t) = IS(t) − δSKS(t).

As depreciation is considered in the model, investments IS(t) do not only include
acquisition decisions but also maintenance efforts. Later in the paper, this distinction
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will be important to fully understand the obtained investment decisions. Given the
available capital at each point in time and the current supply of global radiation,
renewable energy is generated as

ES
(
t, KS(t)

) = (
ν sin2(tπ) + τ

)
KS(t)η,

where η is the degree of efficiency (cf. Deshmukh and Deshmukh 2008; Nema et al.
2009). For common PV cells that are currently on the market η is about 20%. Note
that this function explicitly depends on time t which therefore makes the problem
non-autonomous.
Since the representative energy sector decision maker is assumed to have exact infor-
mation about the required energy demand E1 and no further uncertainties are included,
it is postulated that the demand has to be completely satisfiedwith the portfolio of fossil
EF (t) and renewable ES(t, KS(t)) energy. Shortfalls are not allowed while surpluses
are possible. However, as we do not include the possibility of storage, this implies that
surpluses are lost and cannot be further used.2 This balance is included in the model
by the mixed path constraint

EF (t) + ES
(
t, KS(t)

) − E ≥ 0. (2)

In order to include the aspects of learning by doing, we first make some assumptions
about the functional form of the learning curve. While Eq. (1) only is defined for an
initial cumulative capital stock of K0 > 0, we enlarge this by allowing also a complete
start with renewable energy, meaning K0 = 0. To do so, we follow Berglund and
Söderholm (2006), who present a learning curve formula without explicitly modeling
the initial cumulative capital. Further on, we add an additional term ε defining the
initial investment costs when the cumulative capital stock is zero, as done in Hartley
et al. (2010). The new learning curve then reads as

Ct = C0(KS(t) + ε)−α,

where the initial investment costs are given as

C0 = IS(t)
(
b + cIS(t)

)
.

1 Remember that, for simplicity, the energy demand is assumed to be constant and stationary. Therefore,
here no time argument appears. We also have analyzed similar approaches with a seasonally fluctuating
energy demand (peaks in winter and/or summer due to heating and air conditioning), but comparing the
results has shown that the observed effects remain the same, only the quantitative portfolio composition
might change a little bit. For more details about the different model approaches that we have considered
see also Moser (2014).
2 In practice, of course, small surpluses generally would be traded on the market. However, in times of
great surpluses as it sometimes occurs around Christmas, prices often turn negative which also comes along
with great losses. Therefore, we do not further include the trading aspect in our model but consider such
losses in form of sunk investment costs.
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Note that we distinguish between linear investment and quadratic adjustment costs,
where the latter ones arise from installation efforts (cf. Feichtinger et al. 2006; Ras-
mussen 2001). The specification of the learning curve implies that a rapid increase
in the renewable energy capital stock is costly, which is relevant for the speed of the
economy’s switch to renewable energy generation (cf. Rasmussen 2001). Given the
current market price for fossil energy pF , the representative energy sector decision
maker determines the most cost-effective solution by minimizing total expenditures
given by investment costs in renewable energy capital and import costs for fossil
energy. Hence, the total costs read as

Ct = IS(t) (b + cIS(t)) (KS(t) + ε)−α + pF EF (t).

Summing up, we consider a non-autonomous optimal control model with infinite
horizon, two controls representing the capital investments and the imported fossil
energy, and one state describing the capital stock. This cost minimization problem is
transformed to the equivalent maximization problem

max
EF (t),IS(t)

∫ ∞

0
e−r t

(
− IS(t) (b + cIS(t)) (KS(t) + ε)−α − pF EF (t)

)
dt (3)

s.t.: K̇S(t) = IS(t) − δSKS(t), (3a)

EF (t) + ES
(
t, KS(t)

) − E ≥ 0, (3b)

ES
(
t, KS(t)

) = (
ν sin2(tπ) + τ

)
KS(t)η, (3c)

EF (t), IS(t) ≥ 0. (3d)

4 Solution

4.1 Canonical system and necessary first order conditions

Let (K ∗
S(t), E

∗
F (t)), I ∗

S (t), be an optimal solution of the control problem in (3); then,
according to Pontryagin’s maximum principle for infinite time horizon problems (cf.
Grass et al. 2008), there exists a continuous and piecewise continuous differentiable
function λ(t) ∈ R and a constant λ0 ≥ 0 satisfying for all t ≥ 0 that

(λ0, λ(t)) �= 0,

H (K ∗
S(t), E∗

F (t), I∗S (t), λ(t), λ0, t) = max
EF (t),IS(t)∈


H (K ∗
S(t), EF (t), IS(t), λ(t), λ0, t),

where H defines the current-value Hamiltonian3 which reads as

H (KS , EF , IS , λ, λ0, t) = λ0

(
−(bIS(t) + cIS(t)2)(KS(t) + ε)−α − pF EF (t)

)
+λ(t)(IS(t) − δSKS(t)),

3 Note that from here on we often omit the time argument in the function arguments for the ease of
exposition.
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and 
 is the feasible region determined by the inequality constraints (3b) and (3d). To
analyze this model, we, therefore, consider the Lagrangian (augmented current-value
Hamiltonian) which reads as

L (KS, EF , IS, λ, λ0, μ1, μ2, μ3, t)

= λ0

(
−

(
bIS(t) + cIS(t)

2
)

(KS(t) + ε)−α − pF EF (t)
)

+ λ(t)(IS(t) − δSKS(t))

+μ1(t)
(
EF (t) +

(
ν sin2(tπ) + τ

)
KS(t)η − E

)
+ μ2(t)EF (t) + μ3(t)IS(t),

whereμ1(t), μ2(t) andμ3(t) are theLagrangemultipliers for themixedpath constraint
and the non-negativity conditions, respectively. Further on, at each point where the
controls are continuous,

λ̇(t) = rλ(t) − ∂L (KS, EF , IS, λ, λ0, μ1, μ2, μ3, t)

∂KS

is given and the complementary slackness conditions,

μ1(t)
(
E∗
F (t) + E∗

S

(
t, K ∗

S(t)
) − E

) = 0, μ1(t) ≥ 0,

μ2(t)E
∗
F (t) = 0, μ2(t) ≥ 0,

μ3(t)I
∗
S (t) = 0, μ3(t) ≥ 0,

have to hold. Further on, we require the limiting transversality condition

lim
t→∞ λ(t)e−r t = 0,

to be satisfied. It can be proven that without loss of generality we can set for the
subsequent analysis λ0 = 1. The necessary first-order conditions and the adjoint
equation then are given as follows:

∂L

∂EF (t)
= −pF + μ1(t) + μ2(t) = 0,

∂L

∂ IS(t)
= −b(KS(t) + ε)−α − 2cIS(t)(KS(t) + ε)−α + λ(t) + μ3(t) = 0,

⇔ IS(t) = (KS(t) + ε)α(λ(t) + μ3(t)) − b

2c
,

λ̇(t) = λ(t)r − ∂L
∂KS(t)

= (r + δS)λ(t) − α(b + cIS(t))IS(t)(KS(t) + ε)−α−1

−μ1(t)η(ν sin2(tπ) + τ),
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which yields the canonical system as

K̇S(t) = (KS(t) + ε)α(λ(t) + μ3(t)) − b

2c
− δSKS(t) =: f KS (t, KS(t), λ(t)),

(4)

λ̇(t) = α(KS(t) + ε)−α−1
(
b2 − (KS(t) + ε)2α(λ(t) + μ3(t))2

4c

)

−pFη(ν sin2(tπ) + τ) + λ(t)(r + δS) =: f λ(t, KS(t), λ(t)). (5)

One can easily show that a solution path within the boundaries of the model, meaning
that both controls are positive and the mixed-path constraint of (2) is satisfied with
inequality, never can be optimal. The reason lies within the linearity of the Lagrangian
in EF (t) and that the partial derivative of the Lagrangian with respect to EF (t) is
negative, which yields a bang–bang solution where the maximum is reached at the
lowest feasible control EF (t). Hence, the cost of inefficient surpluses could imme-
diately be reduced by decreasing the amount of fossil energy until either, the mixed
path constraint is satisfied with equality, or the fossil energy amount gets zero, which
both correspond to boundary cases. Therefore, we can completely omit the inner solu-
tion and focus for the following analysis on the feasible boundaries. In total, we can
distinguish between three of them, the fossil case with no investments in renewable
energy capital, EF (t) > 0, IS(t) = 0 and EF (t)+ ES(t, KS(t))− E = 0,4 the mixed
case where both types of energy are used for the coverage with EF (t), IS(t) > 0 and
EF (t)+ ES(t, KS(t))− E = 0, and the renewable case, where no more fossil energy
is used in addition to renewable energy to cover the demand, meaning that EF (t) = 0,
IS(t) > 0, and ES(t, KS(t)) − E ≥ 0 holds. Inserting the corresponding values for
the Lagrange multipliers yields the three different canonical systems, with the fossil
case as

K̇S(t) = −δSKS(t), (6)

λ̇(t) = λ(t)(r + δS) − pFη(ν sin2(tπ) + τ), (7)

the mixed case as

K̇S(t) = λ(t)(KS(t) + ε)α − b

2c
− δSKS(t), (8)

λ̇(t) = α(KS(t) + ε)−α−1
(
b2 − (KS(t) + ε)2αλ(t)2

4c

)

−pFη(ν sin2(tπ) + τ) + λ(t)(r + δS), (9)

4 Note that for the fossil case the generated renewable energy ES(t, KS(t)) still is included in the energy
balance equation. This is because renewable energy at the beginning of the path could still contribute to
the portfolio if there is an initially positive capital stock. As no further investments are done, however, the
capital stock will decline over time and the contribution of renewable energy gets negligibly small in the
long-term. If, in contrast, the initial capital stock is zero, the contribution is zero along the whole path.
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and the renewable case as

K̇S(t) = λ(t)(KS(t) + ε)α − b

2c
− δSKS(t), (10)

λ̇(t) = α(KS(t) + ε)−α−1
(
b2 − (KS(t) + ε)2αλ(t)2

4c

)
+ λ(t)(r + δS). (11)

4.2 Periodic solution

As the canonical system in (4) and (5) is not only non-autonomous, but in addi-
tion also periodic with period length 1, it, therefore, belongs to a special class of
non-autonomous differential equation systems, also called one-periodic differential
equations. Consequently, if x(t) is a solution of the canonical system, also x(t +k) for
every integer k is a solution. Due to this periodicity in the dynamics, a candidate for
the optimal long-run solution of the problem in (3), which is the solution to which each
optimal solution is converging to over time, is given by a periodic solution with the
period length of 1 year. In order to find such candidates, we first determine the instan-
taneous equilibrium points (cf. Ju et al. 2003), which are calculated for the general
canonical system in (4) and (5) as the solution of the differential equation system

K̇S(t) = f KS (t, K I EP
S (t), λI E P (t)) = 0,

λ̇(t) = f λ(t, K I EP
S (t), λI E P (t)) = 0.

To find the periodic solutions of this model, we then use these instantaneous equilib-
rium points as starting solution for the boundary value problem

K̇S(t) = f KS (t, KS(t), λ(t)), with KS(1) = KS(0),

λ̇(t) = f λ(t, KS(t), λ(t)), with λ(1) = λ(0),

which yields the periodic solution
(
K ∗

S(t), λ
∗(t)

)
that lies completely within one of

the three boundary cases. However, it can happen that the solution at some point leaves
the current feasible boundary before the course of the period of 1 year is run through.
In this case one cannot find a closed periodic solution within this feasible area and one
has to switch to the corresponding canonical system to get a periodic solution existing
of several arcs. Therefore, a multi-point boundary value problem has to be solved. At
each point of time where the constraints of the current region are violated, a switch
to the proper region happens, meaning that the according canonical system is used to
continue the solution. For n switching times τ1, . . . τn , which satisfy

τ0 := 0 < τ1 < τ2 < · · · < τn−1 < τn < 1 =: τn+1,
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n + 1 arcs have to be calculated for which the continuity at each switching time has
to be guaranteed. We introduce an index

ai =

⎧⎪⎨
⎪⎩
1, for the fossil region,

2, for the mixed region,

3, for the renewable region,

that distinguishes the canonical systems for the three boundary cases described in (6)–
(11) for each arc i with i = 1, . . . , n + 1. For the numerical solution of the system,
for each arc i + 1 we use the time transformation

T (s) = (τi − τi−1)(s − i) + τi

so that it can be solved with fixed time intervals [i − 1, i]. We then have to solve for
i = 1, . . . , n+1, j = 1, . . . , n, s ∈ [i −1, i], and the switching times τi with τ0 = 0,
τn+1 = 1 the multi-point boundary problem

K̇Si (s) = (τi − τi−1) f
KS
ai (T (s), KSi (s), λi (s)), (12)

λ̇i (s) = (τi − τi−1) f
λ
ai (T (s), KSi (s), λi (s)), (13)(

KSj (τ j ), λ j (τ j )
) = (

KSj+1(τ j ), λ j+1(τ j )
)
, (14)(

KSn (1), λn(1)
) = (

KS1(0), λ1(0)
)
, (15)

c(a j , a j+1) = 0. (16)

Equations (14) and (15) ensure that the continuity in state and controls at each switch
is given and, as a periodic solution is calculated, the beginning and the endpoint
coincide. Equation (16) finally guarantees the necessary condition that the Lagrangian
is continuous as well. This condition is dependent on the involved regions as well as
on the direction of the switch and is given for j = 1, . . . , n as

c(a j , a j+1) =
{

(KSj (τ j ) + ε)αλ j (τ j ) − b = 0, if {a j , a j+1} ∈ {{1, 2}, {2, 1}},
ES(τ j , KSj (τ j )) − E = 0, if {a j , a j+1} ∈ {{2, 3}, {3, 2}}.

4.3 Stability

In order to analyze the dynamic behavior of an obtained periodic solution �(t) of the
canonical system (4) and (5) with period length 1, we calculate the monodromymatrix
as the principal matrix solution of the variational equation

ẏ = J (t)y,

y(0) =
(
1 0
0 1

)
,
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where J (t) is the Jacobian matrix evaluated at the periodic solution �(t),

J (t) =
(

∂ f KS

∂KS

∂ f KS

∂λ
∂ f λ

∂KS

∂ f λ

∂λ

)
(�(t)) .

Determining the Jacobian matrix for the fossil case yields

J (t) =
(−δS 0

0 r + δS

)
,

and hence the monodromy matrix

M = eJ (1) =
(
e−δS 0
0 er+δS

)
, (17)

with the eigenvalues
e1 = e−δS , e2 = er+δS . (18)

The eigenvalues of the monodromymatrix reflect the stability of the periodic solution.
Let ei , i = 1, . . . , n be the eigenvalues of the monodromy matrix and let

n+ := {i : |ei | < 1}, n− := {i : |ei | > 1} (19)

be the sets of the stable (n+) and unstable (n−) eigenvalues; a periodic solution �(t)
is called of saddle-type if

|n+||n−| > 0 (20)

holds, which means that at least one of each type has to exist. If |n−| = 0, the
periodic solution is unstable (see Grass et al. 2008). Further on, if no eigenvalue
ei = 1, i ∈ {1, . . . , n} occurs, it even is a hyperbolic cycle which guarantees that
the behavior of the system near this periodic solution can be fully described by its
linearisation (see Hale and Koçak 1991). As 0 < δS < 1 and r +δS > 0 always holds,
this implies that every fossil solution that can be found is of saddle-type.5 Calculating
the Jacobian matrix for the mixed and the renewable case yields

J (t) =
⎛
⎜⎝

−δS + α(KS(t)+ε)α−1λ(t)
2c

(KS(t)+ε)α

2c

−α(KS(t)+ε)−α−2
(
b2(1+α)+(α−1)(KS(t)+ε)2αλ2

)
4c r + δS − α(KS(t)+ε)α−1λ(t)

2c

⎞
⎟⎠ .

5 For discounted optimal control problems (r > 0), unstable solutions are the only possible limit sets of
the canonical system. Consequently, solutions of saddle-type and their stable paths are considered to be
the most important candidates for optimal solutions of such problems, in case it is assumed that an optimal
solution converges to its limit set. For more details on this see Feichtinger and Hartl (1986) and Grass et al.
(2008).
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Note that here the Jacobian matrix and, therefore, also the monodromy matrix
depend on the periodic solution�(t). Consequently, a general statement on the stability
of the mixed and renewable periodic solutions is not possible.

4.4 Numerical continuation of optimal paths

In order to calculate a trajectory starting at an initial capital stock K0 and leading
into the optimal long-run periodic solution that completely lies within one of the
feasible boundary regions, one has to solve for t ∈ [0, T ] the boundary value prob-
lem

K̇S(t) = f KS (t, KS(t), λ(t)), (21)

λ̇(t) = f λ(t, λ(t)), (22)

KS(0) = K0, (23)

0 = F ′
((

KS(T )

λ(T )

)
−

(
K ∗

S(0)
λ∗(0)

))
, (24)

where the matrix F is spanning the orthogonal complement to the stable eigenspace
(see Grass 2012) and T is the truncation time of the path. The condition in (24) guar-
antees that the solution ends on the linearized stable manifold to which the vector
F is orthogonal (for a more detailed analysis of the so-called asymptotic boundary
condition see Lentini and Keller 1980).

5 Results

We set for the following analysis the parameters as summarized in Table 1: Solving
the canonical system for these parameters yields three periodic solutions, where one
belongs to the fossil case with zero investments IS(t) = 0 and a fossil energy amount
EF (t) = E , and the two other ones correspond to the mixed case with both controls

Table 1 Parameter values used
for the numerical analysis

Interpretation Parameter Value

Investment costs b 0.6

Adjustment costs c 0.3

Energy demand E 2000

Fossil energy price pF 0.051

Discount rate r 0.04

Learning coefficient α 0.25

Depreciation rate δS 0.03

Initial investment costs ε 1

Degree of efficiency η 0.2

Maximal radiation increment ν 4.56

Minimal radiation in winter τ 0.79
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Fig. 2 The three detected periodic solutions in the state-control space

Table 2 Multiple periodic solutions for pF = 0.051

Solution K ∗
S (0) I∗S (0) E∗

F (0) Eigenvalues Objective function
(in 103)

Fossil 0.0000 0.0000 2000.00 {0.9704, 1.0725} −2.4500

Mixed low 2.0797 0.0623 1999.67 {1.0182+0.0645i, −2.4491

1.0182-0.0645i}

Mixed high 30.6739 0.9201 1995.15 {0.9827, 1.0591} −2.4351

greater than zero. As we have shown analytically in Eqs. (17) and (18), the fossil
solution always is of saddle-type. To investigate the stability of the other two mixed
solutions, we calculate the eigenvalues of the monodromy matrix, which shows that
the lower mixed solution is an unstable focus, while the higher one is also of saddle-
type. The three solutions are shown in Fig. 2 and, together with their eigenvalues, are
summarized in Table 2.

The time-control paths and the time-state paths of the two saddle-type solutions
are shown in more detail in Fig. 3. To correctly understand the fluctuating investment
path shown in Fig. 3a, it is important to distinguish between acquisition investments
and maintenance investments. Remember that we have included depreciation in the
state equation in (3a) and, consequently, maintenance investments are necessary to
keep the capital in a good condition. Therefore, along a path leading into a long-run
periodic solution, both, acquisition investments for new capital as well as maintenance
investments for the already accumulated capital, are necessary to increase the capital
stock. In the periodic solution itself, however, the desired capital stock level is already
reached and only maintenance investments are required. While in the fossil solution
no maintenance investments IS(t) are made, one can see their seasonality for the
high mixed solution. Their fluctuations result from the time lag between the depreci-
ation process and the optimal timing of maintenance investments, as the incentive for
maintaining the capital is higher shortly before the global radiation peak in summer.
Therefore, the investment decision of the high mixed solution in Fig. 3a can be inter-
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Fig. 3 Time-control paths for the three detected periodic solutions: a renewable energy investments IS(t),
b renewable energy capital KS(t), and c fossil energy EF (t)

preted as follows: In winter, the global radiation is weak. Consequently, the benefit of
the capital stock with respect to renewable energy generation and, hence, the incentive
for high maintenance investments is low. For this reason, investments are kept on a
low level. However, as soon as global radiation goes up in spring, the benefit of the
capital stock gets higher. Due to the quadratic investment costs, however, high mainte-
nance investments at once are expensive. Therefore, maintenance investments slowly
increase already in winter and reach a peak in spring to have the capital in best condi-
tion during summer where global radiation reaches its maximum. This can be seen in
Fig. 3b. Further on, renewable energy generation increases in this period and less fossil
energy is needed to cover the demand, shown in Fig. 3c. Over summer, investments
decline again as the need for maintenance gets lower and they reach their minimum in
autumn just before they start to increase again in preparation for the next year. One can
see that the optimal investment decision exhibits the same seasonality as the global
radiation but it is shifted along the time axis by the expenditure of time formaintenance
activities, so that the fluctuation of the capital stock coincides with the one of global
radiation.

Such seasonal maintenance planning can be observed in various fields of energy
generation. For hydro storage power stations, for example, the seasonality is given
by the natural inflows, which usually are higher in early spring due to snow melting
and lower over summer during droughts. Also here, maintenance activities are mainly
done during the less productive period in summer, in order to keep opportunity costs
of a reduced machine availability low. Also thermic power plants usually have their
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revisions during periods of reduced operating hours due to a lower energy demand
(e.g. summer).

Summing up the obtained solutions, we have two periodic solutions being of saddle-
typewhose areas of attraction probably are separated by an indifference threshold point
induced by the unstable focus in between. Indifference threshold points are points in
the state space at which the paths leading into different optimal long-run solutions
have the same objective value. Therefore, at these points one is indifferent between
the two solutions. For more details on indifference threshold points (see Grass et al.
2008; Kiseleva 2011; Kiseleva and Wagener 2010).

5.1 Calculation of the indifference threshold point

Whether such an indifference threshold point exists or one of the two periodic solutions
being of saddle-type is dominant has, therefore, to be analyzed. To do so, we continue
the trajectories of both periodic solutions as far as possible until one of the subsequent
cases occurs: (1) the continuation process aborts as the path reaches some feasible
boundary, (2) the path is bending back, or (3) the other periodic solution is reached. The
results of these continuations can be seen in Fig. 4a. The path starting at the highmixed
periodic solution is bending back while the one starting at the fossil periodic solution
gets infeasible at some point. To find the indifference threshold point, the objective
function values along the two paths are compared to observe whether there exists an
intersection. As the analyzed model is non-autonomous, however, the comparison of
the objective function values is not time invariant. Therefore, not the objective function
values along the last paths of the continuation processes but the last objective values
of the paths at each continuation step for the current state value have to be considered.
The objective value curves for the two periodic solutions are shown in Fig. 4b. The
intersection yields the indifference threshold point, which for the current parameter
set lies at K ITP

S = 1.6477.

5.2 Economic interpretation of the indifference threshold point

The occurrence of an indifference threshold point is an important result of this analysis
as the optimal long-run periodic solution depends on the initial capital stockwithwhich
optimization is started.

Figure 5 shows how the indifference threshold point separates the areas of attraction
of the mixed and the fossil periodic solution. If the initial capital stock exactly lies on
the indifference threshold point K ITP

S , the paths to both periodic solutions are equally
expensive. Therefore, the decisionmaker is indifferent between increasing investments
IS(t) and moving towards the mixed periodic solution with a higher capital stock and
a lower fossil energy amount during the summer period on the one hand, and stopping
investments and moving towards the fossil periodic solution where all the energy
demand is covered with fossil energy on the other hand. If the initial capital stock is
higher than the indifference threshold point K ITP

S , it is optimal to move up towards
the mixed periodic solution, if it is lower, the fossil long-run periodic solution is
optimal. The reason for this change lies within the learning-by-doing effect. If the
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initial capital stock is high enough, the reduction of the investment costs due to the
learning-by-doing effect can compensate the cost of additional capital accumulation
and, therefore, it is optimal to increase the capital stock, which even enforces this effect
but at a decreasing rate. If, however, the initial capital stock is low, the learning-by-
doing effect on the investment costs is too weak to compensate the costs for additional
capital accumulation. Therefore, it is profitable to reduce investments and, hence, the
capital stock, and increase the share of fossil energy used to cover the energy demand
until finally, the fossil optimal long-run periodic solution is reached. This initial state-
dependent separation of the areas of attraction is also known as history dependence,
as the optimal long-run periodic solution is determined by the accumulation effort for
renewable energy capital in the past.

This result points out the difficulty of introducing a new energy technology into
the market. While conventional energy types already are competitive and have low
prices due to the high experience accumulated over years, the investment costs for
new technologies are very high. As no experience exists at the beginning, these high
investment cost would have to be paid over some period of time during which the
new technology definitely is not profitable, until finally at least some reduction due
to accumulated experience is archived which would be the very first step on the long
way towards the break even point. This aspect underlines the importance of subsidies
and other kind of financial support that is necessary during the starting-up period to
help new technologies over this barrier. Such temporary incentives, also known as
directed technical change, can be fundamental for the inclusion of clean technologies.
See for this Acemoglu et al. (2012), where it is shown that for an economy consist-
ing of a clean and a dirty technology being sufficiently substitutable, environmental
regulation is essential to avoid an environmental disaster. As soon as the clean tech-
nology is adequately advanced, however, no further regulation is needed anymore as
profit-maximizing production will automatically shift to the clean technology. As in
contrast to this, our model approach does not consider such regulations, it, therefore,
would never be optimal to start with the renewable energy technology from the very
beginning. If no experience exists to reduce the initially high investment costs, fossil
energy always is less cost intensive and, as no further restrictions are included like
CO2 performance standards for example, no switch to a cleaner energy technology
would happen. Only, if there is already a sufficiently high level of experience when
optimization is started, further investments are profitable.

5.3 Breakeven analysis

As accumulated experience improves the technical processes and hence reduces the
necessary financial effort, the technology gets more profitable. However, it can take
a long time until full competitiveness with the conventional technology is achieved,
which happens at the so-called break-even point.

To analyze the extend of the learning-by-doing effect on the investment costs in our
model, we compare the costs of renewable energy generation with the fossil energy
price pF along the path leading into the optimal long-run periodic solution. The invest-
ment costs per unit of generated renewable energy at this time is given by the term
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(
bI ∗

S (t) + cI ∗
S (t)2

)
(K ∗

S(t) + ε)−α

(ν sin2(tπ) + τ
)
K ∗

S(t)η
, (25)

where K ∗
S(t) and I ∗

S (t) are the state and the control along the path leading into the
optimal long-run periodic solution. The results can be seen in Fig. 6. As the generation
of renewable energy fluctuates in time with the available global radiation and occurs in
the denominator of Eq. (25), the investment costs also vary over the period. However, a
clear decreasing tendency can be observed as soon as capital is accumulated. The black
horizontal line in Fig. 6 shows the fossil energy price pF . At the beginning of the path,
the investment costs are very high, especially in winter they are almost the eightfold of
the fossil energy price pF . The reasons for this are the initially high investment costs
of the renewable energy technology together with the low initial capital stock and,
hence, the lowamount of generated renewable energy. In summer, however, one can see
that the investment costs are lower because global radiation is high and, therefore,more
renewable energy is generated. Very early along the path even the fossil energy price
level is reached during summer. As the path proceeds, investments accumulate new
capital and, therefore, the learning-by-doing effect as well as the generated renewable
energy increases. This leads to declining price levels, both in winter and summer,
and also the margin between these two decreases until finally the optimal long-run
periodic solution is reached. Here, the price level in summer is already far below the
fossil energy price level while in winter it is still above it. However, over the year the
benefit of the portfolio mixture is high enough to let the combination of fossil and
renewable energy be optimal.

6 Sensitivity analysis

The analysis of the previous section has shown that the learning-by-doing effect can
imply history dependence of the optimal long-run periodic solution. The driving force
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for this dependence is given by the cost-effectiveness of renewable energy generation
with respect to conventional energy technologies. However, there are several factors
beyond historical capital accumulation activities that influence this cost-effectiveness.
First of all, of course, the fossil energy price pF plays a major role, reflecting the
economic performance of the fossil technology. Further on, it is essential how strong
the cost decreasing influence of the learning-by-doing effect is on the investment
costs of renewable energy. Besides that, also the performance of the renewable energy
generation is important, which is determined for example by site-specific factors as
for example the supply of global radiation. To analyze how the obtained results of
the previous section change when these factors vary, we conduct in this section a
sensitivity analysis with respect to the fossil energy price pF , the learning coefficient
α, and different sets of the parameters τ and ν that determine the site specific global
radiation intensity.

6.1 Fossil energy price pF

In the first step, we focus on the influence of the fossil energy price on the optimal
portfolio composition.We use numerical continuation with respect to the fossil energy
price pF to investigate how the results change when fossil energy gets more expensive.
Note that we always consider in the following the bifurcation of the canonical system,
not of the optimal system. Therefore, also the changes in the unstable as well as the
dominated long-run periodic solutions are shown. The results can be seen in Fig. 7,
where the starting points K ∗

S(0) of the periodic solutions are plotted as gray line for
the fossil solution and as black line for the mixed solutions. If the fossil energy price
is very low, there exists only the fossil periodic solution because the opportunity costs
of investments into renewable energy capital are so high that they are not profitable
and, hence, no investments at all are done and the whole energy demand is covered
only with fossil energy. Starting at a fossil energy price of pF = 0.0446, there exists
also the two mixed periodic solutions, where the lower one is unstable and the upper
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one is of saddle-type. The areas of attraction of the fossil and the upper mixed periodic
solutions are separated by indifference threshold points summarized in the indifference
threshold curve plotted as black dotted line. At the beginning, it lies above the unstable
mixed long-run solution. As fossil energy in this area still is comparatively cheap, the
historical renewable energy capital accumulation efforts have to be very high to make
further investments in renewable energy capital profitable. If the fossil energy price
further increases, the indifference threshold curve declines as renewable energy capital
investments are profitable already at a lower historical capital accumulation effort. At
pF = 0.0501, the indifference threshold curve intersects with themixed unstable long-
run periodic solution. From then on, the areas of attraction are separated below this
periodic solution. At pF = 0.0535 it ends at the fossil periodic solution. For a fossil
energy price 0.0535 ≤ pF ≤ 0.0679, still all three long-run periodic solutions exist,
but the high mixed one is dominant as here fossil energy alone would be too expensive
to cover the demand. The unstable mixed solution turns into a multi-arc solution with
two mixed arcs and one fossil arc in between at pF = 0.0612, as investments decline
with the fossil energy price until they finally get zero. This first happens during the
winter period while during the summer period investments are still positive. As one
can see in the figure, the fossil solution only exists to some specific fossil energy
price. The reason for this is that the Lagrange multiplier μ3(t) becomes negative.
The price at which this happens is a function of state KS(t) and time t and for the
current parameter set and the fossil solution is given as pF = 0.0678. For higher
values of pF , however, a fossil-mixed solution still can be feasible if the part along
which the Lagrange multiplier would be negative is replaced by a mixed arc. As soon
as the Lagrange multiplier is negative already at the point of time where λ(t) reaches
its minimum, however, also no feasible fossil-mixed solution exists, which is for the
current parameter set at pF = 0.069. For fossil energy prices pF>0.069, the optimal
long-run periodic solution is given by the highmixed periodic solution. Figure 8 shows
what happens if the fossil energy price pF increases even beyond 0.07. As renewable
energy generation progressively gets profitable due to the reduced investment costs by
the accumulated experience as well as the comparativelymore expensive fossil energy,
a strong increase in renewable energygeneration capital canbeobserved.However, still
both energy types are needed over the whole period to cover the given energy demand.
At pF = 0.5613, renewable energy generation capital is so high that during summer,
when global radiation reaches its maximum, the demand even can be covered without
fossil energy. At this point, the feasible boundary of the mixed case is reached and,
from this fossil energy price on, a periodic solution exists that consists of two mixed
arcs and a renewable arc in between. Figure 9 shows such a mixed/renewable solution
in more detail for a fossil energy price of pF = 0.8. Along these mixed/renewable
solutions, the demand over some time interval in summer is covered only by renewable
energy, while inwinter fossil energy still is needed in addition. If the fossil energy price
increases even more, there is still an increase in the stock of renewable energy capital,
however, obviously at a decreasing rate. The reason for this is that the marginal benefit
of an additional unit of renewable energy capital declines. Remember that generated
surpluses beyond the energy demand cannot be used because storage is not included
in the model. Therefore, a further increase of the capital stock only is profitable along
themixed arcs, where the necessary amount of fossil energy can be reduced by slightly
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increasing renewable energy generation. But as the global radiation at the switching
times between the arcs gets lower, the closer they are to 0 and 1, more and more
renewable energy capital is necessary to compensate. Although the investment costs
of renewable energy capital decline with the increasing capital stock and reduce at
least the financial effort for this compensation, this saturation effect occurs.

Figure 7 further on shows that a turning point occurs at pF = 0.044 in the mixed
solution. To investigate how the optimal vector field changes here, we consider the
local behavior of the monodromymatrix. Figure 10 shows the norm of the eigenvalues
of each long-run periodic solution along the pF-axis. The eigenvalues belonging to the
fossil long-run periodic solution are shown in dark gray. As we already have shown in
Sect. 4.3, the monodromy matrix and hence the eigenvalues of any fossil solution are
independent on the periodic solution itself as no state nor co-state occurs in the Jacobian
for this case. Hence, the eigenvalues of the fossil long-run periodic solution in Fig. 10
are constant over the fossil energy price pF and are given as e1 = e−δS , e2 = er+δS .
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As one eigenvalue lies within and the other one outside the unit circle, which in the
figure is plotted as black horizontal line, the fossil solution is of saddle-type over
its whole interval of existence. The probably most interesting result can be observed
for the mixed solutions. The eigenvalues corresponding to the upper mixed long-run
periodic solution are shown in Fig. 10 as black line, where again one is lying within
and the other one outside the unit circle which specifies the solutions to be of saddle-
type. The lower the fossil energy price pF , the higher gets the stable eigenvalue until
finally, at pF = 0.044, it crosses the unit circle. Hence, a fold-bifurcation occurs (see
for more details Reithmeier 1991) and the stability of the mixed long-run periodic
solution changes from saddle-point stability to unstable. The two eigenvalues outside
the unit circle are plotted as light gray lines in Fig. 10. At the beginning, they are still
real and, hence, the lower mixed periodic solution is an unstable node, but very soon
they get complex and the mixed periodic solution turns into an unstable focus. At
pF = 0.0612, the lower mixed periodic solution merges into the fossil-mixed solution
whose eigenvalues are shown as light gray dotted line. Also here, the eigenvalues are
complex and their real parts are outside of the unit circle, which specifies this solutions
as unstable focus as well.

6.2 Learning coefficient α

As already mentioned, not only the fossil energy price plays an important role how the
optimal portfolio composition looks like, but also the reducing impact of the learning-
by-doing effect on the investment costs of renewable energy, which is determined
by the learning coefficient α. In literature, many research papers can be found that
investigate the correct height of learning coefficients for different types of technologies.
However, opinions strongly differ. To analyze how sensitive the optimal portfolio
composition is to different assumptions on the learning coefficient, we conduct in this
section the same analysis as in the previous one, but this time with respect to the
learning coefficient α.
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We fix the fossil energy price at pF = 0.05 and again use numerical continua-
tion to calculate the optimal long-run periodic solutions as well as the indifference
threshold points, if existent, for a varying α. The results can be seen in Fig. 11. For
a learning coefficient of α < 0.2068, which corresponds to a learning-by-doing rate
of LDR < 13.35%, the optimal long-run periodic solution is given by the fossil
periodic solution. The reason for this is the aspect that the learning-by-doing effect
is too weak to compensate the initially high investment costs to make it profitable to
invest in renewable energy generation capital and, hence, the whole demand is cov-
ered with fossil energy. For learning coefficients close to α > 0.2068, three long-run
periodic solutions exist of which one is the fossil solution and the other two are the
two mixed solutions where the higher one is of saddle-type and the lower one is unsta-
ble. Indifference threshold points separate again the areas of attraction. The economic
interpretation of this result is that the historical renewable energy capital efforts that are
necessary to make renewable energy investments profitable decline with the intensity
of the learning-by-doing effect, as a lower initial renewable energy capital stock then
already is sufficient. Until α = 0.2505, which corresponds to a learning-by-doing rate
of LDR = 15.94%, the indifference threshold curve lies beyond the unstable mixed
solution. Also here, the path leading into the periodic solution has to be continued to
a mixed arc path to get the indifference threshold point. For α > 0.2505, the indiffer-
ence threshold curve lies below the unstable mixed solution and further declines in α

until finally, at α = 0.282 and, hence, at a learning-by-doing rate LDR = 17.75%,
it coincides with the unstable mixed solution. For higher learning coefficients, the
mixed periodic solution dominates the fossil one as fossil energy is too expensive to
be exclusively used to cover the demand.

6.3 Global radiation intensity

So far we have investigated the impact of price and learning-by-doing effects on
the optimal portfolio composition. However, we completely have fixed site-specific
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aspects concerning the supply of global radiation for the previous analysis. Therefore,
an interesting aspect on which we focus on in the following is as to how the solutions
change when geographical conditions vary.

For the estimation of the parameter values τ and ν for the analysis so far, we have
used Austrian data. However, as the global radiation intensity strongly varies with the
geographical position, the question rises how the results would change if data for a
geographical site higher in the north or lower in the south are used instead? To do so,
we use global radiation data for Hamburg (Scenario 1) and from Athens (Scenario 2)
as examples for a more northern and a more southern site, respectively (source of data
see SODA 2014). The results of the parameter estimations are summarized in Table 3
and the deterministic functions for Scenarios 1 and 2 and also the original estimates for
Austria, which we already have used for the previous analysis, are shown in Fig. 12.

In order to investigate the changes in the optimal portfolio composition when site-
specific parameters change, we conduct the same sensitivity analysis with respect to
the fossil energy price pF , as done in Sect. 6.1, and compare the different outcomes.

6.4 Sensitivity analysis for Scenarios 1 and 2

Figure 13 shows the results of the sensitivity analysis for Scenarios 1 and 2, respec-
tively, compared to the results we have obtained for the parameters estimated for
Austria.

First, we focus on Scenario 1 with a less intensive supply of global radiation. It
shows that the qualitative behavior is the same. For a low fossil energy price only the
fossil solution exists, while at a specific point the two mixed solutions, with one being

Table 3 Estimates for τ and ν
τ ν

Austria 0.79 4.56

Scenario 1 0.21 4.08

Scenario 2 1.35 5.64

Scenario 1

Scenario 2

Austria

0.0 0.2 0.4 0.6 0.8 1.0
t0

2

4

6

8
vR t in kWh m2

Fig. 12 Deterministic functions for global radiation
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Fig. 13 Bifurcation diagram with respect to the fossil energy price pF for the Scenarios 1 and 2 in com-
parison with the results for Austria

unstable and the other one being of saddle-type, occur and the areas of attraction are
separated by an indifference threshold curve. However, a look on the price axis makes
clear that remarkable changes concerning the position have happened. While the first
bifurcation point at which these two additional mixed periodic solutions exists has
been at pF = 0.0446 for the original set, this happens here at pF = 0.0609. Although
the intensity of the learning-by-doing effect is the same and, therefore, the investment
costs per unit capital would decline at the same speed, the lower global radiation supply
leads to a lower renewable energy generation and, hence, to higher investment costs
per unit of power. This aspect shifts the interval in which the mixed periodic solutions
as well as the indifference threshold curve exist to the right as the fossil energy price
has to be much higher to make further investments profitable. Consequently, also the
price level at which the high mixed solution gets dominant and, hence, the pure fossil
solution is not further optimal, has shifted to the right. For the original parameter set
this happens at pF = 0.0535, while here the price level for this is much higher at
pF = 0.0739. Finally, at pF = 0.091 the optimal long-run periodic solution is given
by the high mixed periodic solution. Furthermore, the slope, with which the high
mixed periodic solution increases with the fossil energy price, is lower compared to
the basic scenario for Austria. The reason for this is given by the fact that, due to the
lower global radiation, less renewable energy can be generated and, hence, the optimal
renewable energy capital stock is lower at the same fossil energy price. Additionally,
one can see that also the interval gets larger in which the indifference threshold curve
separates the areas of attraction of the two periodic solutions being of saddle-type.
This is because also the capital stock, at which the mixed periodic solution starts to
dominate the fossil one, is reached at a higher fossil energy price.

Second, we investigate Scenario 2 with a higher intensity of global radiation. Also
for this case, the qualitative outcome does not change, but again the price boundaries
are of special interest.While the interval, in which all three long-run periodic solutions
exist and the area of attraction is separated by an indifference threshold point, started at
pF = 0.0446 in the original set and at pF = 0.0609 in Scenario 1, one can observe from

123



A non-autonomous optimal control model of renewable… 571

Fig. 13 that this here happens already at pF = 0.0328. As the supply of global radiation
is higher, the investment costs per unit of power for an equal capital stock here are
even lower than for the other two cases. Hence, investments into renewable energy get
profitable already at a lower fossil energy price. For this reason, also the indifference
threshold curve has shifted to the left. The highmixed solution in Scenario 2 gets dom-
inant at pF = 0.0449, a price at which in the original set a mixed portfolio just starts to
be an alternative to the pure fossil one, not to mention Scenario 1 where this possibility
does not exist at all at this price level. Starting at pF = 0.0495, the high mixed solution
is the optimal long-run periodic solution. Here, the slope, with which the high mixed
periodic solution increases with the fossil energy price, is higher compared to the basic
scenario for Austria. Due to the higher global radiation, more renewable energy can
be generated and, hence, a higher renewable energy capital stock is profitable already
at a lower fossil energy price. Consequently, the interval, in which the indifference
threshold curve separates the areas of attraction of the two periodic solutions being
of saddle-type, gets smaller as the capital stock, at which the mixed periodic solution
with research starts to dominate the fossil one, is reached at a lower fossil energy price.

Varying the intensity of the site-specific global radiation has shown some interesting
aspects.While in all three cases, the original parameter set as well as the two scenarios,
the intensity of the learning-by-doing effect is exactly the same, the outcomes and their
possible consequences for political decisions are completely different. In reality, of
course, the price boundaries between which the indifference threshold curve separates
the areas of attraction are hard to observe and the only indicator for subsidy decisions
might be given by the current fossil energy price. Assume, that in all three cases a price
level of pF = 0.05 is given and subsidies are set to foster renewable energy generation.
While for the original parameter set at this price level indeed the indifference threshold
curve occurs and the subsidies could help to achieve a switch to renewable energy
generation, for the southern country in Scenario 2 the mixed portfolio is already the
only optimal solution at this price. Consequently, renewable energy generation here
would be over subsidized.Otherwise, for the northern country in Scenario 1, renewable
energy generation is not at all an option at this price level as the fossil solution is the
only optimal solution and the subsidies here would be completely ineffective. This
shows how sensitive the effectiveness of subsidies is to country-specific conditions.
Same would also apply for taxes on fossil energy as the shift in the fossil energy price,
that is necessary to enable a switch to renewable energy generation, depends on the
country-specific situation as well.

7 Conclusions

We have investigated in this paper how a small country’s optimal composition of a
portfolio consisting of fossil and renewable (solar) energy looks like, when the effect of
learning by doing reduces the investment costs due to accumulated experience. Mod-
eling the problem as a non-autonomous optimal control model, we have included a
one-factor log-linear learning curve into the objective function so that the accumulated
renewable energy capital, which is supposed to reflect the collected experience, has a
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diminishing impact on the investment costs. Further on, we postulated seasonally vary-
ing renewable energy supply and a well-known energy demand that has to be covered.

The obtained results have shown that the fluctuating supply of the renewable
resource is one of the major challenges for renewable energy generation. Even if
the break even point for the renewable energy technology could be reached where it
gets competitive, the shortfalls in winter still have to be covered with fossil energy.
This, however, implies another problem which can be seen at the current market situa-
tion. As no resource costs occur for renewable energy generation, the variable costs are
almost zero, well in contrast to fossil energy. Therefore, a too high renewable energy
generation could jeopardize the competitiveness of fossil energy and, hence, its capa-
bility to cover these shortfalls. However, as long as the renewable energy generation is
not autarkic, for example due to the help of supportive storage systems, fossil energy
is urgently needed as backup.

Sensitivity analysis with respect to the fossil energy price pF has shown that there
exist price intervals in which multiple periodic solutions occur, and whose areas of
attraction are separated by an indifference threshold point. Further on, it turns out that
these results are not only sensitive to the fossil energy price but also to the intensity
of the learning-by-doing effect as well as on geographical conditions concerning the
global radiation.

The occurrence of an indifference threshold point yields important aspects for the
economic interpretation of the obtained results.We have seen that whether investments
into renewable energy generation capital are worthwhile or not depends on the initial
capital stock. Due to this history dependence, investments into renewable energy gen-
eration from the very beginning never would be optimal in our approach as the initial
investment costs are too high. The level of the capital stock, at which such investments
get profitable, shifts even further up if global radiation is lower, as for the northern
countries, or if the learning-by-doing effect is weaker, meaning that the learning coeffi-
cient is assumed to be lower. One important conclusion of these results is that financial
support in form of subsidies during the starting up period of a new technology could
play a major role for the successful introduction of this technology into the market.
The profitability, however, strongly depends on the site-specific conditions.

The most important aspect for an increasing renewable energy generation in our
model has been given by accumulated experience. This learning-by-doing effect,
however, has been restricted to the considered country itself. In reality, of course,
learning by doing is not only a national but also an international issue. Knowledge
spillovers between different countries would even enforce the learning effect and,
hence, the adaption of renewable energy technology would happen much faster. Syn-
ergies between different countries, therefore, could shift the indifference threshold
point to the left and, consequently, a lower subsidy effort would be necessary to sup-
port the inclusion of renewable energy generation into the portfolio.

While international cooperation can be supportive for accumulating experiencewith
renewable energy generation, the results from the sensitivity analysis with respect to
the global radiation intensity have shown that the effectiveness of a subsidy system
strongly depends on national conditions. This means that a cross-border subsidies
policy might overlook such tiny but important differences between countries, which
could make the subsidies ineffective, as we have seen in Sect. 6.3, and, therefore,
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could be counterproductive. Consequently, this implies that subsidy policies should
remain a national issue while international cooperation and knowledge exchange on
renewable energy technologies should be fostered.

Experience in this approach has been the driving force for the reduction of invest-
ment costs. But this is not the only source for technological learning. Of course also
research and development efforts could foster the competitiveness of a new technol-
ogy, which implies accumulation of knowledge and, hence, an additional reduction
in investment costs. The extension of the model with this aspect will be of special
interest in one of our future works.
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