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Abstract We investigate the use of priority mechanisms when assigning service engi-
neers to customers as a tool for service differentiation. To this end, we analyze a non-
preemptive M /P H /c priority queue with various customer classes. For this queue,
we present various accurate and fast methods to estimate the first two moments of
the waiting time per class given that all servers are occupied. These waiting time
moments allow us to approximate the overall waiting time distribution per class. We
subsequently apply these methods to real-life data in a case study.

Keywords Service differentiation - M/P H/c queue - Priority queues - Waiting
time moments - Service-level agreements

1 Introduction

In the current business environment, the availability of key assets may be crucial for a
company’s operations. Examples of such assets are radar systems on frigates and CT-
scanners in hospitals. Because of the impact of asset downtime, users require services
for the keeping up of the system during its lifetime. Increasingly, such services are pro-
vided by the equipment manufacturer, with agreements on the services provided being
specified in so-called service contracts. In particular, service contracts often contain
service level agreements (SLAs) on performance measures such as reaction times in
case of failures (for instance, the time for an engineer to arrive at a customer’s site,
or the time for the system to function again) and system availability (e.g., the overall
fraction of time that the system should be functioning properly). Unavailability arises,
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e.g., from diagnosis, repair, and waiting time for spare parts and service engineers. A
key challenge is that these SLAs often differ among customers, with some customers
requiring very high service levels, while others are satisfied with lower service levels.
In practice, service providers often handle differentiated service levels by providing
all customers with more or less uniform service: a so-called one-size-fits-all approach
(Cohen et al. 2006). This approach is very costly, as the service provider then needs to
design the service process to provide the highest service levels. Also, customers with
standard contracts have no incentive to switch to premium contracts. Therefore, we
focus on applying service differentiation in the process.

Commonly, system maintenance is performed by service engineers, who travel
to a customer’s site, diagnose the cause of the failure and repair the system. A key
performance indicator is the response time, i.e., the time between the reporting of a
failure and the arrival of the engineer at the customer’s site. Naturally, the response time
is influenced by the way in which engineers are assigned to customers. In this paper,
we focus on priority assignment, i.e., an available engineer is assigned to the customer
with the highest priority as opposed to the customer that has been waiting longest.
As a result, customers with high service level requirements exhibit short response
times at the expense of other customers. We aim to accurately estimate the waiting
times for the various classes of customers, with the customer’s class indicating the
required level of service. As we aim for a high probability that service level targets are
met, mean waiting times alone are insufficient. We need the waiting time distribution
per customer class. Then, combined with the travel time to customers, we have an
estimate of the response times per customer class, and hence of the service provider’s
performance on his response time target.

We model the system as a multi-class, non-preemptive M/ Ph /c priority queue with
identical service time distributions over the classes. Poisson arrivals are often a valid
assumption in practice: complex systems seem to have a constant hazard function,
since failures arise from various causes, thus appearing completely random. We have
observed such behavior in printing and copying equipment amongst others, and Jardine
and Tsang (2006) give additional cases where the Poisson assumption is reasonable,
see Section 3.5.5 in the book. We consider non-preemptive priorities, since an engineer
will complete service at one customer before proceeding to another, even if a higher-
priority customer appears in the meantime. Finally, we consider the setting where
all customers have similar types of systems. As a result, the failure behavior of the
system, and hence the distribution of the time to repair the system, will be the same
at all customers. It is worth noting that the non-preemptive M/ Ph/c priority queue
has also other possible applications such as in call centers, ICT support systems, and
telecommunication networks.

In the remainder of the paper, we first give an overview of the literature on multi-
class multi-server systems (Sect. 2). There, we also state our main contribution. In
Sect. 3, we describe our multi-class model and globally describe the analysis approach
for this model. A key building block of the approach is the analysis of a single-class
system, which we give in Sect. 4. We give extensions for speeding up the computations
in Sect. 5. In Sect. 6, we evaluate our analysis methods and extension options in an
extensive numerical experiment. In Sect. 7, we apply the best variant to a case study.
Finally, we draw our main conclusions in Sect. 8.

@ Springer



Approximations for the waiting-time distribution 531

2 Literature overview and main contribution

Our model contributes to the literature on multi-class, multi-server priority queues with
a variety of priority disciplines (non-preemption, preemptive resume or preemptive
repeat). Due to the constraints of our practical application, we emphasize that in this
paper the research scope is focused on cases where the number of servers is not very
large, e.g., it is between 1 and 10, and the traffic load is not necessarily very high,
e.g., less than 95 %. As a result, the literature on heavy traffic approximations, see,
e.g., Kimura (1983), and extremely large number of servers, see Whitt (1992), is
not applicable. In the following, we first discuss M /M /c priority queues (i.e., with
exponential service times). Then, we consider multi-server priority queues with non-
exponential service times, with a special focus on M/ Ph/c non-preemptive priority
queues.

Most literature on multi-server priority queues deals with M /M /c queues. For a
preemptive-resume setting with multiple classes, Buzen and Bondi (1983) derive exact
expressions for the mean waiting time per class when service times are identically dis-
tributed over classes, and provide approximate expressions when service times differ
between classes. For non-preemptive priorities and identical service time distributions,
Kella and Yechiali (1985) derive the Laplace—Stieltjes transforms (LSTs) of the wait-
ing times per class. Sleptchenko et al. (2005) consider a system with two classes, i.e., a
high and a low priority class, where each class may consist of multiple customer types,
each with a distinct arrival and service rate. High-priority customers have preemptive
priority over low-priority customers. The authors give an exact method to find per
class the steady-state probabilities of the queue length and the number of customers
in service. Zeltyn et al. (2009) consider a setting with K classes, where classes 1 up
to P (P < K) have preemptive priority over the other (lower priority) classes. The
authors give explicit expressions for the LSTs of the waiting times per class.

Regarding priority queues with non-exponential service times, Tijms (1988) derives
approximations for the mean waiting times per class in an M /G /c non-preemptive
priority queue. Moreover, Tijms (1988) proposes to approximate the distribution of
the highest priority customers with an exponential distribution. Altinkemer et al.
(1998) derive approximations for the mean waiting times per class in an M/D/c
non-preemptive priority queue. Harchol-Balter et al. (2005) consider a preemptive
resume priority queue where service times have a phase-type distribution (M /P H /c
queue). The authors provide an approximate analysis for the distribution of the number
of customers per class in the system, where they use the distribution of the busy period
pertaining to high-priority classes to analyze the next lower priority class. Wagner
(1997) considers a multi-server, non-preemptive priority queue model with a general-
ized Markovian arrival process, and a phase-type service distribution that is identical
over all classes. Wagner (1997) uses matrix-geometric methods to mainly find the
mean waiting times per class.

Williams (1980) derives approximations for the first two moments of the waiting
times in a two-class, M/ G /c non-preemptive priority queue. Jagerman and Melamed
(2003) consider a similar model with multiple classes and different service time dis-
tributions per class. Jagerman and Melamed (2003) and Williams (1980) use two
approximations that are common in the literature:
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e The delay probability, i.e., the steady-state probability that all servers are occupied,
inan M /G /c queue is approximated by the same probability in an M /M /c queue
with equal arrival rates and service rate; numerical experiments have revealed that
the delay probability is not very sensitive to the service time distribution (Tijms
2003)

o If at a service completion epoch, k customers are left behind in the system with
k > c, then the time until the next service completion is distributed as S/c, where
S denotes the original service time of a customer.

From the second approximation, it follows that the waiting time inan M /G /c queue
with G (s) as the LST of the service time can be approximated by the waiting time in
an M/G/1 queue with a service time LST equal to é(s/ c¢). The latter holds for the
busy period in both queues, with the busy period defined as the time that all servers are
occupied. From these findings, the waiting time distributions per class are deduced.
Williams (1980) states that the approximations are exact both for the single server
M /G/1 and the multi-server M /M /c queue. Hence, it follows that the mean waiting
time for a class-k customer satisfies the following well-known scaling approximation,
which can easily be derived by conditioning on the waiting time when all servers are
occupied, see, e.g., Buzen and Bondi (1983):

EWeM/G/a)] _ E[We(M/G/D]
E[Wk(M/M/0)]  E[We(M/M/DY’

where the server in the single-server queues works c¢ times as fast as in their multi-
server counterparts. The latter equation can be also written for the second moment of
the waiting time.

Williams (1980) nor Jagerman and Melamed (2003) validate the quality of their
methods. We will see that Williams” method can be inaccurate, especially for the
waiting time moments of classes with high priority and with many servers, e.g., ¢ €
{3, 6, 9} (see Tables 3, 4 in Sect. 6.2.2). Our main contributions in this paper are:

(1) We refine the approximation assumption of Williams (1980) and Jagerman and
Melamed (2003), and from that we obtain very accurate methods to estimate the
waiting time distribution per class in a system with multiple priority classes.

(ii)) We present options to speed-up the numerical analysis for systems with large
state space (e.g., for cases with six to ten servers and a phase-type service time
distribution with three or four phases), see Sect. 5. This is done with a limited
decrease in accuracy, see Sect. 6.3.

(iii) We apply our methods to determine service-level performance in a practical
setting.

We emphasize that among some side results for the M /D /c queue, all the results
developed for the second moment of the conditional waiting times per customer class
in a non-preemptive M /Ph/c priority queue are new. This is a key step to propose
an accurate approximation of the distribution of the conditional waiting times. In a
computational experiment, we show that our methods generally outperform Williams’
method, especially for the highest priority classes.
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3 Model description and main analysis steps

We introduce our model with notation in Sect. 3.1, and provide the analysis in Sect. 3.2.

3.1 Model description

We consider a non-preemptive M /Ph/c priority queue with K classes. Customers of
class k have priority over those of classes j > k+ 1. Class k customers arrive according
to a Poisson process with rate Ay, and are served according to the first-come-first-
served (FCFS) discipline. The total arrival rate of customers is equal to A = Zle Ak
All customers have the same service time distribution, with E[S] denoting its mean,
cv§ its squared coefficient of variation, S(¢) the cumulative distribution, and S(s)
the Laplace—Stieltjes transform (LST). The utilization rate per class is denoted by
Pk = ME[S 1 with o= Zk | pk- We assume that the queue is stable (p < 1) and that
all moments of the service time are finite.

We aim to estimate the first two moments of the conditional waiting time CWy
per class k given that all servers are occupied. Combined with the delay probability
Ty, the probability that an arriving customer sees all the servers are occupied, we can
then fit a reasonable class of distributions to estimate the waiting time distribution
per class. A distribution on which data is commonly—and accurately—fitted is the
gamma distribution, see, e.g., Appendix C in Al Hanbali et al. (2013) for further details.
Munnik (2011) we conclude that the approximation of the conditional waiting times
distribution with a gamma distribution is fairly accurate. Recall that a fairly accurate
approximation for m,, is the delay probability in an M /M /c queue, i.e., Erlang’s C
formula, see, e.g., Tijms (2003, pp. 388).

3.2 Approximating the moments of the conditional waiting times

To find E[CW/] and ]E[CW%] we use the following arguments. Given the non-
preemptive service discipline, it does not matter what type of customers are being
served when a class 1 customer arrives to find all servers busy. Also, new arrivals from
classes 2 up to K have no impact on the waiting time for class 1. Therefore, we obtain
E[CW;]and IE[CW%] as the first two moments of the conditional waiting time, i.e., the
waiting time given it is strictly positive, in a single-class M /G /c queue with arrival
rate Aj.

To obtain E[CW/] and IE[CW ] for classes k > 2, we use an argument similar
to Williams (1980) and Cohen (1969). We first sketch what happens when a tagged
customer of class k arrives at the system when all servers are occupied. Upon arrival,
he will see Ny customers of classes i < k that are already waiting to be served. The
waiting time of the tagged customer will thus at least consist of the time needed to
clear these N customers from the queue, which we denote by 7. During 77, new
customers of classes i < k may arrive that have priority over the tagged customer. Let
N; denote the number of higher priority customers that arrive in the time that the first
N customers are cleared from the queue. While these NV, customers are being cleared,
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new higher priority customers may arrive, and so forth. Overall, the waiting time for
the tagged class k customer thus consists of two elements: (i) the time 77 to clear all
Nj customers of classes i < k that were already present in the queue and (ii) the time
T, to clear those customers of classes i < k that arrive while the tagged customer
is waiting, starting with the N> customers that have arrived while the first Ny are
being cleared. Note that 77 and 7, are not strictly consecutive, as the higher priority
customers that arrive while the tagged customer is waiting may also have priority
over some of the N customers that were already present. The values 77 and 7> simply
denote the workloads associated with clearing the initial N| customers and clearing all
higher priority customers that arrive after the tagged customer, respectively. Clearly,
T» and Tj are strongly correlated: If T is large, N> (and thus 7») will be large.

We compute 77 as the conditional waiting time in a single-class M/ G /c queue with
arrival rate A} = Zf: 1 Ai. By conditioning on Tj, we can evaluate the distribution
of N3, and then approximate 7> as the residual busy period in a single-class M /G /c
queue with arrival rate A;_,. Here we define the residual busy period as the period
until all higher priority customers have left the queue, starting with N5 higher priority
customers of class i < k in the queue, one server just starting with service, and
the other ¢ — 1 servers busy with servicing a customer for some unknown time. We
approximate the distribution of the residual service time of those ¢ — 1 customers in
service by the equilibrium distribution of the service time as it is known from renewal
theory. That is, we assume that the customer starting to receive service observes the
state of the ¢ — 1 busy servers as if at an arbitrarily chosen point in time when these
servers have been continuously busy serving customers for a very long time. In other
words, assuming that the newly starting customer in service has no information about
the past history of the ¢ — 1 busy servers, the best prediction this customer can give
about the residual service time of those ¢ — 1 customers in service is according to the
equilibrium distribution (Tijms 2003). Furthermore, we approximate the residual busy
period length by the sum of N, independent and identically distributed busy periods
that each start with an arrival of one customer to the queue. This approximation is
exact for M/G/1 and M /M /c queues, see, e.g., Riordan (1967) and Tijms (2003).
Let Z; be the random variable that denotes the conditional waiting time inan M /G /c
queue with arrival rate A}, with Zi(s) being the corresponding LST. Similarly, let
Bi_1 and Bj_;(s) be the random variable and LST of the busy period of an M/G/c
queue with arrival rate Az_l . Note that Z; corresponds to 77, while T, = Zf.v:zo Br_1.i,
where By_1 ; are i.i.d. copies of Bx_j. As an approximation, we can now express the
conditional waiting time for a class k customer as CWy = Z; + vazzo Bj.—1,; with the

corresponding LSTEW/k(s) as follows, see, e.g., Williams (1980):

W) = Z (s + 2y (1= B ). (M

By taking the first two derivatives at point zero, we find the first two moments of CWy,
k> 2:

E[CWi] = (1 4+ 2;_E[Bxr1DE[Zt], 2
E[CW3] = A} | E[B? |IE[Zi] + (1 + A} E[Bi_1])*E[Z7]. (3)
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Note that the length of the residual busy period is indeed influenced by the time
needed to clear all i < k customers that were initially present in the queue. In expres-
sion (2), for instance, A;_,E[Z] is the expected number of higher priority customers
N; that arrive while the first Nj customers are being cleared. Note that E[Z;] and
E[Z,%] denote the first two moments of the conditional waiting time in a single-class
M /G /c queue with arrival rate A}, k > 2. Similarly, E[ B;] and IE[B,%] denote the first
two moments of the busy period in a single-class M /G /c queue with arrival rate A},
k < K — 1. Hence, we obtain the first two moments of the conditional waiting time for
each customer class—including class 1—from the analysis of a single-class M/G/c
queue, see Sect. 4 for details.

4 Detailed analysis of a single class M /G /c system

We now discuss the analysis of a single-class M /G /c queue with arrival rate A (note
that we omit class index k in this section). In Sect. 4.1, we compute the first two
moments of the conditional waiting time CW. In Sect. 4.2, we estimate the first two
moments of the busy period B, i.e., the period in which all servers are occupied.

4.1 Computation of E[CW] and E[CW?]

We consider two approximate methods to obtain E[CW] and IE[CW2], which are both
based on Section 9.6.2 in Tijms (2003). The first method, which we denote by AVAL1,!
is discussed in Sect. 4.1.1, whereas the second, denoted by AVA2, is discussed in
Sect. 4.1.2. In both AVA1 and AVA2, we obtain performance measures for the M/ G /c
queue from those for other queues, specifically the M /M /c and M /D /c queues. We
denote a performance measure V for the M /M /c queue and the M /D /c queue by
V (exp) and V (det), respectively.

4.1.1 AVAI

We can find the first two moments of the waiting time (both conditional and uncondi-
tional) using the distributional form of Little’s law (see Bertsimas and Nakazato 1995,
Theorem 1), i.e.,

E
E[CW] — @ @)

E [CL,(CL, — 1)]

E[CW?] = =

(&)

In (4) and (5), CL, denotes the number of customers waiting in the queue given that
all servers are occupied. Note that the distributional form of Little’s law does not hold
for the sojourn times of the customers in the system, i.e., the sum of the customer’s

' Where the letters AVA are the initials of the authors’ last names.
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waiting time and service time: in an M / G /c queue, customers may overtake each other
during service, ensuring that assumption 2 in Theorem 1 (Bertsimas and Nakazato
1995) is not necessarily satisfied.

For the M /G /c queue, Tijms (2003) proposes an approximation for the generating
function P, (z) of the unconditional number of customers waiting in the queue L,
see equation (9.6.22) in Tijms (2003). The approximation is based on the following
assumptions: (i) if fewer than ¢ servers are occupied in the M/ G /c queue, that queue
may be treated as an M /G /oo queue, and (ii) if all servers are occupied, the M /G /c
queue may be treated as an M/G/1 queue where the server works ¢ times as fast as
the servers in the original system. For both the M /G /oo and the M/G/1 queue, the
remaining service time of any busy server is distributed as the equilibrium excess time
in a renewal process with the service times as interoccurrence times, see Section 9.6.2
in Tijms (2003).

By taking the first derivative of P,(z) at z = 1, Tijms (2003) finds, without giving
the derivation, an expression for E[L,] as linear function of E[L, (exp)]. Note that
it is nontrivial to find this function. Therefore, we describe how this can be done
in Appendix, where we also give the derivation for E[CL,(CL,; — 1)] as a function
for E[CL,(CL,; — 1)(exp)], i.e., Eq. (9). We now use the assumption that 7, is the

same in the M/G/c and M /M /c queue (cf. Sect. 2) and Little’s Law to find that
E[L,] _  E[CL, E[CW]

E[Lg(exp)] T E[CLg(exp)] — E[CW(exp)]’

the delay probability approximation we refer to Tijms (2003). We thus obtain the

following linear relation between E[CW] and E[CW (exp)]:

For additional discussion on the quality of

_EICWI 4P 2
E[CW(exp)] a P)VlE[S] + 2(1 + cvy), (6)
where yj is given by:
n= [ a=sora. ™

with S, (#) denoting the equilibrium excess distribution function of the service time,
ie.,

1 t
Se(t) = —— 1-S8 du. 8
(1) E[S]/O( (u))du (®)
Note that y; can be interpreted as the expectation of min(Sel, ..., 8%), where S;,
i=1,...,c, areii.d random variables with common probability distribution S, (7).

Similarly, we find a linear relation between E[CL, (CL, — 1)]and E[CL,(CL, — 1)
(exp)], and hence between E[CW?] and E[CW (exp)]:

E[CW?] 221 =p)  2(1=p) P oo
ElCWexp?d] — o2 2T st byt s+ D)
p(1—p) E[S%]
6  E[S] (C))
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where y» is given by:
o0
n=[ 1= sy (10)
0

Similar to y1, 2y» can be interpreted as the second moment of min(Sj, L S9).
This can easily be verified via partial integration of the right-hand side of (10), see,
e.g., Tijms (2003, Sect. 9.6.2). We note that Eq. (9) is new and was not found in the
previous literature.

Expressions for E[CW (exp)] and E[CW (exp)?] can be found, e.g., in Sect. 5.1.2
in Tijms (2003):

2E [S]?

E[S]
(1= p)*

E[CW(exp)] = o B [CW(exp)z] - (11)

4.1.2 AVA2

We now estimate both E[CW] and E[CW?] as weighted averages of the waiting time
moments inan M /D /c and an M /M /c queue, with the mean service time in the latter
queues equal to E[S]. We use the squared coefficient of variation of the service time
cv§ as weight when computing E[CW] and «, defined by (15) below, as weight when
computing E[CW?]. We find:

E[CW] = (1 - cvg) E [CW(det)] + cv2E [CW(exp)] , (12)

E [sz] — (1-E [CW(det)z] ok [CW(exp)z] . (13)

We propose (13) based on a similar expression for the mean waiting time in Tijms
(2003, Eq. (9.6.24)). Tijms (2003) emphasizes that the approximation in (12) is accu-
rate when 0 < cvg < 2. In contrast, we develop (14) ourselves, where we determine
the expression for « such that it is exact for c = 1. When ¢ = 1, we obtain expressions
for E[CW] and E[CW?] under any service time distribution using the Pollaczek—
Khintchine formula. Note that the expression for « is exact for both the M /M /c and
the M /D /c queue, with « = 1 for exponential service times and « = 0 for determin-
istic service times.

_ (o )E[S3]+3,0E[Sz]2 , .
“TTl0—p PP T RS £

The expressions for E[CW (exp)] and E[CW(exp)z] are given by the Eqgs. (11) and
(12), respectively. We note that Eqgs. (13)—(14) are new and were not found in the
previous literature. We find expressions for E[CW (det)] and E[CW (det)?] from the
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LST of the unconditional waiting time in an M /D /c queue, see, e.g., Riordan (1967):

c—1

—sE[S1'w] _ (1 —my)s o
E [e ] - (cp)e=s — (cp — $)¢ ll;[l(ut ), (15)

where u; = cp(1 — z;),and z;,i =0, ..., c— 1, are the ¢ roots of z = @D with
|zi] < 1 and zg = 1. Note that (16) does not use this latter root. The roots z; (i > 1)

can easily be computed recursively: starting with ZEO) =0, ZE"H) can be computed as

a function of ZE”) until convergence occurs (see Eq. (14) in Janssen and Leeuwaarden
2008). Moreover, the roots z; are known in closed-form as an infinite sum (Janssen and
Leeuwaarden 2008). In Janssen and Leeuwaarden (2008), we also find an expression
for the delay probability m,, in the M /D /c queue, which we denote by 1, (det):

c(1—p)
[T —z)

Ty(det) =1 —

By multiplying both sides of (16) by (cp)“e™ — (cp — s)¢ and taking the second
and third order derivatives of the resulting expression, we find that:

E[CW(den)] = — e’ —etl Z]: 16
el = s~ @\ 20 -7 11—z (16)

=1

E [CW(det)z] _ c2pP—(c—D(c-2)+ 3/\(cp — ¢+ 1)y (det) E [CW (det)]
3)»2711,} (det)(1 — p)
c—2 c—1 1
)\2nw(det) 1 —z 11—z a7

i=1 b l=it1

We note that Egs. (16)—(17) are new and were not found in the previous literature.

4.2 Computation of E[B] and E [BZ]

‘We now show how to compute the first two moments of the busy period. Both in this sec-
tion, and in the computational experiments, we restrict ourselves to M/ Ph,, /c queues,
i.e., queues where the service time has a phase-type distribution with m phases. A
phase-type distribution characterizes the time until absorption in an absorbing Markov
chain with a finite state space given that the chain starts in an initial transient (non-
absorbing) state. Such a distribution is characterized by the tuple (8, V, VO), where
the B is arow vector of size m indicating the initial state probability vector, i.e., element
Jj in B denotes the probability of starting in state j = 1, ..., m, V is an m-by-m matrix
denoting the transition rates among transient states, and V? is a column vector of size
m denoting the transition from the transient to the absorbing state. The two-phased
Coxian-2 distribution, for instance, can be characterized as follows:
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o —u1 pul 1 - P)Ml
(B, R, R") = ((1 0),(0 —m)’(uz )) e

The class of phase type distributions is dense in the sense that it allows us to cover a
broad range of coefficients of variation for the service time distribution. In particular,
the mixed generalized Erlang distribution, i.e., a distribution that is a generalized
Erlang-n distribution with probability ¢,, n = 1, .., m, allows us to model variables
with any value for cv%. A special case of this distribution is the Coxian distribution,
where the Coxian-2 distribution, for instance, can model a distribution with cv_% > 0.5,
see, e.g., Marie (1980).

The busy period can be seen as the first passage time of the queue-length process
from the moment there are ¢ customers in the system to that when there are ¢ — 1
customers in the system. Let Q denote the generator matrix of the queue length process,
which is characterized by (20) for an M/ Ph,, /c queue. An element (i, j) in Q denotes
the transitions from level i (with a level being the set of states with a queue length size
i) tolevel j.

A) AJ 0 0 0
A} A} A} 0 0
- . . 0 ..
c—1 c—1 c—1
0- 0 A5 Afh A0 (19)

0 A5 A Ay 0
e 00 Ay A A O
0 Ay A A9 0

In Q, Ag = M, Ay = —AI + &_,V, and Ay = &¢_, VB, with I being the
identity matrix of size m¢ and ®;_,V = V @ --- @ V, i.e., the Kronecker sum
of V by itself ¢ times, see, e.g., Neuts (1981). Note that @Q is a quasi-birth—death
process that is homogeneous for levels strictly larger than c. This property also holds
for the M/ Ph,, /1 queue. Therefore, the busy period results of M/Ph,,/1 also hold
for M/ Ph,,/c by setting Ag, A1, and A, as defined before. Neuts (1981, Sect. 3.3)
studies the busy period of phase-type single server queues using an efficient matrix
analytical approach. Another way to find the busy period results is using the transform-
based approach, see, e.g., Al Hanbali (2011). We shall now apply Neuts’ approach to
derive the first two moments of the busy period in an M/ Ph,, /c queue. Let G denote
an m°-by-m° matrix where entry (j, j) denotes the conditional probability that the
queue-length process, starting in level i + 1 (i > ¢) at state j at time zero, reaches
level i for the first time in state j’. Note that the entries in G are independent of i
due to the homogeneous property of Q for levels greater than c. The matrix G is the
minimal solution of the following quadratic matrix equation:

G =Cy+ CG?, (20)
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where Cp = —(A1)"'A; and C; = —(A)'Ap. Note that Cy is the transition
probability matrix that the queue-length process jumps from level i + 1 toi,i > ¢,
and C; the transition probability matrix that the queue length process jumps from level
itoi—+ 1,7 > c. The matrix G is stochastic, i.e., Ge = e. Moreover, it is the unique
solution of (21) if the queue is stable (Neuts 1981, Th. 3.3.2). We assume that the
queue is stable, i.e., that p < 1. Therefore, G can be computed recursively. Let G,
denote the estimate of G after iteration n. We then find:

Gui1 = Co+Ca(Gy)?, n=>1,

where G| = Cg. The above equation is proven to converge, see Th. 3.3.1 in Neuts
(1981).

From G, we are able to derive the first two moments of the busy period B. Let
bp1 denote a column vector of size m¢ with the j-th entry being equal to the mean
conditional busy period given that the busy period starts in level c in state j. Similar
to the way in which Neuts derives the busy period moments from G, we find the
following expression for bp; from Eq. (3.3.23) and (3.3.36) in Neuts (1981).

bpy = —(Ag+ A1 + AgG) " le. 1)

Note that the matrix Ag + A + AoG is nonsingular since it can be written as a
product of two nonsingular matrices, see Neuts (1981, Th. 3.3.3).

Similar to bpy, let bp; also be a column vector of size m® with the j-th entry equal
to the second moment of the conditional busy period that starts in level ¢ in state j.
We derive bp, by simplifying Eq. (3.3.26) in Neuts (1981):

bpy = —2(Ao+ A1 + AoG) " (AoM | + D)bpy, (22)

where the matrix M is the minimal, unique and nonnegative solution of the following
equation:

M, =—(A)"'G+Ca:(GM| + M,G).

This matrix equation can be solved recursively by starting with an initial solution
that is equal to the zero matrix and using an iteration procedure similar to that for
computing matrix G.

We now obtain the first two moments of the busy period by multiplying bp; and
bp, by the joint distribution of the remaining service times on the servers when a
busy period starts. At the start of a busy period, there is exactly one server that just
started service. For the other ¢ — 1 servers, we use the common approximation, see,
e.g, Tijms (2003), that the remaining service time on each server has a distribution
equal to that of the remaining service time in equilibrium, where the service times are
assumed to be independent among all servers. Given that the service times are phase-
type distributed, we find the equilibrium distribution of the remaining service time on
any server by considering the probability of being in each phase, since the time spent
in any phase is exponentially distributed. Overall, the initial distribution of the joint
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hases of customers in service at the start of a busy period equals 8 & (69?:1 Z*), with
p yp q i=1

z* equal to the following expression, see, e.g., Lemma 1 in Al Hanbali et al. (2012):

* __ ] ﬂ'vfl
"= _IE[S] .

5 Extensions to speed up the analysis methods

As we will show in Sect. 6.2.1, it can be time-consuming to estimate the two moments
of the busy period for problem instances with many servers and service times with
low values for cv% (corresponding to distributions with many phases). Therefore,
we present three options for reducing the computation time, which we describe in
Sections 5.1 through 5.3. We note that theoretically it is possible to use the approach
of Nojo and Watanabe (1987) to approximate the class of distributions with a squared
coefficient of variations smaller than 0.5. In the following, we will not use this approach
due to its limited accuracy for small squared coefficients of variation, see, e.g., van
der Heijden (1993).

5.1 Option 1: scaling the service time distribution

We scale the service time distribution based on the number of servers when estimating
the first two moments of the busy period. Specifically, we replace the M /Ph,,/c
queue by a M/Ph,,/3 queue where the service rate in each phase is § times as fast
as in the original queue. We limit the number of servers to 3 to obtain small matrices
when computing E [Bx] and IE[B,%]. As a result, the computation times for 3-server
instances remain below 1 second for service time distributions with up to 4 phases,
see Sect. 6.2.1. In contrast, the computation times explode for 6 servers or more. For
the M /M /c queue with service rate u, the distribution of the busy period is equal to
that in an equivalent M /M /1 queue with service rate cu, see, e.g., Riordan (1967).
As a result, scaling does not affect the solution quality for that queue. For this reason,
we cannot apply a correction factor when we scale the service time distribution, such
as that proposed by Buzen and Bondi (1983).

5.2 Option 2: estimating E[CW] and E[CW%] for class k (1 < k < K) through
interpolation from those of class 1 and class K customers

Our second option is to estimate the waiting time moments for class k customers,
1 < k < K, from those of class 1 and class K customers. Then, we do not require
values for E[By_1] and ]E[B,?i 1] to compute E[CW,] and IE[CW,%]. In fact, we only
need to compute E[Bx_1] and E[B%(_ 1] to estimate the waiting time moments for
the lowest priority class K. Clearly, this approximation can only be used if we have
at least 3 classes, as we require the waiting time moments for class 1 and class K to
estimate the moments for the remaining classes.
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We obtain E[CW/] and IE[CW%], 1 < k < K, from the moments of classes 1 and
K as follows:

E[CWi] = rixE[CW ]+ (1 —rip) E[CWk], (23)
E [CW,%] = ryE [CW%] + (1= rypE [cwﬁg] . (24)

We find the factors rj; (j = 1,2,k € {2,..., K — 1}) by solving (23) and (24)
for the M /M /c queue, using the formulas for the waiting time moments per class in
Kella and Yechiali (1985), see Al Hanbali et al. (2013), Sect. 5.2 for details.

5.3 Option 3: extrapolation for service time distributions with low variability

When the service time variability is low (i.e., cvg < 0.2), the approach of Sect. 3 may
result in large computation times, as the corresponding phase type distribution will
have many phases. For example, the mixed Erlang distribution, a sub-class of phase-
type distributions, with k phases has a squared coefficient of variations which satisfies
% < cv§ < k% Therefore, the mixed Erlang distribution with cvg < 0.2 has at least
5 phases. To improve the computation efficiency when many phases are required, we
may use extrapolation, i.e., we estimate the conditional waiting time moments for a
distribution with a low cv% (< 0.2) from those of distributions with larger values for
cv§(€ {0.25,1/3,0.5, 1}), see Sect. 6.3.2. We use a least squares approach to fit a
function on a set of support points, with a support point denoting the known waiting
time moment value for a given cv% (and thus serving as input for the extrapolation).
Given that the conditional waiting time moments increase monotonically in cvé, itis
reasonable to fit a monotonically increasing function on the support points, such as a

linear or exponential function.

6 Computational experiment and results

We performed an experiment to validate our methods. Section 6.1 contains our exper-
iment design. We validate our methods and extension options in Sects. 6.2 and 6.3,
respectively.

6.1 Experimental design

We use discrete-event simulation as a benchmark for method validation. We use a
replication—deletion approach with a warm-up period of 1 million arrivals and multiple
runs of 1 million arrivals each. After each run, we compute as performance measures
the first two moments of the conditional waiting times per class over all arrivals after
the warm-up period (and not only the arrivals in the most recent run). Let E [X (j)]
denote the average value of a performance measure after the j-th run. The simulation
stops once convergence occurs, i.e., EXOIZEIXG=D1 0,05 % for the first two

g Cor BIXG=DI :
moments of the conditional waiting times of ail classes. For the two-class instances,
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Table 1 Parameter values considered for theoretical problem instances

Parameter Values for theoretical problem instances
1 c 3%, 6, 9%
2 p 0.8*, 0.9, 0.95*
3 E[S] (h) 1.25% 25,5, 10*
4 v} 0.25,0.5,0.75
5 Division two-class instances ()"Tl %2 (0.1; 0.9)%, (0.3; 0.7), (0.5; 0.5)*
6 Division three-class instances (4L; 22 52 (0.1;02;0.7), 02;03;05), (4: 4: 1)

we need at least 23 runs per instance, with the average being 51. For details on the
selection of the warm-up period and the individual run length we refer the reader
to Law (2007). Both the simulations and the analysis using our methods have been
performed on a Dell Optiplex 760 computer with Intel quad core, 2.83 GHz processor,
with our methods implemented in Maple 14.

Our test bed consists of 648 problem instances, 324 with two customer classes and
324 with three classes. Table 1 shows the parameter values considered. The asterisks
in the table pertain to the subset of instances on which extension option 3 (i.e., extrap-
olation) was tested (see Sect. 6.3.2). To obtain the class arrival rates A, we compute
the total arrival rate A as pc/E [S] and disaggregate A over the classes using the ratios
Mx/A. For the squared coefficient of variation cv§ < 0.5, we fit an Erlang-n distribu-
tion to IE [S] and cvg. For cv% = 0.75, we use a Coxian-2 distribution with | = ﬁ,

p =23 and u» = p1 p, see Marie (1980).
S

Ccv

6.2 Method validation

We first show in Sect. 6.2.1 that we obtain good results when using a scaled service
time distribution to find the first two moments of the busy period (i.e., extension option
1, see Sect. 5.1). Then, we validate AVA1 and AVA2 with scaling in Sect. 6.2.2.

6.2.1 The impact of scaling the service distribution

We show the performance of AVA1 (see Sect. 4.1) both with and without scaling (the
findings are similar for AVA2), where we only consider the 108 instances with 2 classes
and 6 servers. We omit the 9-server instances, because we are unable to estimate the
busy period moments without scaling when cvg = 0.25. Then, the required matrices
become too large to evaluate.

Table 2 shows the average and maximum relative error to simulation (rows ‘Avg.
RE’ and ‘Max. RE’, respectively) for the first two moments of B (the busy period
when there are only class 1 arrivals) and CW,. We conclude that the mean busy period
[E [B;] remains accurate under scaling. Also, although E[Blz] is less accurate under
scaling, the relative error for E[CW>] is comparable under scaling and non-scaling,
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Table 2 Solution quality with and without scaling for method AVA1

E[Bi] E[B?] E[CW,] E[CW3]

Scaled Unscaled Scaled Unscaled Scaled Unscaled Scaled Unscaled

(%) (%) (%) (%) (%) (%) (%) (%)
Avg.RE 0.2 0.3 5.0 0.5 0.8 0.9 1.5 1.7
Max.RE 0.6 1.3 10.5 2.1 3.1 3.0 5.8 6.5

Table 3 Relative error per method for the mean conditional waiting time per class

E[CW1] E[CW] E[CW3]

AVAl  AVA2  Will  AVAl AVA2 Wil ~ AVAl AVA2  Will
(%) (%) (%) (%) (%) (%) (%) (%) (%)

2-class Avg. 0.8 1.4 13.1 0.8 0.6 1.4 - - -
setting RE
Max. 35 5.1 29.2 33 3.8 6.9 - - -
RE
3-class Avg. 0.6 1.6 14.2 1.1 1.2 9.3 1.0 1.0 1.0
setting RE
Max. 29 5.0 29.4 42 4.8 25.1 5.1 5.6 5.6
RE

whereas the errors for E[CW%] are smallest under scaling. The estimates for E[CW>]
remain accurate for a larger number of servers.

Scaling is also very fast: the time to compute the busy period moments is at most
0.9 s. In contrast, the non-scaled variant has an average computation time of 17 min
for cases with 6 servers and a cvg of 0.25. For the 9-server instances with cv% =0.25,
the resulting matrices are so large that we obtain memory errors. As a result, we even
cannot compute the busy period moments without scaling. We therefore use scaling
from now on.

6.2.2 Validation of AVAI and AVA2

We evaluate the accuracy of AVA1 and AVA2 by comparison to Williams’ method
(Williams 1980) and to simulation. Tables 3 and 4 show the overall relative error to
simulation for the mean and second moment of the conditional waiting time per class,
respectively. In both tables, ‘Will’ denotes the results using Williams’ method.

In general, AVA1 and AVA2 both clearly outperform Williams’ method. The latter
method gives particularly poor results for class 1 customers, for which it always
severely underestimates the first two moments of the waiting time. Still, William’s
method works very well for the lowest priority class. In fact, that method is very
accurate for the class 3 waiting time moments, even giving the most accurate values
for IE[CW%]. A further investigation of the results shows that:
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Table 4 Relative error per method for the second moment of the conditional waiting time per class

E[CW]] E[CW3] E[CW]]

AVAl AVA2 Wil  AVAl AVA2 Will  AVAl AVA2 Wil
(%) (%) (%) (%) (%) (%) (%) (%) (%)

2-class Avg. 2.0 2.8 24.8 1.5 1.5 2.0 - - -
setting RE
Max. 8.5 9.4 55.0 79 8.3 9.3 - - -
RE
3-class Avg. 1.8 2.6 27.4 2.5 23 15.5 2.2 2.5 14
setting RE
Max. 7.6 10.1 55.6 10.0 10.0 454 12.3 13.0 7.6
RE

AVAI gives the most accurate results, especially on the class 1 waiting time
moments. For the remaining classes, AVA1 gives comparable or better results than
AVA?2 and performs much better than Williams’ method, except for the lowest
priority class (see below). AVA1 is most accurate when the low-priority customers
are a large fraction of the total demand rate.

e For the lowest priority class, Williams’ method works very well under high loads,
large fractions of class 1 customers and few servers. Then, the accuracy of
Williams’™ method is comparable to—and often better than—that of AVAI and
AVA2.

e [n general, the accuracy of AVA2 increases as c¢ decreases. For the lower priority
classes, the relative errors are then equal to, or smaller than, those with AVAI.

e AVA2 outperforms the other methods on class K when p is low. On the mean
waiting time E[CWg (K = 2, 3), for instance, the relative error with AVA2 is
0.5 %. The second best method is AVA1 with a relative error of 1 %.

We also find that all methods become much more accurate as cv% increases to 1.
This is expected since Williams, AVA 1, and AVA2 are exact in case of an exponentially
distributed service times (cvg = 1), i.e., all approximation assumptions for M /G /c
are true in case of an M /M /c.

The computation times of both AVA1 and AVA2 are a fraction of a second on
average, and at most a few seconds. Williams’ method even has negligible compu-
tation time, since the waiting time moments are found using analytical expressions.
Therefore, this method may be beneficial for estimating the conditional waiting time
moments of class K.

A final finding, that applies both for AVA1 and AVA2, is that the squared coefficient
of variation CU%:W of the conditional waiting time over all classes increases to 1 with

the utilization rate p. The squared coefficient of variation CU%IW of the conditional
K

waiting time for the lowest priority class also tends to move to 1 with the increase of
p. For the remaining classes k, cvéw remains constant in p, see Appendix B in Al
k

Hanbali et al. (2013) for further details.
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Table 5 Comparison of original analysis method to the interpolation variant for class 2 waiting time
moments

AVAL1 AVA2

E[CW,] E[CW3] E[CW>] E[CW3]

Orig (%) IntPol (%) Orig (%) IntPol (%) Orig (%) IntPol (%) Orig (%) IntPol (%)

Avg.RE 1.1 1.3 2.5 4.7 1.2 1.1 2.3 4.5
Max.RE 4.2 5.7 10.0 15.4 4.8 4.6 10.0 14.6

6.3 Performance of the extension options 2 and 3
6.3.1 Performance of option 2: interpolation over customer classes

Table 5 shows the relative error of AVA1 and AVA2 in estimating E[CW>] and E[CW%],
both under the original variant (i.e., using Egs. (2) and (3) of Sect. 3.2, denoted by
‘Orig’) and under interpolation (i.e., Sect. 5.2, denoted by ‘IntPol’). For the mean
conditional waiting time E[CW?3], the solution quality of both variants is similar. For
the second moment E[CW%], the results are clearly worse under interpolation.

6.3.2 Performance of option 3: using extrapolation when service variability is low

We use extrapolation to analyze distributions with cv§ € {0, 0.1, 0.2}, as computation
times explode when the phase-type service time distributions have more than, say,
5 phases. To this end, we use at most four distributions to construct support points,
i.e., those with cv§ € {0.25,1/3, 0.5, 1}. We consider all combinations of at least 2
4
i

support points. Overall, we thus have Z?zz ( = 11 strategies, where a strategy

denotes the set of support points considered.

We test each strategy on 16 two-class problem instances, with the parameter values
marked by an asterisk in Table 1. We obtain our support points using AVA1. Both the
first and second moment of CWy (k = 1, ..., K) are more or less a linear function of
cv%, see Fig. 1 for the first two moments of CW> in one problem instance (the results
are similar for other instances).

Overall, accuracy is largest when we use support points with low squared coeffi-
cients of variation, particularly when estimating the second moment of the conditional
waiting time per class. The accuracy does not necessarily increase when using addi-
tional support points. Still, the extrapolation method is not sufficiently accurate for
estimating performance when cvg = 0: the maximum relative error to simulation can
amount to 20 %. For larger values of cvé, the accuracy is reasonable, with a maximum
relative error of 10 %.
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Fig. 1 The first two moments of CW5 as functions of cv% for one problem instance

7 Case study

Given our experiment findings, we choose to apply AVA1 with scaling (extension
option 1) and interpolation (extension option 3) to a case at a manufacturer of printing
and copying systems. We consider one service region with two customer classes that
each have distinct service level requirements on the overall (i.e., unconditional) waiting
time: the waiting time for the premium class should always be below 3 h, while the
average waiting time for the non-premium class should remain below 3.5 h. Since the
first requirement would yield an excessive amount of service engineers equal to the
size of the installed base, we translated this requirement into a high probability that
the 3-h limit is not exceeded (e.g., 99.9 %). The remaining parameter values are a
utilization rate p of 0.93, a mean service time E [S] of 2.3662 h, a squared coefficient
of the service time cv§ of 0.2161, and a division over classes ()‘A—‘; k)\—z) of (0.15; 0.85).
In general, a service region is serviced by 4 engineers. It is worth mentioning that the
Poisson arrivals assumption is validated empirically using company data on the time
between failures and the clicks (prints) between failures (Munnik 2011). In Sect. 7.1,
we therefore first evaluate performance under that setting. We shall see that the service
target for class 2 cannot be met then. In Sect. 7.2, we therefore consider two alternatives
for meeting all service level targets.

7.1 Performance under the current capacity

First, we compute the first two moments of the conditional waiting time per class
using linear interpolation with the waiting time moments in an Erlang-5 distribution
(with cv% = 0.2) and an Erlang-4 distribution (with cv% = 0.25) as support points.>
Then, we estimate the distribution of W (the overall class 1 waiting time) by fitting
a gamma distribution on the conditional waiting time moments. We also estimate the
mean class 2 waiting time E[ W ]. Our analysis shows that the target for class 1 is met
in 99.9 % of the cases, while the mean waiting time for class 2 is 5.2 h, which is far
larger than the target of 3.5 h.

2 Incidentally, we are also able to fit a Coxian-5 distribution to the service parameters.
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7.2 Options for meeting the service level targets

We have two options to reduce the class 2 waiting time, while ensuring that the class
1 waiting time never exceeds 3 h. First, we can increase the number of servers. Alter-
natively, we may consider a dynamic priority mechanism for service engineer assign-
ment. As class 1 customers always have priority over class 2 customers at present, it
may be that the class 1 waiting times are lower than required at the expense of the
class 2 waiting times. Therefore, we prefer a mechanism where a new class 1 customer
does not have priority over a class 2 customer that has already been waiting for a cer-
tain amount of time. Still, system analysis quickly becomes complicated under such
a priority mechanism. To get an idea of the potential impact of a dynamic allocation
rule, we use as emulation a softer priority mechanism by treating an arriving class 2
customer as a class 1 customer with a probability p, with p being any value between 0
and 1. The value of p influences the waiting times of both classes: as p increases, some
class 2 customers experience a lower waiting time, which might reduce the overall
waiting time for that class. Conversely, as class 1 customers now occasionally need to
wait for an ‘upgraded’ class 2 customer, the class 1 waiting times increases. We now
use the following approach to determine values for ¢ and p:

1. Set ¢ to its original value. In our case study ¢ will thus equal 4.

2. For the current value of ¢, compute performance both when (A) no class 2 customer
is treated as a class 1 customer (corresponding to p = 0), and when (B) all
customers are treated equally, i.e., p = 1.

3. Depending on the outcome of the previous step, do the following:

(a) If the targets for both classes are met under either (A) or (B), STOP.

(b) If the target for class 1 is not met under (A), it will certainly not be met for
p > 0. Conversely, if the class 2 target is not met under (B), it will not be met
for p < 1. In both cases, increase ¢ by 1 unit and proceed to step 2.

(c) If the target for class 1 is met under (A), while the class 2 target is met under
(B), it might be possible to meet both targets by setting p > 0. Proceed to step
4. Otherwise, increase ¢ by 1 unit and proceed to step 2.

4. Use bisection to check whether a value for p exists such that the service targets
are satisfied for both classes. Proceed until either all targets are satisfied (we then
STOP), or no value for p exists such that all targets are satisfied (we then increase
¢ by 1 and go to step 2).

For our case study, we require 5 servers to meet both service level targets (see
Table 6). Increasing p when ¢ = 4 has no benefit, as we still are not able to meet the
class 2 target even when p = 1. This is because the low-priority customers comprise
the bulk of the workload: reducing their waiting time has a strong impact on the waiting
time of low-priority customers.

We find that the impact of p depends on the type of service level considered, see
Fig. 2. We base the figure mainly on the case study values, with only cv§ adjusted
to 0.2 for simplicity. In the left figure, IE[ W, ] decreases slightly with p, while E[W/]
explodes for large values of p. The picture is different for the waiting time percentiles
(where the figure on the right denotes the 90th percentile per class, i.e., the value X such
that Pr{W; < X} = 0.9 for k = 1, 2). Specifically, the percentile function for class
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Table 6 Performance on
. . : P Pr{W; <3h} E[W>]
service level targets for various
control options 4 0 0.999 5.18
4 1 0.508 4.47
5 0 1.000 0.63
Setting with 4 servers Setting with 4 servers
6.00 18.00
@ 16.00
500 Tg 14.00
4.00 8 12.00
= 300 $ 10.00 —+—90th_percentile
] ——EW1 :- 8.00 distribution W1
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Fig. 2 The impact of p on the mean waiting time and waiting time distribution per class

2 initially increases with p. This occurs because the variability of W, may increase
with p, since a fraction of class 2 customers is now treated as a class 1 customer (with
a corresponding low waiting time), while the remaining class 2 customers have an
increasingly high waiting time.

Overall, our analysis methods enable a service provider to accurately estimate per-
formance on various types of service levels. In particular, he is now able to characterize
the distribution of the waiting time per class from the first and second moment of the
conditional waiting time per class. The service provider can use these methods both to
estimate service level performance for a given number of engineers and, conversely,
to determine what service levels he can guarantee to his customers. In this case study,
for instance, the service provider must consider whether it is beneficial to guarantee
a mean waiting time of at most 3.5 h to his lowest priority customers, since he then
requires a fifth service engineer to satisfy all targets.

8 Conclusions

We considered a non-preemptive M /G /c queue with K classes. For this system, we
developed two main methods to obtain the first two moments of the waiting time
per class given that all servers are busy. We also presented three options for reducing
computation times. We applied the various approaches to an extensive set of theoretical
instances and to a case study at a manufacturer of printing and copying equipment.
Our main conclusions are:

e Overall, AVAI is the most effective analysis method. AVA1 generally gives the
most accurate results, especially when estimating the conditional waiting time
moments of the highest priority class. Furthermore, the computation time of the
method is on average a fraction of a second and at most 4 seconds for settings with
two customer classes.
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o In some settings, Williams’ method may be a good alternative for finding the
conditional waiting time moments of the lowest priority class only. Williams’
method can be more accurate than AVA1 for the conditional waiting time moments
of class K, for instance in systems with high loads or few servers. As Williams’
method is also very fast, it is a good alternative for class K waiting times, especially
when there are 3 or more customer classes.

e The scaling of the service time distribution is an effective option for reducing
the analysis time. Numerical results show that the scaling of the service time
distribution generally leads to promising results: under AVA1, the average relative
error to simulation for any performance measure remains below 2.5 %, while the
maximum relative error is 12.3 %. Scaling also greatly reduces analysis time in
settings with 6 or more servers and a complex service time distribution with 4
or more phases. Indeed, scaling is even necessary for analyzing queues with 9 or
more Servers.

e The analysis methods allow a service provider to accurately estimate his per-
formance on various types of service levels. Given that the methods com-
pute both the mean and second moment of the conditional waiting time per
class, a service provider is able to estimate the distribution of the overall
waiting time besides the corresponding mean value. As a result, he is able
to evaluate his performance on various types of service levels and, more
importantly, determine what service levels he can feasibly promise to his
customers.

In this paper, all customer classes have the same service time distribution. Still, it
might be that the service time distribution varies per customer segment, for instance
if an engineer can service multiple types of systems that each require different service
times, while the system type is not evenly distributed over the customer classes. It
would thus be an interesting area of further research to allow the service time distribu-
tion to vary per customer segment. Such an extension will likely result in a significant
increase in complexity. For instance, the distribution of the remaining service time
of any busy server will now depend on the type of customer being served by that
server.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix: The first two queue length moments in an M /G/c queue

We obtain E[L,] and E[L, (L, — 1)] by first taking the first two derivatives of the
generating function P, (z) given by Equation (9.6.22) in Tijms (2003) in z = 1. We
then simplify elements of the resulting expressions. After differentiating P, (z) in
z =1, we find:
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(25)

(l—p)ﬂ( Is Aoy )

C
E[Ly]= E[S] Y AT YA

¢ Is 2AD s 20213 an
E[L, (L, —1)] = ——(1 — ,
[Lq(Lq = D] E[s] p)”"’(l —on T A T aany: Ta—any

(26)

where I; through ¢ pertain to the integrals in Egs. (27) to (32). Note that each inte-
gral can be greatly simplified, as shown below. Details on the derivations are given
afterwards.

I = /00(1 — S(c-t))dt = /00(1 - S(u))d—” = E[S]. 27
0 0 C C
0 © u du
L = / (1 = S(c-1)ardr = x/ (1 — S(u)——
0 0 Cc C
A AE [5?]
= c_Z/O (1 —Sw)udu = o (28)
0 2 o0 2 3
I3 = / (1= (e mr2di = 2 / (1= Syudu = &[35] (29)
0 C 0 3C
of A= sedu ) E[S]
. _Jo — u u . _ =l
Iy = /0 (1 S ) (1= S@)dt = == (30)
c—1
[ Jo (1 = S(u))du B
I5 —/) (1—T (I = S@E)rtdt = p - y1, (3D
(= Sepd)
_ _ Jot —otw))du _ 224t =24 . o -
Is _/0 (1 s ) (1—SE)A’Pdi =2h-p-y2,  (32)

where y; and y» are defined by (7) and (10), respectively. The rewriting of I; is trivial.
For I, we find that [5°(1 — S(u))udu = %E [Sz] through integration by parts. In

t
hUZSWON o5 ¥ (1) (e,

a similar way, we obtain /3. For I4, we first rewrite 1 — TS

Yt)=1- %). We then find:

li=— [ oo Yo Eisia =B [(Y(c”)c} _ B
0

0 C

Jo (1=S@))du

Finally, to simplify /5 and /g, we again substitute 1 — 5]

for I5:

by Y (). We find

Is = —/ Y)Y () E[SIAtdt = —AE[S] [ £- (Y)Y (0) - dr.
0 0
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By integrating the latter integral by parts, we find the simplified expression for Is.
In a similar way, we find the expression for Is. By dividing the simple expressions
for E[L,] and E[L4 (L, — 1)] by those for E[L,(exp)] and E[L,(L,; — 1)(exp)],
respectively, we obtain expressions (6) and (9) in Sect. 4.1.1.
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