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Abstract Outpatient clinics traditionally organize processes such that the doctor
remains in a consultation room while patients visit for consultation, we call this the
Patient-to-Doctor policy (PtD-policy). A different approach is the Doctor-to-Patient
policy (DtP-policy), whereby the doctor travels between multiple consultation rooms,
in which patients prepare for their consultation. In the latter approach, the doctor
saves time by consulting fully prepared patients. We use a queueing theoretic and a
discrete-event simulation approach to provide generic models that enable performance
evaluations of the two policies for different parameter settings. These models can be
used by managers of outpatient clinics to compare the two policies and choose a par-
ticular policy when redesigning the patient process. We use the models to analytically
show that the DtP-policy is superior to the PtD-policy under the condition that the
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doctor’s travel time between rooms is lower than the patient’s preparation time. In
addition, to calculate the required number of consultation rooms in the DtP-policy,
we provide an expression for the fraction of consultations that are in immediate suc-
cession; or, in other words, the fraction of time the next patient is prepared and ready,
immediately after a doctor finishes a consultation. We apply our methods for a range
of distributions and parameters and to a case study in a medium-sized general hospital
that inspired this research.

Keywords Outpatient clinic · Health care · Queueing theory ·
Discrete-event simulation

1 Introduction

Demand for outpatient care is growing as a result of increasingly effective ambulatory
care treatments and the overall growth of health care demand. Hence, managers of
outpatient clinics are becoming increasingly aware of the importance of the efficient
use of scarce resources, particularly doctor’s time and facility space (Côté 1999). This
results in many hospitals redesigning or rebuilding their outpatient clinics (e.g., the
hospitals RIVAS Gorinchem, Reinier de Graaf Gasthuis, Haga Ziekenhuis, and Groene
Hart Ziekenhuis).

In many hospitals, outpatient clinics are organized such that doctors remain in
one consultation room, while patients visit for individual consultation. In this clas-
sic design, each doctor occupies one consultation room, which often doubles as the
doctor’s office (Vissers and Beech 2005). Patients wait in the waiting room until the
doctor is available, and then enter the doctor’s office for the consultation. We label
this classic design Patient-to-Doctor policy (PtD-policy).

In a different approach, patients prepare themselves in separate, individual con-
sultation rooms. Each patient is then visited by the doctor, who travels from room to
room. We label this approach as Doctor-to-Patient policy (DtP-policy). The DtP-pol-
icy offers a potential decrease in total service time, given that doctors do not have to be
present for patient preparation activities that require a consultation room, but do not
require a doctor. We characterize these activities as pre-consultation (e.g., traveling to
the room, undressing, blood pressure measures) and post-consultation (e.g., dressing,
making appointments, leaving the room, cleaning the room). Nurses or assistants may
be involved in these activities. In the DtP-policy, the doctor experiences travel time
between each consultation, whilst traveling from room to room. Figure 1 illustrates
the PtD-policy and the DtP-policy with two rooms.

In search of efficiency improvements in the outpatient clinic, managers are recon-
sidering the design of the outpatient clinic. Since differences in the outpatient process
exist between different (specialties within) outpatient clinics, a policy efficient for one
clinic may not be efficient for another. For example, when pre-consultation and/or
post-consultation time are non-existent or relatively low in comparison with consul-
tation time in a particular outpatient clinic process (e.g., psychology consultations),
the DtP-policy may not result in savings of doctor time. Hence, before deciding to
adopt a particular policy, it is important that an outpatient clinic manager understands
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Room requirements in outpatient clinics 393

Fig. 1 An illustration of the PtD-policy and the DtP-policy with two rooms. Pre-consultation, consultation
and post-consultation for patient n is indicated by Pn , Cn and Un , respectively. Tn indicates the travel time
of the doctor to patient n

which policy is most efficient and how many consultation rooms are required for the
particular outpatient clinic’s parameter settings. To support this decision making, we
provide analytical models that can be used to rationally compare the two policies on
several performance measures and to determine the required number of consultation
rooms in a particular outpatient clinic setting. Our models provide quantitative argu-
ments that facilitate a rational discussion about a proposed decision with stakeholders
(e.g., hospital boards, doctors).

In queueing terminology, the PtD-policy resembles a G/G/1 queueing model,
under the assumption that patients are seen on a first-come, first-served basis (FCFS).
The DtP-policy seems to resemble a polling system (Levy and Sidi 1990; Takagi
1998), where the server travels between multiple customer queues. However, as the
outpatient clinic has a single queue of patients only, this analogy cannot be applied
to evaluate the DtP-policy. The queueing model that most closely resembles the
DtP-policy is a Production Authorization Card system (PAC-system). In a PAC-
system, the number of jobs (patients) at a station (the doctor) is bounded by the
number of PACs (rooms). Therefore, the departure of a job (patient exits) initi-
ates demand for new jobs (a patient enters the empty room). The PAC-system, and
thus the DtP-policy, is a typical ‘pull’ system, used in popular management phi-
losophies such as Just-In-Time and Kanban. The PtD-policy is a ‘push’ system,
whereby patients arrive in a buffer (the waiting room) and are pushed through the
system. For results in queueing theory on push and pull systems, (see Boucherie
et al. 2003; Kopzon et al. 2009). The exact and approximative solution approaches
for PAC-systems are based on steady state queueing results (Buitenhek 1998). Since
appointment schedules have a finite number of customers, and thus do not reach
steady state (Robinson and Chen 2003; Ho and Lau 1992; Cayirli and Veral 2003),
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these solution approaches are inappropriate to analyze the DtP-policy and the
PtD-policy.

There is a significant body of literature on resource planning in outpatient clinics,
particularly related to outpatient scheduling. For a comprehensive review of the liter-
ature on outpatient scheduling, (see Cayirli and Veral 2003). The design and capacity
dimensioning of outpatient clinics has received less attention in the literature. Different
process set-ups for an emergency department are compared with a Multi-Class Open
Queueing Network (MC-OQN) in Jiang and Giachetti (2008). The authors conclude
that parallel processing of, for example, treatment and diagnostic tests, rather than
serial processing, results in a shorter patient sojourn time under certain conditions.
Other examples of successful process redesigns in outpatient clinics are Zonderland
et al. (2009), Chand et al. (2009). Simulation is used to find the required number of
examination rooms in an outpatient clinic (Côté 1999), an obstetrics outpatient cen-
ter (Isken et al. 1999), a radiology department (Johnston et al. 2009), an emergency
department (Baesler et al. 2003; Duguay and Chetouane 2007) and a family practice
(Swisher et al. 2001; Swisher and Jacobson 2002). A combination of simulation and
function estimation is used to design a transfusion center (De Angelis et al. 2003). All
described papers use simulation to find the required number of rooms for a specific
setting. In this paper, we develop analytical models of a generic outpatient clinic to
compare the PtD-policy with the DtP-policy, and to determine the required number of
rooms in the DtP-policy.

The performance measures we consider are doctor utilization, access time, and
patient waiting time. Doctor utilization is the fraction of time the doctor is actually
consulting a patient. Access time is the time between the request for an appointment
and the realization of the appointment. Patient waiting time is the time between the
scheduled starting time of the appointment and the actual starting time of the appoint-
ment. Increased doctor utilization leads to decreased access time, but also to increased
patient waiting time, given that more patients are scheduled per time unit. Managers
of outpatient clinics strive for high doctor utilization and low access times, even at
the cost of some patient waiting time (Brahimi and Worthington 1991). This may be
explained by three factors: doctors are considered expensive resources, service level
agreements on access times may exist and low access times may attract more patients.

This paper is organized as follows. Section 2 introduces the model and presents
expressions for the recursion of the time that the doctor finishes a consultation in both
the PtD-policy and the DtP-policy. Section 3 compares these recursions analytically,
and introduces an expression for the fraction of consultations that are in immediate
succession, to calculate the required number of consultation rooms in the DtP-policy.
Section 4 presents the results for a range of distributions and parameters, and a case
study at a medium-size hospital. Section 5 discusses main conclusions.

2 Model

In Sects. 2.1 and 2.2, we develop expressions for the time the doctor finishes the
consultation of the nth patient in the PtD-policy (Fn) and the DtP-policy (F ′

n). These
expressions are used in Sect. 3.1, to compare the PtD-policy and the DtP-policy, and
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to develop an expression for the fraction of consultations that are in immediate succes-
sion to calculate the required number of rooms in the DtP-policy. We first introduce
notation and assumptions that apply to both policies.

Assume that at time zero the doctor is free. Patients arrive according to a stochastic
process at time points {An, n = 1, 2, . . . , N }, thus the first patient arrives at time
A1. The nth patient leaves the system after finishing pre-consultation (Pn), consulta-
tion with the doctor (Cn) and post-consultation (Un), where Pn, Cn, Un are random
variables with Pn, Cn, Un ≥ 0, for n = 1, 2, . . . , N . The nth patient leaves at time
Dn = Fn + Un in the PtD-policy, and at time D′

n = F ′
n + Un in the DtP-policy. Let R

be the number of rooms and Tn the random variable for the doctor’s travel time to the
nth patient. We assume that Tn, n = 1, 2, . . . , N , is an independent and identically
distributed (i.i.d.) sequence of random variables, thus not connected to the sequence
with which the doctor visits the rooms, and that the travel time of the doctor (Tn)
is not longer than the travel time of the patient (included in Pn). We base the latter
assumption on our experience that consultation rooms are located adjacently and the
waiting room is at a further distance.

Assumption 1 Tn ≤ Pn , for n = 1, 2, . . . , N .

Throughout this paper, inequalities in expressions and equations for random variables
are with probability one, i.e., Tn ≤ Pn ⇔ Pr(Tn ≤ Pn) = 1. The following two
assumptions imply that patients enter rooms and are consulted by the doctor in the
sequence they arrive.

Assumption 2 Patients enter rooms on an FCFS basis. Hence, when a room is empty,
the patient who has waited the longest in the queue is admitted.

Assumption 3 The doctor consults patients on an FCFS basis, thus in the sequence
in which the patients enter rooms.

The following assumption deals with the doctor’s travel in the DtP-policy after finish-
ing consultation with a patient.

Assumption 4 When the doctor finishes consultation with the (n − 1)th patient, and
the nth patient has not entered a room yet, the doctor travels to an empty room when
one becomes available, and waits there for the nth patient.

Under Assumption 4, the doctor either knows which room to go to after finishing
consultation of a patient, or the doctor waits until a patient leaves and a room becomes
available.

2.1 Recursion of the time the doctor finishes a consultation in the PtD-policy

We obtain the following expression for the recursion of the time that the doctor finishes
the consultation of a patient in the PtD-policy.

Lemma 5 Fn = max {An, Fn−1 + Un−1} + Pn + Cn, where n = 1, 2, . . . , N and
F0 = 0.

We prove Lemma 5 in Appendix A.
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2.2 Recursion of the time the doctor finishes a consultation in the DtP-policy

Since the processes in the DtP-policy and the PtD-policy are identical when R = 1,
we focus on R > 1 in the DtP-policy. The lemma presented in this section thus holds
for any R > 1.

The exiting time for patients may not be in the same order as the arrivals, because
it is possible for the (n + 1)th patient to exit before the (n)th patient (due to the ran-
domness in Un). To accommodate this, we define the s(n)th patient as the patient who
is succeeded by the nth patient in a room. Thus when the s(n)th patient exits a room,
the nth patient enters that room. We obtain the following expression for the recursion
of the time that the doctor finishes the consultation of a patient in the DtP-policy.

Lemma 6 F ′
n =

⎧
⎨

⎩

max{An + Pn, F ′
n−1 + Tn} + Cn, if n ≤ R

max{max{F ′
s(n) + Us(n), An} + Pn,

max{F ′
s(n) + Us(n), F ′

n−1} + Tn} + Cn, if n > R
,

where n = 1, 2, . . . , N and F ′
0 = 0.

We prove Lemma 6 in Appendix B.

3 Analytical models for performance evaluation

We use Lemmas 5 and 6 obtained in Sect. 2 to compare the DtP-policy with the
PtD-policy in Sect. 3.1. In Sect. 3.2 we develop an expression for the fraction of con-
sultations that are in immediate succession to calculate the required number of rooms
in the DtP-policy.

3.1 Analytical comparison of the recursion of the finishing time
for the doctor under both policies

In this section, we show that the time that the doctor finishes the consultation of a
patient in the DtP-policy is not later than the time the doctor finishes consultation with
that patient in the PtD-policy, under Assumptions 1–4, i.e.,

Theorem 7 F ′
n ≤ Fn, for n = 1, 2, . . . , N.

Since F ′
n ≤ Fn , for n = 1, 2, . . . , N , this also means D′

n ≤ Dn , for n = 1, 2, . . . , N .
Therefore, the departure of the nth patient never occurs later in the DtP-policy than
the departure of that same patient in the PtD-policy.

We prove Theorem 7 in Appendix C.

Remark 8 Under our FCFS assumptions, Assumptions 2 and 3, the modeled DtP-pol-
icy performs worse than a real-life DtP-policy, where the doctor may consult patients
according to a dynamic sequence. The FCFS ordering may result in a waste of doctor’s
capacity, since the doctor may be waiting for the nth patient to finish pre-consulta-
tion, while the (n + 1)th patient is already finished with pre-consultation. In addition,
Assumption 4 also causes waste of capacity, since the doctor waits until knowing
which room to travel to next. This suggests that the ordering of the DtP-policy and the
PtD-policy also holds when Assumptions 2–4 are relaxed.
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Remark 9 When Assumption 1 is replaced by the weaker assumption Pr(Tn ≤ s)
≥ Pr(Pn ≤ s), for n = 1, 2, . . . , N , we can show that Pr(F ′

n ≤ t) ≥ Pr
(Fn ≤ t), for n = 1, 2, . . . , N , which implies that EF ′ ≤ EF .

3.2 Analytical expression to calculate the required number of rooms

In a PtD-policy, the required number of rooms per doctor is one. In a DtP-policy, the
required number of rooms is more than one. In this section we develop an expres-
sion for the fraction of consultations that are in immediate succession to calculate the
required number of rooms in the DtP-policy.

To minimize access time of patients, health care managers aim to minimize idle
time experienced by the doctor. To this end, the doctor’s wait for the next available
patient should be minimized (Harper and Gamlin 2003), or in other words, the frac-
tion of consultations that take place in immediate succession should be maximized.
After leaving a room, the doctor should return to this room after the next patient has
finished pre-consultation. During the time that the doctor is away from a specific room
(Us(n) + Pn), the doctor performs R −1 consultations in the other rooms and R travels
(including the travel to the nth patient). Hence, we obtain the following expression,
where the number of rooms (R) is chosen such that the fraction of consultations in
immediate succession is larger than α, where 0 ≤ α ≤ 1.

Pr

(
n−1∑

k=n−R

Ck +
n∑

k=n−R

Tk ≥ Us(n) + Pn

)

≥ α. (1)

Example We evaluate Eq. (1) for gamma and normal distributed service times. The
average duration of a process is given by μi and its variance is given by σ 2

i , where
i ∈ {P, C, U, T }.

The gamma distribution is a frequently reported distribution for outpatient clinic
consultation times (Cayirli and Veral 2003). Let the pre-consultation, the post-consul-
tation, and the travel times be deterministic, and the consultation times be i.i.d. gamma
distributed. The convolution of v i.i.d. gamma distributed variables with parameters
(k, θ ) is again a gamma distribution with parameters (v · k, θ ). Hence, the number of
rooms, R, is obtained from

∞∫

U+P−R·T
x (R−1)·(k−1) e− x

θ

θ (R−1)·k · �(R · k)
dx ≥ α, (2)

where θ = σ 2
C

μC
and k = μC

θ
are parameters of the gamma distribution and �(a) is the

standard gamma function with parameter a.
When all service processes are i.i.d. normal distributed, its convolution results in

a normal distribution with parameters (μ, σ ). Hence, the number of rooms, R, is
obtained from
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∞∫

0

1√
2πσ

e−(x−μ)2/2σ 2
dx ≥ α, (3)

where μ = (R−1)·μC + R ·μT −μU −μP and σ 2 = (R−1)·σ 2
C + R ·σ 2

T +σ 2
P +σ 2

U .

4 Results

Sections 4.1 and 4.2 describe the comparison of the two policies and the calculation
of the required number of rooms. Section 4.3 describes the application of our methods
at a pediatric outpatient clinic.

4.1 Comparison of the PtD-policy and the DtP-policy

In Theorem 7, we showed that the doctor finishes consultation with a patient earlier in
the DtP-policy than in the PtD-policy under Assumptions 1–4. Hence, more patients
can be consulted per time unit in the DtP-policy. In Remark 8, we indicated that the
ordering of the DtP-policy and the PtD-policy may remain the same when Assump-
tions 2–4 are relaxed. Below, we use discrete-event simulation to study the ordering
when Assumption 1 is relaxed.

The discrete-event simulation is a model of an outpatient clinic, where a con-
sultation session lasts 8 h per day and patients arrive at the time they are sched-
uled. The Bailey–Welch rule (Bailey 1952) is used for the patient schedule. The rule
states that when blocks of the size of the expected consultation time are used to
schedule the patients, the last block is deleted and the first block holds two patients.
We assume a coefficient of variation (CV = μ

σ
) of 0.6, which is within the range of

0.35–0.85 reported in the literature (Cayirli and Veral 2003). The length of each sim-
ulation run is one business day. With the replication/deletion approach (Law 2009),
we find that 1,000 replications (days) appear to be sufficient for a confidence level of
99.9% with a relative error of 0.1% with respect to the number of consultations per
week.

Figure 2 shows the switching curve when all processes are gamma distributed. The
switching curve from the PtD-policy to the DtP-policy depends on the ratio of doctor
travel time to pre-consultation time and post-consultation time, and is insensitive to
changes in the average consultation time and the CV. Also, the ratio of pre-consultation
to post-consultation has only negligible impact on the choice for a policy; it is their
sum that influences the superiority of a policy.

When ρ is varied (ρ = λE[C], where λ is the number of patients scheduled per
time unit, and E[C] is the expected consultation time), the switching curve for the
DtP-policy is identical to the curve in Fig. 2 for ρ ≥ 0.7. For ρ < 0.7, the DtP-
policy performs better at even higher average travel times, but the potential benefit
of the DtP-policy is relatively low, as can be seen in Fig. 3. Also, Fig. 3 illustrates
that the potential benefit of the DtP-policy decreases as the ratio of consultation time
versus pre-consultation time and post-consultation time decreases. This is caused
by the fact that decreasing pre-consultation and post-consultation time per patient
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while keeping consultation time constant, leads to lower potential savings of doctor
time.

4.2 Evaluation of the required number of rooms

The fraction (Psucc in Table 1) of consultations that are in immediate succession, left-
hand side in Eq. (1), is evaluated numerically with Monte Carlo simulation for the
gamma, lognormal and exponential distribution. For the normal distribution, we use
Eq. 3. To compare the fraction with a performance measure, such as doctor utilization
(Util. in Table 1), we use the discrete-event simulation introduced in Sect. 4.1. Table 1
presents both the fraction results and the doctor utilization for a given number of
rooms, and it shows the effect of choosing a certain α. For example, when α = 0.90,
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Table 1 The results for the fraction of consultations that are in immediate succession, where μT = 1 and
CV = 0.6 for the gamma, lognormal and normal distributions, and CV = 1 for the exponential distribution

R (μP , μC , μU ) Gamma Lognormal Normal Exponential

Psucc Util. (%) Psucc Util. (%) Psucc Util. (%) Psucc Util. (%)

2 (3, 15, 3) 0.920 91.2 0.946 91.4 0.879 91.1 0.781 86.6

3 (3, 15, 3) 0.998 91.6 0.996 91.6 0.981 91.8 0.960 87.6

4 (3, 15, 3) 1.000 91.6 0.997 91.6 0.997 91.8 0.993 87.7

2 (3, 15, 6) 0.800 89.8 0.823 90.3 0.791 89.6 0.674 84.6

3 (3, 15, 6) 0.985 91.5 0.979 91.6 0.963 91.7 0.909 87.4

4 (3, 15, 6) 0.999 91.6 0.988 91.6 0.993 91.8 0.976 87.7

2 (3, 15, 9) 0.675 87.0 0.687 87.6 0.680 87.0 0.591 81.9

3 (3, 15, 9) 0.953 91.4 0.945 91.5 0.933 91.5 0.852 87.0

4 (3, 15, 9) 0.995 91.6 0.973 91.6 0.987 91.8 0.949 87.6

2 (6, 15, 3) 0.800 89.4 0.823 89.7 0.791 89.1 0.674 84.1

3 (6, 15, 3) 0.985 91.0 0.979 91.0 0.963 91.2 0.909 86.8

4 (6, 15, 3) 0.999 91.0 0.988 91.0 0.993 91.3 0.976 87.0

2 (6, 15, 6) 0.671 86.8 0.684 87.3 0.685 86.6 0.580 81.5

3 (6, 15, 6) 0.958 90.8 0.952 90.9 0.937 91.0 0.853 86.4

4 (6, 15, 6) 0.997 91.0 0.978 91.0 0.988 91.2 0.953 87.0

2 (6, 15, 9) 0.551 83.0 0.550 83.5 0.571 83.0 0.509 78.2

3 (6, 15, 9) 0.911 90.5 0.903 90.6 0.896 90.6 0.794 85.6

4 (6, 15, 9) 0.989 90.9 0.961 91.0 0.978 91.2 0.921 86.9

2 (9, 15, 3) 0.675 86.1 0.687 86.6 0.680 85.9 0.591 81.0

3 (9, 15, 3) 0.953 90.2 0.945 90.3 0.933 90.4 0.852 85.8

4 (9, 15, 3) 0.995 90.3 0.973 90.4 0.987 90.7 0.949 86.4

2 (9, 15, 6) 0.551 82.6 0.550 83.1 0.571 82.5 0.509 77.8

3 (9, 15, 6) 0.911 89.9 0.903 90.0 0.896 89.9 0.794 85.0

4 (9, 15, 6) 0.989 90.3 0.961 90.4 0.978 90.6 0.921 86.3

2 (9, 15, 9) 0.449 78.3 0.434 78.7 0.466 78.4 0.446 74.3

3 (9, 15, 9) 0.853 89.2 0.844 89.4 0.843 89.2 0.739 84.0

4 (9, 15, 9) 0.975 90.3 0.944 90.4 0.963 90.6 0.887 86.1

5 (9, 15, 9) 0.996 90.4 0.960 90.4 0.992 90.7 0.953 86.4

The half-length of the 99.9% confidence interval for the doctor utilization is between 0.011% and 0.096%

four rooms are required when μP = μU = 9 and all processes lognormal distributed.
In that case, the doctor utilization found with the simulation is 90.4%. The results in
Table 1 show that doctor utilization increases with the fraction of consultations that
are in immediate succession.

The stochastic nature of the consultation process should be considered when the
required number of rooms is determined. When all processes are considered to be
deterministic, three rooms are required in the example of Fig. 4. The graph shows that
more rooms are required when CV increases.
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Table 2 Duration parameters
(minutes), retrieved from data
for 1875 patients of the pediatric
outpatient clinic in 2009

Process Distribution Average Std. deviation

Pre-consultation Gamma 5.90 6.06

Consultation Gamma 15.57 8.12

Post-consultation − − −

4.3 Case study at a medium-sized hospital

We apply our methods at the pediatric outpatient clinic of the ‘Groene Hart Zie-
kenhuis’ hospital (GHZ) in Gouda, the Netherlands. GHZ has 450 beds and over
2,000 employees [GHZ Website (2011)], and the seven doctors at the pediatric outpa-
tient clinic consult 12,000 patients per year. We focus on a single doctor, who consults
patients for 9 h per week. Patients are planned in time slots of 15 min. The parameters
in Table 2 are the result of extensive data gathering.

We know that the DtP-policy outperforms the PtD-policy if we assume that the doc-
tor’s travel time is always lower than the patient’s travel time. The simulation results
indicate that the DtP-policy outperforms the PtD-policy, when the average travel time
does not exceed 6 min. In estimating the number of rooms, we assume that travel time
is 0.5 min on average, with CV = 0.6. Table 3 shows that three rooms are required,
if α = 0.90. The fraction of consultations that are in immediate succession (Psucc
in Table 3) is evaluated numerically with Monte Carlo simulation, and the doctor
utilization (Utilization in Table 3) is found with our discrete-event simulation.

5 Conclusion

Inspired by the hospitals ‘RIVAS Gorinchem’, ’Reinier de Graaf Gasthuis’ and ‘Groene
Hart Ziekenhuis’, which were in the process of redesigning their outpatient clinic, this

123



402 P. J. H. Hulshof et al.

Table 3 Results to determine the required number of rooms in the case study

Number of rooms Psucc Utilization (%)

2 0.883 92.5

3 0.984 93.3

4 0.998 93.3

The half-length of the 99.9% confidence interval for the doctor utilization is between 0.053% and 0.057%

paper has developed analytical and simulation models to compare different parameter
settings in two policies for the organization of outpatient clinics. In the first policy,
doctors remain in one consultation room, while patients visit for consultation. We
call this the PtD-policy, and in this policy, the doctor attends the complete patient
process: pre-consultation, consultation and post-consultation. In the second policy,
patients prepare themselves in individual consultation rooms, with or without the aid
of a nurse, while the doctor travels from room to room. We call this the DtP-policy,
and in this policy, the doctor only attends the consultation, and experiences travel time
to go from room to room.

We use the models to evaluate the two policies on doctor utilization, patient access
time and patient waiting time. The models provide insight in the ordering of the
PtD-policy and the DtP-policy in different parameter settings for different outpa-
tient clinics. As a result, we show that an outpatient clinic should choose the DtP-
policy, when for each patient the doctor’s travel time is lower than the patient’s
pre-consultation time. We extend this result with a discrete-event simulation, which
indicates that a DtP-policy should be chosen when the average doctor travel time
is lower than the sum of the average pre-consultation time and the average post-
consultation time.

We developed an expression for the fraction of consultations that are in immediate
succession to calculate the required number of rooms in the DtP-policy. Using the
developed expression as described in this paper results in choosing the required number
of rooms such that the fraction of consultations in immediate succession is maximized
and the idle time of the doctor is minimized.

To support decision making in outpatient clinics, we provide analytical models
that can be used to compare the two policies on several performance measures and to
determine the required number of consultation rooms in a particular outpatient clinic
setting. Our experience in applying this research showed that our models are valuable
for providing quantitative arguments to support the discussion of a proposed decision
with stakeholders (e.g., hospital boards, doctors).

For the aforementioned hospitals we have successfully applied the insights obtained
with our methods in the redesign of their outpatient clinics, based on data from their
outpatient clinics. For the hospital managers, our results provided quantitative mea-
sures and formal proof to support their decision to redesign the outpatient clinic from
a PtD-policy to a DtP-policy. With our models and the data, we also helped the hos-
pitals to determine the required number of consultation rooms for each doctor in the
DtP-policy.
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Appendix A: Proof of Lemma 5

Consider the recursion of the departure process. We distinguish two cases:

(i) When An ≥ Dn−1, the nth patient comes in after the (n − 1)th patient has left,
thus the doctor is available immediately upon arrival of the nth patient at An .
Hence, Dn = An + Pn + Cn + Un .

(ii) When An < Dn−1, the nth patient comes in while the doctor is occupied. The
nth patient can start pre-consultation upon departure of the (n − 1)th patient.
Hence, Dn = Dn−1 + Pn + Cn + Un .

Combining (i) and (ii) obtains

Dn = max {An, Dn−1} + Pn + Cn + Un . (4)

Since Dn = Fn + Un , we have proven Lemma 5. 	


Appendix B: Proof of Lemma 6

The recursion of the finishing time for the doctor is explained by examining the time
both the patient and the doctor are ready for consultation. The nth patient is available
for consultation after finishing pre-consultation. The doctor is available for the nth
patient, after the consultation of the (n − 1)th patient plus the travel to the nth patient.
We distinguish two cases:

(i) When n ≤ R, the number of customers in the system is smaller than the num-
ber of rooms. Hence, the nth patient enters a room immediately upon arrival
and is ready for consultation after pre-consultation (An + Pn). The doctor con-
sults the patient after finishing consultation of the (n − 1)th patient and the
travel time (F ′

n−1 +Tn). The moment consultation can start if n ≤ R is thus:
max{An + Pn, F ′

n−1 + Tn}.
(ii) When n > R, the nth patient may have to wait for the exit of the s(n)th

patient(F ′
s(n) + Us(n)) before entering a room, or the patient can enter a room

immediately upon arrival (An), if a room is available. After entering a room, pre-
consultation has to be finished before consultation can start. Hence, the patient
is ready for consultation at max{F ′

s(n) +Us(n), An}+ Pn . The doctor is ready for
consultation after traveling to the room (Tn). The doctor can start traveling after
the consultation of the (n − 1)th patient (F ′

n−1), and, due to Assumption 4, the
s(n)th patient must have exited (F ′

s(n) +Us(n)). Therefore, the doctor is available
for the consultation of the nth patient at max{F ′

s(n) + Us(n), F ′
n−1} + Tn . The

moment consultation can start if n > R is thus max{max{F ′
s(n) + Us(n), An} +

Pn, max{F ′
s(n) + Us(n), F ′

n−1} + Tn}.
We combine (i) and (ii) to obtain Lemma 6. 	
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Appendix C: Proof of Theorem 7

We prove Theorem 7 by induction. Clearly F ′
1 ≤ F1, since in an initial (empty) system,

the process is identical, because we have Assumption 1. The induction hypothesis is
F ′

j ≤ Fj , for j = 1, 2, . . . , n − 1. It remains to prove that F ′
n ≤ Fn .

Observe from Assumptions 2 and 3 that Fn−1 ≤ Fn and F ′
n−1 ≤ F ′

n . In addition,
the s(n)th patient is the patient that leaves a room before the nth patient can enter that
room. Therefore, it is certain that the s(n)th patient has entered a room before the nth
patient, so that

F ′
s(n) + Us(n) ≤ F ′

n−1 + Un−1, for n = 1, 2, . . . , N . (5)

It is sufficient to consider the case n > R, since for n ≤ R by definition we have
F ′

s(n) + Us(n) = 0.
For the case An ≤ F ′

s(n) + Us(n), we obtain:

F ′
n = max{F ′

s(n) + Us(n) + Pn,

max{F ′
s(n) + Us(n), F ′

n−1} + Tn} + Cn (Lemma 6, n > R)

≤ max{F ′
n−1 + Un−1 + Pn,

max{F ′
n−1 + Un−1, F ′

n−1} + Tn} + Cn [Eq. (5)]
= F ′

n−1 + Un−1 + max{Pn, Tn} + Cn

≤ Fn−1 + Un−1 + max{Pn, Tn} + Cn (Induction hypothesis)

≤ Fn−1 + Un−1 + Pn + Cn (Assumption 1)

≤ max{An, Fn−1 + Un−1} + Pn + Cn = Fn (Lemma 5)

For the case An ≥ F ′
s(n) + Us(n), we obtain:

F ′
n = max{An + Pn, max{F ′

s(n) + Us(n), F ′
n−1} + Tn} + Cn (Lemma 6, n > R)

≤ max{An + Pn, max{An, F ′
n−1} + Tn} + Cn

= max{An + max{Pn, Tn}, F ′
n−1 + Tn} + Cn

≤ max{An + max{Pn, Tn}, Fn−1 + Tn} + Cn (Induction hypothesis)

≤ max{An + Pn, Fn−1 + Pn} + Cn (Assumption 1)

≤ max{An, Fn−1 + Un−1} + Pn + Cn = Fn (Lemma 5)

From the above, it follows that if F ′
j ≤ Fj , for j = 1, 2, ..., n −1, then F ′

n ≤ Fn . This
proves Theorem 7. 	
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