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Abstract Motivated by applications in production and computer-communication
systems, we study an N -queue polling system, consisting of an inner part and an outer
part, and where products receive service in batches. Type-i products arrive at the outer
system according to a renewal process and accumulate into a type-i batch. As soon as
Di products have accumulated, the batch is forwarded to the inner system where the
batch is processed. The service requirement of a type-i batch is independent of its size
Di . For this model, we study the problem of determining the combination of batch
sizes �D(opt) that minimizes a weighted sum of the mean waiting times. This model does
not allow for an exact analysis. Therefore, we propose a simple closed-form approxi-
mation for �D(opt), and present a numerical approach, based on the recently proposed
mean waiting-time approximation in Boon et al. (Perform Eval 68, 290–306, 2011).
Extensive numerical experimentation shows that the numerical approach is slightly
more accurate than the closed-form solution, while the latter provides explicit insights
into the dependence of the optimal batch sizes on the system parameters and into the
behavior of the system. As a by-product, we observe near-insensitivity properties of
�D(opt), e.g. to higher moments of the interarrival and switch-over time distributions.
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1 Introduction

This paper is motivated by the stochastic economic lot scheduling problem (SELSP),
where multiple standardized products have to be produced on a single machine (see
Winands et al. 2011 for a survey on the SELSP). Oftentimes, in this setting, a group
of products is combined in a batch for production at the machine. The time required
to process such a batch depends at most weakly on the size of the batch, because
the processing itself affects the entire batch at once. Common examples are an oven
that heats multiple items at once, a paint bath which may paint several items at a
time, the production of pharmaceuticals, or the blending of gasoline (cf. Zipkin 1985).
Moreover, for a case study on the SELSP with batch service, we refer to Winands
et al. (2009). Batch-service processing is also widely applicable in the field of com-
puter-communication systems, such as videotex systems and Time Division Multiple
Access (TDMA) systems (Liu and Nain 1992). Management of production facilities
often faces a complex trade-off concerning the determination of batch sizes. On the
one hand, the smaller the batch size the less product inventory is needed and the shorter
the waiting times within a batch. On the other hand, the larger the batch size the fewer
batches require processing, which leads to reduction of the workload and the waiting
times for the batch as a whole. The goal of this paper is to propose and evaluate meth-
ods for properly balancing this trade-off.

In many practical settings the products are produced according to a fixed production
sequence, which naturally leads to the modeling via a so-called polling system. A typi-
cal polling system consists of a number of queues, attended by a single server in a fixed
order. There is a body of literature available on non-polling queueing systems with
batch service, both from a performance-evaluation perspective (Gold and Tran-Gia
1993; Henderson and Taylor 1990), and from a design perspective (Deb and Serfozo
1973; Weiss 1979; Zipkin 1985). Despite the fact that the analysis and optimization
of polling models have been studied extensively (Levy and Sidi 1990; Takagi 1985;
Vishnevskii and Semenova 2006), remarkably little attention has been paid to poll-
ing models in combination with batch service. As an exception, Boxma et al. (2008)
study batch-service polling models in which batches are served integrally. Vlasiou and
Yechiali (2008) study the case where the service of underlying jobs may be abandoned
and pushed to the batch of the next visiting period when the current visit time is up.
Optimal dynamic routing policies for these systems are studied when the server has
complete freedom of visits in Liu and Nain (1992) and when routing must be done in
subsequent Hamiltonian tours in Van der Wal and Yechiali (2003). In Van Oyen and
Teneketzis (1996), the question is studied whether upon arrival the server should poll a
station or idle until more products have arrived at the station when the server assumes
a cyclic routing mechanism. These studies mostly assume that the server can take in
any number of products for service at a time and that products arrive according to
Poisson arrival processes. For polling models with renewal arrivals, hardly any exact
results are known, except for asymptotic regimes for heavy traffic (Olsen and Van der
Mei 2005) or large switch-over times (Winands 2011). Faced by this, approximations
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Polling systems with batch service 745

have been developed for the mean waiting time (Boon et al. 2011), recently extended
to the complete waiting-time distribution (Dorsman et al. 2011).

In the batch-service models addressed above, there is no limit to the number of prod-
ucts served during one visit of the server to a queue. In this paper, we consider a model
that is fundamentally different, and that a type-i batch consists of exactly Di products.
More precisely, we study an N -queue batch-service polling system consisting of an
inner part and an outer part. Type-i products arrive at the outer system according to
a renewal process and accumulate into a type-i batch until exactly Di products have
accumulated; thus, products have to wait in the outer part until the batch is full. Then,
the batch is forwarded to the inner system (which can be seen as a regular polling
system). In the inner system the batch and thus its constituent products wait until the
batch is processed by the server. It is assumed that the service requirement of a type-i
batch is independent of its size Di . For this model, we study the problem of deter-
mining the combination of batch sizes �D(opt) = (D(opt)

1 , . . . , D(opt)
N ) that minimizes

a weighted sum of the total mean waiting times of products in the outer and the inner
system. In the absence of exact analysis, we present two approaches to approximate
�D(opt): (1) a numerical approach, and (2) a closed-form approximation. The numeri-

cal approach is built upon the mean waiting-time approximation developed in Boon
et al. (2011), which is accurate over the entire range of parameters. Extensive valida-
tion shows that the numerical approach is slightly more accurate but does not scale
in the number of queues, while the closed-form approximation works particularly
well for large numbers of queues. As a by-product of the closed-form approximation,
we observe near-insensitivity properties of the batch sizes with respect to the higher
moments of the interarrival and switch-over time distributions. Moreover, the results
suggest that the ratio of the optimal batch sizes of two queues is nearly insensitive to
the characteristics of other queues.

The structure of this paper is as follows. In Sect. 2, the model is introduced and the
optimization problem is formulated. In Sect. 3, we analyze the performance of the sys-
tem. In Sect. 4, we consider optimization of the system performance, and propose two
approximative solution approaches. In Sect. 5, the accuracy of these two approaches
is extensively validated by a large simulation testbed. Finally, in Sect. 6, we address a
number of topics for further research.

2 Model description and notation

We consider a polling systems consisting of an outer part and an inner part (see
Fig. 1). The outer system consists of N > 1 accumulation stations, where type-i
products accumulate at their type-specific station, and the inner system is a classi-
cal cyclic-service polling system consisting of N infinite-sized buffers, denoted by
Q1, . . . , QN . Type-i products arrive at the outer part according to a renewal arrival
process, where the interarrival times are i.i.d. samples from a random variable A(out)

i .

The arrival rate of type-i products is λ
(out)
i = 1/E[A(out)

i ], and �(out) := ∑N
i=1 λ

(out)
i

is the total arrival rate to the system. Type-i products have to wait in the outer system
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746 J. L. Dorsman et al.

Fig. 1 Illustration of the model for N = 8

until exactly Di > 0 type-i products have accumulated in the outer part. As soon
as Di type-i products have accumulated, they form a type-i batch, which is immedi-
ately forwarded to Qi in the inner system. Note that the arrival of batches at Qi also
forms a renewal process. The interarrival times of these batches are denoted by the
random variable A(in)

i , whose distribution is the Di -fold convolution of A(out)
i . The

type-i batch-arrival rate is denoted by λ
(in)
i := 1/E[A(in)

i ], and the total arrival rate is

denoted by �(in) := ∑N
i=1 λ

(in)
i . Note that λ

(in)
i = λ

(out)
i /Di .

In the polling system, batches in each queue are served in the order of arrival. The
service time of a type-i batch is denoted by the random variable Bi , independent of the
fixed batch size Di ; thus, the batch size Di has no impact on the service requirement
Bi of the batch itself. Whenever a batch is being processed, it is assumed that the
constituent products are all served simultaneously, such that there is no underlying
product in the batch that has its service requirement completed before the batch as a
whole is served. Let B denote the service time of an arbitrary batch, regardless of its
type. The server attends the queues according to an exhaustive service discipline, i.e.,
when attending Qi , the server will commence moving to another queue if and only
if Qi is empty. The server moves along the queues in a cyclic manner, in the order
Q1, Q2, . . . , QN , Q1, . . .. The time needed to switch from Qi to the next is denoted
by a random variable Si . We define a cycle at Qi as the time between two successive
departures of the server from Qi . Let S := ∑N

i=1 Si denote the total switch-over time

per cycle. Let ρi = λ
(in)
i E[Bi ] be the load offered to Qi , and let ρ := ∑N

i=1 ρi be the
total load offered to the (inner) system.
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Polling systems with batch service 747

A necessary and sufficient condition for the stability of the inner system, and hence
of the whole system, reads ρ < 1 (cf. Down 1998). Throughout it is assumed that
the stability condition is met. Note that for given service-time distributions and arrival
rates to the outer system, the load ρ to the inner system generally depends on �D. Let
D be the set of possible values for �D for which the stability condition ρ < 1 holds.
The following notation is useful. For a non-negative random variable X with finite
variance, we denote its residual counterpart by X (res), and the squared coefficient
of variation (SCV) by c2

X . Moreover, let 1A be the indicator function on the event
A. Finally, to properly define light- and heavy-traffic limits (i.e., ρ ↓ 0 and ρ ↑ 1,

respectively), we scale the system such that the total arrival rate at the outer system
�(out) is varied while the batch-size vector, service-time distributions and the ratios
between the individual external arrival rates are kept fixed. Moreover, it proves conve-
nient to represent with x̂ the value of each variable x that is a function of ρ, evaluated
at ρ = 1. Finally, let

σ 2 :=
N∑

i=1

λ̂
(in)
i

(

Var[Bi ] + c2
Â(in)

i

E[Bi ]2
)

, and δ :=
N∑

j=1

N∑

k= j+1

ρ̂ j ρ̂k . (1)

Optimization problem

The optimization problem studied in this paper concerns the ‘optimal’ choice of the
vector of batch sizes �D := (D1, . . . , DN ). To this end, note that the waiting time Wi

of a type-i product can be decomposed as

Wi = W (out)
i + W (in)

i , (2)

where W (out)
i is the time a type-i product has to wait in the outer system until its

type-i batch is full, and where W (in)
i is the time a type-i product spends waiting in the

inner system at Qi before entering service. We define the cost function as follows: for
�D ∈ D,

C( �D) :=
N∑

i=1

ci E[Wi ] =
N∑

i=1

ci

(
E

[
W (out)

i

]
+ E

[
W (in)

i

])
, (3)

where ci > 0 denotes the cost per time unit for a type-i product in the system. Then
for given weight vector �c = (c1, . . . , cN ) the optimization problem is to find a vector
�D(opt) = (D(opt)

1 , . . . , D(opt)
N ) that minimizes C( �D) over all �D ∈ D.

3 Analysis

To tackle the optimization problem, we observe that a closed-form expression for
E[W (out)

i ] can be obtained by conditioning. To this end, let Ei j be the event that
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an arbitrary arriving type-i product is the j-th arriving product in a type-i batch
( j = 1, . . . , Di ). Then by conditioning on Ei j we have

E

[
W (out)

i

]
=

Di∑

j=1

E

[
W (out)

i |Ei j

]
P[Ei j ], (4)

where

E

[
W (out)

i |Ei j

]
= Di − j

λ
(out)
i

, and P[Ei j ] = 1

Di
for all j = 1, . . . , Di . (5)

Unfortunately, there is no exact expression available for E[W (in)
i ]. However,

Boon et al. (2011) recently proposed the following approximation for E[W (in)
i ], con-

sidered as a function of the load ρ to the inner system for i = 1, . . . , N , ρ < 1:

E

[
W (in)

i

]
≈ E

[
W (in)

i,app

]
:= K0 + K1,iρ + K2,iρ

2

1 − ρ
, (6)

where the constants K0, K1,i and K2,i are defined as follows:

K0 = E[S(res)] = E[S2]
2E[S] , (7)

K1,i = ρ̂i

⎛

⎜
⎝(c2

A(in)
i

)41{

c2

A(in)
i

≤1

} + 2
c2

A(in)
i

c2
A(in)

i

+ 1
1{

c2

A(in)
i

>1

} − 1

⎞

⎟
⎠ E[B(res)

i ]

+E[B(res)] + ρ̂i (E[S(res)] − E[S]) − 1

E[S]
N−1∑

j=0

j∑

k=0

ρ̂i+kVar[Si+ j ], (8)

K2,i = 1 − ρ̂i

2

(
σ 2

2δ
+ E[S]

)

− K0 − K1,i . (9)

Note that the approximation in (6)–(9) is asymptotically exact both in light-traffic (i.e.
when ρ ↓ 0) and in heavy-traffic (i.e. ρ ↑ 1), and highly accurate over a wide range of
parameter combinations (Boon et al. 2011). Next, combining (3)–(6), the cost function
C( �D) can be approximated by the following expression: for �D ∈ D,

C( �D) ≈ Capp( �D) :=
N∑

i=1

ci

(
Di − 1

2λ
(out)
i

+ E

[
W (in)

i,app

]
)

, (10)

where the first term between the brackets follows directly from (4) to (5), noting that
∑Di

j=1 j = Di (Di + 1)/2, and where E[W (in)
i,app] is defined in (6)–(9).
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4 Optimization

In this section we discuss two approaches to the optimization problem. The first
approach, which will throughout be called the numerical approach, is simply based
on solving the non-linear optimization problem obtained by minimizing Capp( �D),

defined in (10), numerically with respect to �D ∈ D. To this end, standard numerical
algorithms for non-linear optimization are available. Numerical results will show that
this approach works very well when the number of stations N is not too large; how-
ever, computation times become prohibitively large when N is large (see Sect. 5 for
details). Furthermore, this approach may be cumbersome to implement and does not
reveal explicitly how the optimal batch sizes depend on the system parameters.

To overcome these problems, we will now proceed to develop a closed-form approxi-
mation for �D(opt). Unfortunately, we observe that the functional form in the
approximation for C( �D) defined in (6)–(10) is too complex to obtain closed-form
approximations for �D(opt). For this reason, we will now further simplify the approxi-
mation for E[W (in)

i ] and assume that it has the following form for i = 1, . . . , N , ρ < 1:

E[W (in,simple)
i,app ] = a + biρ

1 − ρ
. (11)

The coefficients a and bi will be taken such that the approximation is asymptotically
exact in the known limiting cases of light-traffic (LT) and heavy-traffic (HT), respec-
tively. To this end, note that in LT, we have that limρ↓0 E[W (in)

i ] = E[S(res)], so
that

a = E[S(res)] = E[S2]
2E[S] . (12)

In the case of HT, we have (cf. Van der Mei and Winands 2008): for i = 1, . . . , N , ρ ↑1,

E[W (in)
i ] = ωi

1 − ρ
+ o((1 − ρ)−1), with ωi := 1 − ρ̂i

2

(
σ 2

2δ
+ E[S]

)

, (13)

and where σ 2 and δ are defined in (1). Moreover, if we assume for simplicity (see
Remark 4.1) that the arrival process is deterministic (so that c2

A(out)
i

= c2
A(in)

i

= 0), it is

readily seen that ωi defined in (13) is further simplified into

ω
(simple)
i,app := 1 − ρ̂i

2

(
σ 2

app

2δ
+ E[S]

)

, with σ 2
app =

N∑

i=1

λ̂
(in)
i Var[Bi ], (14)

and hence,

a + bi = lim
ρ↑1

(1 − ρ)E[W (in)
i ] = ω

(simple)
i,app . (15)
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Finally, the combination of (11), (12), (14) and (15) leads to the following simplified
approximation for the cost function: for �D ∈ D,

C( �D) ≈ C (simple)
app ( �D) =

N∑

i=1

ci

⎛

⎝ Di − 1

2λ
(out)
i

+ E[S2]
2E[S] + ω

(simple)
i,app ρ

1 − ρ

⎞

⎠ . (16)

We will now use (16) to derive closed-form approximations for �D(opt). In Sect. 4.1,
we consider the homogeneous case in which the batch sizes are required to be the
same for all queues. Subsequently, in Sect. 4.2, we consider the heterogeneous case
in which the batch sizes are allowed to be different.

Remark 4.1 For later reference, an important observation is that ω
(simple)
i,app , defined

in (14), only depends on the batch sizes �D = (D1, . . . , DN ) through their ratios
Di/D j . In other words, if the batch-size vector �D is parameterized as �D = α �d, with
�d = (d1, . . . , dN ) the vector of relative batch sizes, normalized such that

∑N
i=1 di = 1,

and the scalar α > 0 a scaling parameter, then ω
(simple)
i,app is the same for all α. To

this end, note that both λ
(in)
i = λ

(out)
i /Di = λ

(out)
i /(αdi ) and the per-queue load-

values ρi = λ
(in)
i E[Bi ] = λ

(out)
i E[Bi ]/(αdi ) do depend on α, but that this dependence

cancels out when taking its heavy-traffic limit. Note that by definition it holds that
1 = ρ̂ = ∑N

i=1 ρ̂i , which is readily seen to imply that

α̂ =
N∑

j=1

λ̂
(out)
j E[B j ]

d j
, and hence λ̂

(in)
i = λ̂

(out)
i

α̂di
= λ̂

(out)
i /di

∑N
j=1 λ̂

(out)
j E[B j ]/d j

,

(17)

which is independent of the batch-size scaling parameter α, because all parameters
λ̂

(out)
j , E[B j ] and d j are by definition independent of α. This observation, which pro-

vides a strong simplification in the functional form of C (simple)
app ( �D) considered as a

function of �D in (16), will be useful for later reference.

4.1 Homogeneous case: one-dimensional problem

In this section, we study the optimization problem under the restriction that D1 =
D2 = · · · = DN =: D, for D a positive integer. In that case, the approximate cost
function, defined in (16), reduces to, for D = 1, 2, . . . ,

Chom(D) :=
N∑

i=1

ci (D − 1)

2λ
(out)
i

+
N∑

i=1

ci
E[S2]
2E[S] +

∑N
i=1 ciω

(simple)
i,app

∑N
i=1 λ

(out)
i E[Bi ]

D − ∑N
i=1 λ

(out)
i E[Bi ]

.

(18)
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Note that Remark 4.1 readily implies that in this case ω
(simple)
i,app does not depend on

D. Then, if we consider Chom(x) as a function of the continuous parameter x > 0,

optimize with respect to x and then round off appropriately, we immediately obtain
the following closed-form approximation for the optimal value of D:

D(opt) ≈ D(opt)
app := round(x), (19)

where

x :=
N∑

i=1

λ
(out)
i E[Bi ] +

√
√
√
√
√2

(
N∑

i=1

ci

λ
(out)
i

)−1 (
N∑

i=1

ciω
(simple)
i,app

) (
N∑

i=1

λ
(out)
i E[Bi ]

)

(20)

and the round-function rounds its input to the nearest integer if the resulting batch size
results in a stable system or rounds to the nearest larger integer otherwise.

Remark 4.2 Note that the approximation in (19)–(20) can easily be generalized to the
case where the batch sizes are not necessarily the same, but have fixed proportions
(i.e., Di = αdi with

∑N
i=1 di = 1).

4.2 Heterogeneous case: multi-dimensional problem

When we drop the restriction that the batch sizes need to be the same, the optimization
problem is an N -dimensional non-linear optimization problem with integer-valued
parameters �D ∈ D. This type of problem generally does not scale to large problem
instances, in the sense that the computation times then become prohibitively large.
Therefore, in this section we propose a further simplification of the approximate cost
function defined in (16) based on the following argument. Consider the parameteri-
zation of the batch sizes in Remark 4.1 (i.e., Di = αdi , with

∑N
i=1 di ), and scale the

batch sizes such that α > 0 is varied while the relative batch sizes (d1, . . . , dN ) are
kept fixed. Using this parameterization, the batch sizes, and hence the waiting times
in both the inner and the outer system, generally depend on α. As for the outer system,
for each i the batch size Di and hence also the mean waiting times in the outer system
E[W (out)

i ], characterized in (4)–(5), will increase only linearly in α. However, as for
the inner system, it follows directly from the asymptotic expansion in (13) that when
the load on the inner system ρ is high, E[W (in)

i ] is extremely sensitive to ρ, and hence,

even a small increase in α will lead to a strong decrease in E[W (in)
i ]. Hence, one may

suspect that the optimal value of α, and hence of the batch sizes, will be large such
that the inner system is only lightly loaded (i.e., ρ close to 0), so that the last term in
(16) becomes negligible.

Using these arguments, and omitting the terms that do not depend on �D, the optimi-
zation problem is further simplified to the problem of finding the batch-size vector
�D(opt) that
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minimizes
N∑

i=1

ci Di

λ
(out)
i

, subject to the condition
N∑

i=1

λ
(out)
i E[Bi ]

Di
= ρ < 1.

(21)

This is equivalent to the problem of finding �β = (β1, . . . , βN ) that

minimizes
N∑

i=1

γi

βi
, subject to

N∑

i=1

βi < 1, with γi := ci E[Bi ]

and βi := λ
(out)
i E[Bi ]

Di
, (22)

where γi (i = 1, . . . , N ) are constants, and where βi (i = 1, . . . , N ), via Di defined
above, are decision variables. If we take �β to be continuous, a standard Lagrangian-

multiplier approach leads to the solution β
(opt)
i =√

γi

(∑N
i=1

√
γi

)−1
for

i = 1, . . . , N . Translating this back to batch-size ratios, we have

D(opt)
i

D(opt)
j

≈ λ
(out)
i E[Bi ]/β(opt)

i

λ
(out)
j E[B j ]/β(opt)

j

= λ
(out)
i

λ
(out)
j

√
c j E[Bi ]
ci E[B j ] . (23)

It should be noted that replacing the constraint in (22) with
∑N

i=1 βi = c for any value
of c ∈ (0, 1] would have lead to (23), thus also when demanding that ρ equals a value
close to 0 in accordance with the arguments above.

Now that the batch-size ratios have been approximated in (23), it remains to approxi-
mate the absolute values of these batch sizes via the scalar α. Therefore, we go back
to an arbitrarily loaded system with a cost function as defined in (16) and we write
�D = α �d . As stated in Remark 4.2 the problem of determining the (near-)optimal value

of α can be obtained via the same argumentation as in the homogeneous case, which
leads to the following result: for i = 1, . . . , N ,

D(opt)
i ≈ D(opt)

i,app := round
(
α

(opt)
app d(opt)

i,app

)
, (24)

with

α
(opt)
app :=

N∑

i=1

λ
(out)
i E[Bi ]

d(opt)
i,app

+

√
√
√
√
√2

⎛

⎝
N∑

i=1

ci d
(opt)
i,app

λ
(out)
i

⎞

⎠

−1 (
N∑

i=1

ciω
(simple)
i,app

)⎛

⎝
N∑

i=1

λ
(out)
i E[Bi ]

d(opt)
i,app

⎞

⎠, (25)
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d(opt)
i,app := λ

(out)
i

√
E[Bi ]/ci

∑N
j=1 λ

(out)
j

√
E[B j ]/c j

. (26)

and the round-function as in the homogeneous case. The obtained approximation in
(24)–(26) requires little or no computation time, even for systems with a large number
of queues. In the next section, the accuracy of the approximations is evaluated.

5 Validation

In this section, we evaluate the performance of the approximation methods presented
in Sect. 4 using a large simulation testbed.

5.1 Description of the simulation testbed

To validate the results for a wide variety of parameter combinations, experiments were
done on a testbed containing 1,260 parameter combinations, such that the parameter
space is well covered. To structure the instances, let

λ
(out) := 1

N

N∑

i=1

λ
(out)
i , E[B] := 1

N

N∑

i=1

E[Bi ] and E[S] := 1

N

N∑

i=1

E[Si ]

(27)

be the type-averaged arrival rate, mean service time and mean switch-over times,
respectively. The parameters of the 1,260 instances are then obtained by taking every
combination of the parameter values found in Table 1. For every instance, each queue
shares the same value for c2

A(out)
i

, c2
Bi

and c2
Si

. For symmetric instances, we of course

also have that λ
(out)
i = λ

(out)
, E[Bi ] = E[B] and E[Si ] = E[S] for i = 1, . . . , N . For

the asymmetric instances however, the parameters are taken asymmetrically through
the formulas

λ
(out)
i := 2i

N + 1
λ

(out)
, E[Bi ] := 2i

N + 1
E[B] and E[Si ] := 2(N + 1 − i)

N + 1
E[S],

(28)

for i = 1, . . . , N . For the sake of validation of the numerical approach, an imple-
mentation of a Newton type-algorithm for unconstrained minimization was used (see
Schnabel et al. 1985 for details).
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Table 1 Parameter values of the simulation testbed

Variable Parameter Parameter values

– Symmetry {symmetric, asymmetric}

N Number of queues {2, 5}
λ
(out)

Type-averaged arrival rate {1/(2N ), 2/N }
E[B] Type-averaged mean service time {1}
E[S] Type-averaged mean switch-over time {0, 0.2, 1, 10}
c2

A(out)
i

SCV external interarrival times {0.25, 1, 2}
c2

Bi
SCV service times {0, 1, 4}

c2
Si

SCV switch-over times {0, 1}
�c Weight vector {(λ(out)

1 , λ
(out)
2 ), (1, 1), (2, 1)} for N = 2

or

{(λ(out)
1 , λ

(out)
2 , λ

(out)
3 , λ

(out)
4 , λ

(out)
5 )

(1, 1, 1, 1, 1), (5, 4, 3, 2, 1)} for N = 5

5.2 Relative errors

To quantify the accuracy of the approximations, the relative error in the cost function
is defined as follows:

�% := C( �Dapp) − C( �D(opt))

C( �D(opt))
× 100%, (29)

where C( �D(opt)) is the real cost of the optimal batch-size vector �D(opt) (both obtained
by simulation), and C( �Dapp) is the real cost (obtained by simulation) belonging to the
batch-size approximation methods.

5.3 Experimental results

Tables 2 and 3 show the averages of the relative cost differences �% of both the
numerical approach and the results based on the closed-form approximation, as well
as the distribution of these relative errors over several bins. The results show that both
solution techniques perform very well, with average errors up to only a few percent.
The majority of the differences is concentrated in the bin which represents errors of
0%; that is, in most cases the approximations for �D lead to the correct optimum �D(opt).

Table 3 shows that the approximations work well for the symmetric model instances,
but that the accuracy of the closed-form approximation tends to degrade for asymmet-
ric model instances.
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Table 2 Averages of the values of �% and their distribution

Testbed Numerical approach

Average
difference (%)

Differences categorized in bins (%)

0% >0–2% 2–5% 5–20% >20%

Symmetric 0.30 82.1 12.5 2.98 2.38 0.00

Asymmetric 0.65 74.5 19.3 2.78 2.91 0.53

Table 3 Averages of the values of �% and their distribution

Testbed Closed-form approximation

Average
difference (%)

Differences categorized in bins (%)

0% >0–2% 2–5% 5–20% >20%

Symmetric 1.62 73.2 14.7 4.17 5.75 2.18

Asymmetric 4.85 59.2 25.1 4.37 4.63 6.75

Next, we evaluate the accuracy of the approximations, where the individual input
parameters are varied. Table 4 shows the average relative differences �% in cost
performances categorized in the approximation methods (i.e, numerical and closed-
form), for the type-averaged arrival rate (a), the number of queues (b), the SCV of the
switch-over times (c), the type-averaged mean switch-over time (d), the weight vector
(e), the SCV of the interarrival times (f), and the SCV of the service times (g).

The results in Table 4 lead to a number of observations. Generally, whenever total
mean waiting times become longer (for example, in the case when E[S] = 10, or
N = 5), both the numerical and closed-form approximation become increasingly
accurate. In case waiting times are generally short (for example when E[S] = 0 or

λ
(out) = 1/(2N )), the batch-size vector found by the numerical approach and the

closed-form approximation usually coincide. However, whenever a difference in the
obtained batch-size vector does occur, the difference in terms of cost of that particular
system may be considerable. However, it should be noted that although large relative
differences may occur in these cases, the absolute differences are still quite small, due
to the fact that the waiting times themselves are small. When considering the partic-
ular role of the value of N , a similar effect is observed. We see that when N = 2,

the numerical approach is slightly more accurate than the closed-form approxima-
tion, but when N = 5, both approximation methods tend to work well, although the
numerical approach still marginally outperforms the closed-form approximation. In
this context, recall that when N gets large, the computation times for the numerical
approach inevitably become prohibitively large, so that the closed-form approximation
is preferred. Table 4f, g shows that both methods are quite resistant against variability
in the interarrival times and the service times.
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Fig. 2 Mean batch size as a
function of the SCV of the
interarrival and the switch-over
time distributions

Remark 5.1 (Near-insensitivity to the higher moments of the interarrival and switch-
over time distributions) The closed-form approximation for �D(opt) in (24)–(26) is
insensitive to the second and higher moments of the interarrival-time and switch-over
time distributions. To investigate the sensitivity of the optimal batch sizes, consider
a symmetric five-queue system with, for all i = 1, . . . , 5, λ

(out)
i = 2, ci = 1, E[Bi ] =

E[Si ] = 1, E[B2
i ] = 2 and c2

A(out)
i

= c2
Si

=: γ . Figure 2 shows the mean opti-

mal ‘exact’ batch size as a function of γ, where γ ∈ [0, 40]. Apart from some
noise, which especially for large gamma is due to simulation error, the figure shows
a near-constant line, which supports the near-insensitivity property of �D(opt) with
respect to the second and higher moments of the interarrival and switch-over time
distributions.

Remark 5.2 (Near-insensitivity of ratios to other types or queues) Equations (23)–(26)
indicate that the ratios between the optimal batch sizes of an arbitrary couple of queues
(i.e., Di/D j ) are (fully) insensitive to the parameters of the other queues k 	= i, j .
This suggests near-insensitivity of the ratios of optimal batch sizes with respect to the
parameters of the other queues. To investigate this, consider a three-queue system with
Poisson arrivals and exponential switch-over times, and with (λ

(out)
1 , λ

(out)
2 , λ

(out)
3 ) =

(4, 2, k), (E[B1], E[B2], E[B3])=(1, 0.5, k), (E[B2
1 ], E[B2

2 ], E[B2
3 ])=(2, 0.25, k2),

and where all switch-over times have a mean duration 1. Figure 3 shows the ratio
of D(opt)

2 /D(opt)
1 , for k ∈ [1, 3]. Note that varying the value of k means that the

parameters for queue 3 are varied, while the parameters for queues 1 and 2 are
kept fixed. Moreover, it is readily verified from (23) that the approximated ratio
D2/D1 equals 1/2, independent of k. The results in Fig. 3 show that D(opt)

2 /D(opt)
1

is indeed nearly insensitive to the value of k, which underlines the fact that the
ratio of two optimal batch sizes is nearly insensitive to the characteristics of other
queues.
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Fig. 3 Ratio
D

(opt)
2

D
(opt)
1

as a

function of k

6 Conclusions and further research

In this paper, we have studied a batch polling system as a model for a multiple product
single production capacity with batching constraints. The proper use of the batching
mechanisms is not understood fully and rules for implementing optimal batch values
are not available in the open literature. This would almost suggest that the scheduling
problem does not exist in practice; yet the multiple product single machine system is
quite common in industry and batching of demand is done frequently to avoid small
production runs and loss of capacity due to set-ups. Our objective has, therefore, been
the derivation of these batch sizes so as to minimize a weighted sum of the mean
waiting times and, thus, the mean queue lengths. In the absence of exact analysis, we
present two novel approaches to approximate the optimal batch sizes, i.e., a numerical
approach and a closed-form approximation. The numerical approach is, in general,
the most accurate, but the computation times become prohibitively large when the
number of queues in the system increases. Furthermore, it acts as a kind of black box
and can, therefore, contribute to the understanding of the system behavior only to a
limited extent. It is, for instance, rather difficult to study the impact of parameters
like the occupation rates on the optimal batch sizes. The closed-form solution is very
simple and, therefore, loses some of the accuracy but still captures the major factors
important for efficient operation. It can be concluded that it complements the numeri-
cal approach explicitly showing the impact of all system parameters and pointing out
near-insensitivity properties.

The research presented in this paper suggests a variety of directions for further research.
First, in this paper, we focus on minimization of a weighted sum of the mean wait-
ing times. An interesting extension from an application point of view would be to add
restrictions on, for example tail probabilities of the delay figures. A good starting point
may be the recently proposed approximations for the tail probabilities in Dorsman et
al. (2011). Second, the assumptions of exhaustive services at all queues may be relaxed
to include more general branching-type policies (Resing 1993), such as single-phase
or multi-phase gated service (Van der Mei and Roubos 2011). Following the lines
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of the present paper, one would expect that also for these cases simple closed-form
approximations can be determined. Third, the results may be extended to the case
of periodic, non-cyclic, server routing, taking the results in Olsen and Van der Mei
(2005) as the starting point. Fourth, from an application point of view it would be
interesting to include some level of dependence between the batch size and its service
time. To this end, note that the extreme case of linear dependence corresponds to the
classical batch-polling system analyzed in Van der Mei (2002). Finally, an interesting
extension is one where the switch-over times depend on the actual state of the system.
For example in production systems it may be interesting to let the server skip a queue
that is empty, or let the server reside in idle mode when there are no jobs in the system.
The approximation techniques in Boon et al. (2011) can readily be extended to the case
of state-dependent switch-over times, and may be used to extend the current results to
this situation as well.
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