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Abstract This paper introduces models and algorithms for a static dial-a-ride prob-
lem arising in the transportation of patients by non-profit organizations such as the
Austrian Red Cross. This problem is characterized by the presence of heterogeneous
vehicles and patients. In our problem, two types of vehicles are used, each providing
a different capacity for four different modes of transportation. Patients may request to
be transported either seated, on a stretcher or in a wheelchair. In addition, some may
require accompanying persons. The problem is to construct a minimum-cost routing
plan satisfying service-related criteria, expressed in terms of time windows, as well
as driver-related constraints expressed in terms of maximum route duration limits and
mandatory lunch breaks. We introduce both a three-index and a set-partitioning formu-
lation of the problem. The linear programming relaxation of the latter is solved by a col-
umn generation algorithm. We also propose a variable neighborhood search heuristic.
Finally, we integrate the heuristic and the column generation approach into a collabo-
rative framework. The column generation algorithm and the collaborative framework
provide tight lower bounds on the optimal solution values for small-to-medium-sized
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instances. The variable neighborhood search algorithm yields high-quality solutions
for realistic test instances.

Keywords Passenger transportation · Dial-a-ride-problem · Column generation ·
Variable neighborhood search

1 Introduction

Our study is motivated by a static problem faced by non-profit organizations such as the
Austrian Red Cross (ARC) in the field of patient transportation. These organizations
have to devise daily routing plans for their ambulances to serve a set of transportation
requests that have been formulated in advance of the planning. Each request is defined
by origin and destination locations, a number of passengers to be transported, and a
time at which the passengers should either be picked-up at the origin or dropped-off
at the destination.

The ARC disposes of vehicles of two different types, each type providing a dif-
ferent capacity for four modes of transportation: staff seat, patient seat, stretcher and
wheelchair. Each patient may demand to be transported either seated, on a stretcher,
or in a wheelchair. Accompanying persons may also be present and seating room for
them has to be provided on the vehicle. Accompanying persons are allowed to use a
staff seat. They may also use a patient seat or sit on the stretcher. Patients that can be
transported seated are not allowed to use a staff seat. They can, however, be transported
on the stretcher in the case where there are no more patient seats available. Patients
that have to be transported on a stretcher or in a wheelchair can only be transported
in the corresponding mode. Finally, some users require the presence of a second staff
member aboard the vehicle.

The ambulance dispatcher has to assign drivers to vehicles (there are usually fewer
drivers than available vehicles). Thus, also driver-related constraints have to be taken
into account in the planning process. These constraints refer to maximum shift lengths
and mandatory breaks. Non-profit organizations such as the ARC have to ensure
that their expenses are kept low while providing a reasonably high service level.
Thus, the aim is to construct a routing plan that is of minimum routing cost. This
plan has to respect service-related criteria, expressed in terms of time windows, as
well as labor regulations. The resulting problem can be defined as a heterogeneous
dial-a-ride-problem with driver-related constraints (HDARPD).

To address this complex static routing problem, we propose a Variable Neighbor-
hood Search (VNS) heuristic relying on several neighborhood operators. We also
introduce a column generation algorithm based on a set-partitioning formulation of
the problem and we discuss how the heuristic and the column generation approach can
be integrated into a collaborative framework. The lower bounds computed by means
of the latter two methods are used to assess the quality of the solutions produced by
the heuristic for small- and medium-sized instances.

The contributions of this work are fourfold. First, we introduce a formulation for the
HDARPD that incorporates routing and driver deployment decisions. This integration
is made possible by the fact that the time frame of daily regular patient transportation
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corresponds to the drivers’ work shifts. Second, a column generation algorithm is
proposed. The central new aspect lies in the way the maximum route duration limit
together with a non-empty time window at the start depot is treated in the dynamic
programming part. Third, an efficient meta-heuristic algorithm tailored to the problem
is presented. Fourth, the integration of the two methods into a collaborative scheme is
investigated.

In the collaborative scheme, the proposed VNS supports the column generation
algorithm in finding additional columns. Every ten column generation iterations, the
VNS tries to improve the current best lower bound solution. If this solution is frac-
tional, it is first transformed into an integer solution before running the VNS. When an
improved solution is found by the VNS, the associated columns are transferred to the
column generation algorithm. In contrast to the pricing heuristics used in the column
generation framework, which use reduced costs to generate additional columns, the
VNS uses the actual routing costs.

The remainder of the paper is organized as follows. Section 2 discusses related
literature and Sect. 3 introduces some notation and two mathematical formulations of
the problem. In Sect. 4, we then explain how the column generation subproblem can
be solved both by exact and heuristic pricing procedures. These procedures are used
within a column generation framework which is described in Sect. 5. This is followed
by the description of the VNS heuristic in Sect. 6, by computational experiments in
Sect. 7, and by the conclusion.

2 Related work

Dial-a-ride problems (DARP) are generalizations of pickup and delivery problems
with time windows (PDPTW). In the DARP, people are being transported instead
of goods. This gives rise to the issue of service quality which can be ensured either
through additional constraints or with extra terms in the objective function. The latter
approach is followed, e.g., by Parragh et al. (2009), while we adopt the first approach
in this paper.

Like the majority of the works published on the DARP, we address here its static
version. Although the DARP often is partly dynamic, a large portion of the requests
are usually known in advance. In addition, a good algorithm for the static case can
often be used as a basis to develop an algorithm for the dynamic case (Berbeglia et al.
2010).

Previous publications considering heterogeneous versions of the DARP involve,
e.g., the work of Toth and Vigo (1997). The heterogeneity considered by these authors
refers to two modes of transportation (seated passengers and passengers in wheel-
chairs) and to several different types of vehicles. The authors have devised a parallel
insertion heuristic and a tabu thresholding algorithm for this problem. Another heter-
ogeneous version of the DARP has been described by Melachrinoudis et al. (2007).
They developed a tabu search heuristic for a problem with several different types of
vehicles in terms of capacity limits but only one mode of transportation. Heteroge-
neous vehicles in terms of capacity are also considered by Rekiek et al. (2006) who
introduced a grouping genetic algorithm.
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In the context of a dynamic environment, Beaudry et al. (2009) have adapted the
tabu search heuristic of Cordeau and Laporte (2003) to solve a heterogeneous DARP
that arises in large hospitals. It involves transportation requests requiring three differ-
ent modes of transportation (seated, on a bed, or in a wheelchair) and several different
types of vehicles. Hanne et al. (2009) report on a computer-based planning system
for a dynamic problem in a large German hospital. They consider hospital-specific
constraints such as multi-dimensional capacities.

For overviews of the DARP and the closely related PDPTW, we refer the reader to
Berbeglia et al. (2007), Cordeau and Laporte (2007) and Parragh et al. (2008a,b).

In related work, Xu et al. (2003) have addressed a practical pickup and deliv-
ery problem with multiple vehicle types, multiple time windows, and compatibility
constraints between requests as well as between requests and vehicles. In addition,
first-in-first-out loading requirements and driver work rules are taken into account.
This problem is solved by a heuristic column generation algorithm in which several
pricing heuristics are employed. In their experiments, the solution obtained at the root
node is often integer. If not, a Mixed Integer Program (MIP) is solved on the set of gen-
erated columns. Column generation integrated into a branch-and-cut framework was
also successfully applied to the standard PDPTW by Ropke and Cordeau (2009). This
algorithm outperforms an earlier branch-and-cut algorithm by Ropke et al. (2007) in
terms of the maximum problem size that can be solved. These results indicate that the
use of a column generation-based algorithm is a promising direction. Finally, a com-
bination of column generation with a local search method has recently been studied
by Danna and Lepape (2005) in the form of a so-called cooperation scheme.

In an earlier study, Parragh (2010) has analyzed and solved a restricted version
of the HDARPD, focusing solely on heterogeneous users and fleet aspects. For this
simpler variant, state-of-the-art branch-and-cut algorithms for the DARP (Cordeau
2006; Ropke et al. 2007) were successfully adapted. In the present work, maximum
user ride times are not considered explicitly. They are considered implicitly in terms
of time windows at both the pick-up and the drop-off locations. This modification
makes the application of column generation possible and allows us to solve much
larger instances.

3 Problem formulation

In the following the basic notation needed to formulate the HDARPD is given. There-
after, two different problem formulations are presented: a three-index model and a
more compact set-partitioning formulation. The latter will serve as the basis for the
proposed column generation framework.

3.1 Notation

The HDARPD is modeled on a complete directed graph G = (V, A), where V is the
set of vertices and A the set of arcs. The vertices correspond to the depot and the pickup
and delivery locations. To each arc, (i, j) are associated a non-negative travel cost ci j

and a non-negative travel time ti j . Arc costs and times are based on road network data.
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A set of n customer requests, each consisting of a pickup and delivery location pair
{i, n + i}, has to be served. The set of pickup locations is denoted by P = {1, . . . , n}
and the set of delivery locations by D = {n + 1, . . . , 2n}.

At every pickup vertex one patient has to be transported and this patient may
demand one of three different transportation modes. For every transportation mode
r ∈ R, where R = {0, 1, 2, 3} denotes the set of transportation modes, let qr

i denote
the load of passenger i with respect to mode r . Passengers may have to be transported
seated (q1

i = 1), on a stretcher (q2
i = 1), or in a wheelchair (q3

i = 1). Each patient
may also require an accompanying person (q0

i = 1). The demand at every delivery
vertex is equal to qr

n+i = −qr
i for all r ∈ R. In addition to the driver, a patient may

need a second staff member to be on the vehicle. These are referred to as “attendants”
in the following. The binary parameter ai represents this requirement. It takes value 1
if an attendant is needed, and 0 otherwise. Furthermore, let Va be the set of all vertices
demanding an attendant on board the vehicle. Attendants occupy staff seats when they
are on the vehicle.

Every user specifies a time window [ei , li ] either for the pick-up (origin) or for
the drop-off (destination) location, and the beginning of service has to start within
this time window. If a vehicle arrives too early, it has to wait until service is possi-
ble. A maximum passenger ride time L is implicitly considered in order to provide
reasonable service quality. This is done by artificially constructing a time window at
the origin (resp. destination) relative to the time window given at the corresponding
destination (resp. origin): in the case of an outbound request (a time window is given
for the destination), the time window at the origin i is set to ei = max{0, en+i−L−di }
and li = min{ln+i − ti,n+i − di , H̄}; H̄ denotes the end of the planning horizon. In
the case of an inbound request (a time window is given for the origin), the destination
time window is set to en+i = ei + di + ti,n+i and ln+i = min{li + di + L , H̄}. The
parameter di denotes the service time at vertex i .

A set K of m heterogeneous vehicles is available to serve the transportation requests.
Each vehicle k ∈ K is associated with constants Cr,k . They give the amount of resource
r available on the vehicle. The ARC disposes of two basic vehicle types. Type 1 (T1)
provides one staff seat, six patient seats, and one wheelchair place. Type 2 (T2) pro-
vides two staff seats, one patient seat, one stretcher, and one wheelchair place. Patients
demanding to be transported seated may use a patient seat or the stretcher. Patients
demanding a stretcher can only be transported on a stretcher. The same applies to
wheelchair passengers. Accompanying persons, however, may use a staff seat or a
patient seat. They may also use the stretcher if no other transportation mode is avail-
able.

Each route starts at the depot location 0 within a prespecified time window and
it finishes at the end depot 2n + 2, respecting a route duration limit T . This limit is
based on Austrian labor regulations. Driver working shifts are limited to 8.5 h per day
including a (lunch) break of H = 30 min. The lunch break has to start within a given
time window [eH , lH ]. It can be held at every vertex. In addition, only a certain number
of drivers md (usually md < m) and only a limited number of attendants (in Austria
these are employees serving their alternative service) ma are available. An attendant
can only work during morning or afternoon periods on a vehicle. An attendant working
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in the morning has to return to the noon depot 2n + 1 within a certain time window
[e2n+1, l2n+1]. An attendant working in the afternoon has to be picked-up at the noon
depot within the time window. If there are more drivers available than actually needed
to serve all requests, the excess drivers may be employed for attendant duties. In this
case, they only serve half of the day on a vehicle.

Thus, the set of all vertices is given by V = P ∪ D ∪ {0, 2n + 1, 2n + 2}, and the
set of all arcs by A = {(i, j) : i ∈ V \ {2n + 2}, j ∈ V \{0} , i �= j}.

3.2 A three-index formulation

We now introduce a three-index formulation based on the following binary decision
variables:

xk
i j =

{
1, if arc (i, j) is traversed by vehicle k,

0, otherwise,

zk
0 =

{
1, if a driver is assigned to vehicle k,

0, otherwise,

zk
1 =

{
1, if an attendant is assigned to vehicle k in the morning,

0, otherwise,

zk
2 =

{
1, if an attendant is assigned to vehicle k in the afternoon,

0, otherwise,

vk
i =

{
1, if the lunch break is held at vertex i,

0, otherwise.

In addition, we let u ∈ {0, . . . , md} denote the number of drivers that serve as
additional attendants; Bk

i denotes the beginning of service of vehicle k at vertex i and

Qr,k
i denotes the load of the vehicle with respect to resource r when leaving vertex i .

Finally, let W k
H represent the waiting time until the lunch break on vehicle k.

The objective considered is the minimization of total routing costs:

min
∑
k∈K

∑
i∈V

∑
j∈V

ci j xk
i j . (1)

For ease of exposition, we introduce the constraints of the model in several groups.
The first group contains the demand constraints and defines the basic structure of the
routes:

∑
k∈K

∑
j∈V

xk
i j = 1 ∀i ∈ P, (2)

∑
j∈V

xk
i j −

∑
j∈V

xk
n+i, j = 0 ∀i ∈ P, k ∈ K , (3)
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∑
i∈V

xk
i j −

∑
i∈V

xk
ji = 0 ∀ j ∈ P ∪ D ∪ {2n + 1} , k ∈ K , (4)

∑
j∈V

xk
0 j = zk

0 ∀k ∈ K , (5)

∑
i∈V

xk
i,2n+2 = zk

0 ∀k ∈ K , (6)

xk
i j ∈ {0, 1} ∀i, j ∈ V, k ∈ K , (7)

zk
0 ∈ {0, 1} ∀k ∈ K . (8)

Constraints (2) ensure that each request is served exactly once while (3) ensure
that each origin–destination pair is visited by the same vehicle. Flow conservation is
imposed by equalities (4). The subsequent equalities (5) and (6) guarantee that, if a
driver is assigned to a vehicle, the vehicle starts at and returns to the depot.

Attendant-related conditions form another block of constraints:

∑
i∈V

xk
i,2n+1 = max

{
zk

1, zk
2

}
∀k ∈ K , (9)

Q0,k
0 ≥ zk

1 ∀k ∈ K , (10)

xk
i,2n+1 = 1 ⇒ Q0,k

2n+1 ≥ Q0,k
i − zk

1 + zk
2 ∀i ∈ V, k ∈ K , (11)

xk
i,2n+1 = 1 ⇒ Qr,k

2n+1 ≥ Qr,k
i ∀i ∈ V k ∈ K , r ∈ R\ {0} , (12)

zk
1 + zk

2 ≥ ai

∑
j∈V

xk
i j ∀i ∈ V, k ∈ K , (13)

zk
1, zk

2 ∈ {0, 1} ∀k ∈ K . (14)

Equalities (9) make sure that the noon depot is used if an attendant is assigned
to the corresponding vehicle for morning or afternoon periods. This is necessary to
ensure either the appropriate pick-up or drop-off of the attendant at the beginning or at
the end of the shift. An attendant assigned to a vehicle requires a staff seat and this is
modeled in inequalities (10)–(12). Furthermore, a user demanding an attendant aboard
the vehicle can only be visited if an attendant is on the vehicle, which is reflected by
constraints (13).

Consistency of resource and load variables is guaranteed by the following con-
straints:

xk
i j = 1 ⇒ Qr,k

j ≥ Qr,k
i + qr

j ∀i ∈ V, j ∈ V \ {2n + 1} , k ∈ K , r ∈ R, (15)

2∑
r ′=r

Qr ′,k
i ≤

2∑
r ′=r

Cr ′,k ∀i ∈ V, k ∈ K , r ∈ R\ {3}, (16)

Q3,k
i ≤ C3,k ∀i ∈ V, k ∈ K , (17)

Qr,k
i ≥ 0 ∀i ∈ V, k ∈ K , r ∈ R. (18)
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Inequalities (15) ensure load propagation from one vertex to the next. Upgrading
constraints for resources 0, 1, and 2 are given by (16). They guarantee that capac-
ity restrictions regarding these resources are not violated. They also ensure that each
patient demanding resource 0, 1 or 2 can only be loaded if there is either enough
capacity of the resource demanded or of another one with a higher number (0 = staff
seat, 1 = patient seat, 2 = stretcher). Finally, constraints (17) guarantee that patients
demanding resource 3 (wheelchair place) can only be transported if there is enough
capacity of resource 3.

Suppose an empty T2 vehicle (2 staff seats, 1 patient seat, 1 stretcher, 1 wheelchair
place) visits two origin locations in a sequence. At each location a seated patient with
an accompanying person has to be picked up. The first seated passenger fills the patient
seat, the accompanying person the first staff seat. If it was not possible to have seated
patients sit on the stretcher, the second origin location could not be visited. However,
the given upgrading conditions allow seated passengers to sit on the stretcher. There-
fore, origin location two can be visited: the seated passenger uses the stretcher and the
accompanying person the second staff seat. Suppose the same two origin locations are
visited by an empty T1 vehicle (1 staff seat, 6 patient seats, 1 wheelchair place). In this
case the first seated patient again uses a patient seat and the accompanying person the
staff seat. At the second location there is no more empty staff seat available. However,
again due to the given upgrading possibilities, the accompanying person can use a
patient seat. Thus, after visiting location two, three patient seats and the staff seat are
occupied.

The next inequalities define the beginning of service for each vertex:

xk
i j = 1 ∧ vk

i = 0 ⇒ Bk
j ≥ Bk

i + di + ti j ∀i, j ∈ V, k ∈ K , (19)

xk
i j = 1 ∧ vk

i = 1 ⇒ Bk
j ≥ Bk

i + di + ti j +W k
H + H ∀i, j ∈ V, k ∈ K , (20)

Bk
n+i ≥ Bk

i ∀i ∈ P, k ∈ K , (21)

vk
2n+2 = 0 ⇒ Bk

2n+2 − Bk
0 ≤ T ∀k ∈ K , (22)

vk
2n+2 = 1 ⇒ Bk

2n+2 − Bk
0 +W k

H + H ≤ T ∀k ∈ K , (23)∑
i∈V

vk
i ≥ zk

0 ∀k ∈ K , (24)

vk
i ∈ {0, 1} ∀i ∈ V, k ∈ K . (25)

If vertex i is chosen for the lunch break (vk
i = 1), in addition to the service time

associated with this vertex, the vehicle waits (see variable W k
H ) at this vertex until the

lunch break time window starts. Then, it stays until the lunch break is concluded. Note
that these constraints also take care of subtour elimination given that ti j+di > 0 for all
i, j ∈ V : i �= j . Inequalities (21) ensure that every user’s pick-up location is visited
before the corresponding drop-off location. Total route duration is limited by (22) and
(23). We distinguish two cases. In the first case (22), the end depot does not serve as
the lunch break location. In the second case (23), the lunch break is held at the end
depot; therefore, the respective route duration is increased by a possible waiting time
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until the lunch break and the duration of the lunch break itself. If a driver is assigned
to a vehicle, then constraints (24) ensure that the associated route contains a break.

The different limits on the beginning of service are given in the following:

ei ≤ Bk
i ≤ li ∀i ∈ V, k ∈ K , (26)

zk
1 = 1 ∧ zk

2 = 0 ⇒ Bk
0 ≤ Bk

i ≤ Bk
2n+1 ∀i ∈ Va, k ∈ K , (27)

zk
1 = 0 ∧ zk

2 = 1 ⇒ Bk
2n+1 ≤ Bk

i ≤ Bk
2n+2 ∀i ∈ Va, k ∈ K , (28)

vk
i = 1 ⇒ eH ≤ Bk

i + di +W k
H ≤ lH ∀i ∈ V, k ∈ K , (29)

W k
H ≥ 0 ∀k ∈ K . (30)

Standard time window constraints are modeled by (26). Additional time-related
constraints provide new bounds on the beginning of service at those vertices where an
attendant is required. Bounds for morning periods are given by (27) and for afternoon
periods in (28). If an attendant is present during both periods, no additional bounds
are needed. Furthermore, constraints (29) guarantee that the lunch break starts within
the lunch break time window [eH , lH ].

Finally, inequalities (31) and (32) limit the number of drivers and attendants that
can be assigned to vehicles. Each driver who is appointed to attendant duties, instead
of driving, can be employed for either morning or afternoon periods. Thus, the number
of attendants available is increased and the number of drivers is decreased by the same
amount u:

∑
k∈K

zk
0 ≤ md − u, (31)

∑
k∈K

zk
1 +

∑
k∈K

zk
2 ≤ ma + u, (32)

u ∈ {0, . . . , md} . (33)

3.3 A set-partitioning formulation

The HDARPD can be reformulated in a more compact way. Let T denote the set of
available vehicle types and �t the set of feasible routes for vehicles of type t ∈ T . Let
also � be the set of all feasible routes, i.e., � =⋃

t∈T �t . Furthermore, let mt denote
the number of available vehicles of type t . For each route ω ∈ �, let cω be the cost
of the route. The constants biω and gω represent the number of times vertex i ∈ P is
traversed by ω and the number of attendants needed by route ω, respectively. Finally,
variable yω takes value 1 if and only if route ω is used in the solution. The problem
can thus be formulated as the following set-partitioning problem (SP):

min
∑
ω∈�

cω yω (34)
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subject to

∑
ω∈�

biω yω = 1 ∀i ∈ P, (35)

∑
ω∈�t

yω ≤ mt ∀t ∈ T , (36)

∑
ω∈�

yω ≤ md − u, (37)

∑
ω∈�

gω yω ≤ ma + u, (38)

u ≥ 0, (39)

yω ∈ {0, 1} ∀ω ∈ �. (40)

The objective function (34) minimizes the total cost of the selected routes. Constraints
(35) guarantee that every request is served exactly once. Inequalities (36) limit the
number of vehicles of type t that can be used in the solution. Constraint (37) ensures
that at most as many vehicles are used as there are drivers. Drivers that are not needed
in routes may be employed as additional attendants, thus increasing the number of
attendants that can be used by u in constraint (38).

To compute a lower bound, the linear programming relaxation of SP (LSP) can be
solved, where LSP is obtained by replacing (40) with

yω ≥ 0 ∀ω ∈ �. (41)

Due to the large size of � the above formulation will not be solved directly. Instead, a
restricted version of this problem, considering only a small subset of columns �′ ⊂ �,
will be solved. The set �′ is generated by solving LSP using column generation. In
column generation LSP decomposes into a (restricted) master problem and |T | sub-
problems, one for each vehicle type. Let πi , σt , λ, and φ be the dual variables associated
with constraints (35) for index i , with constraints (36) for index t , and with constraint
(37) and (38), respectively. After having solved the restricted master problem, their
values can be retrieved and used to compute the reduced cost of a given route. A neg-
ative reduced cost indicates that the corresponding column may improve the current
solution if added to the restricted master problem. In our case, the reduced cost of
column yω corresponding to route ω ∈ �t is given by

c̄ω = cω −
∑
i∈P

biωπi − σt − λ− gωφ, (42)

where cω gives the actual routing cost of route ω. These costs are reduced by the dual
variable values πi of all requests i which are part of ω. In addition, they are reduced
by the value of σt , which is associated with the vehicle type t of route ω (see con-
straints (36)). Finally, cω is also reduced by the values of λ and φ, where φ has to be
multiplied by the number of attendants employed on route ω (see constraint (38)).
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Thus, subproblem t corresponds to finding a single vehicle route ω ∈ �t for a
vehicle of type t such that its reduced cost c̄ω is minimum. It is subject to constraints
(3)-(30), omitting superscript k, setting z0 = 1, and replacing k by t in the case of the
capacities Cr,t . The index t refers to the vehicle type.

In the next section, we explain how columns of negative reduced costs can be
identified by pricing algorithms. The overall column generation framework is then
described in Sect. 5.

4 Solving the column generation subproblem

In order to find negative reduced cost columns we implement a label setting shortest
path algorithm and several heuristics. The use of heuristics, aiding the exact proce-
dure in finding negative reduced cost paths, may yield significant run time reductions
(see Savelsbergh and Sol 1998). Following the findings of Ropke and Cordeau (2009)
in the context of the PDPTW, our label setting algorithm considers only elementary
paths. This implies that every vertex can be visited at most once in a path. It requires
storing and processing additional information during the solution of the subproblem.
However, usually it yields better results than the use of a non-elementary shortest path
problem because it provides stronger lower bounds.

In the following the elementary shortest path algorithm will first be described in
detail. Thereafter, the heuristics will be briefly discussed.

4.1 The label setting shortest path algorithm

Label setting shortest path algorithms are used to compute the shortest paths between
source and sink nodes. On every arc that is used on the path from the source to the
sink, resources are consumed. A label stores the following information: the node it is
associated with, the resource consumption until that node, and a pointer to its parent
label. It thus represents a path starting at the source node and ending at the node it is
associated with, characterized by a certain resource consumption. The labeling algo-
rithm implemented here is based on the one described by Ropke and Cordeau (2009)
for solving the elementary shortest path problem with time windows, capacity, and
pickup and delivery. The subproblem we have to solve is also a constrained shortest
path problem. It can be described as an elementary shortest path problem with time
windows, multiple capacities, pickup and delivery, and route duration constraints.

4.1.1 Lunch break and attendant requirements

To properly treat the lunch break requirements and the presence of attendants on the
vehicle, three additional artificial vertices are introduced in the graph: one denoted by
2n + 3 for the morning attendant, one denoted by 2n + 4 for the afternoon attendant,
and one denoted by 2n+5 for the lunch stop. If a path contains the morning attendant
vertex, an attendant is aboard the vehicle during the morning shift. Similarly, if the
afternoon attendant vertex is part of the path, an attendant is assigned to the vehicle in
the afternoon. Every path has to contain the lunch vertex, with one exception: if the
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vehicle returns to the end depot before the end of the lunch time window and the lunch
has not yet taken place, it is assumed that it is held at the end depot. The vertex that
is followed by the lunch vertex on the constructed graph is the one where the lunch
break will be held.

In the graph, vertex 2n + 3 can only be visited from the origin depot 0 and 2n + 4
only from the noon depot 2n + 1. Travel times for these vertices are set to t0,2n+3 =
t2n+1,2n+4 = 0, t2n+3, j = t0, j and t2n+4, j = t2n+1, j for all j . In the case of the lunch
vertex, travel times from all vertices to this vertex are set to ti,2n+5 = 0 for all i . Let
now i2n+5 denote the vertex visited directly before the lunch vertex. The travel times
from the lunch vertex are dynamically set to t2n+5, j = ti2n+5, j . The time windows
of the attendant pickup vertices are set to the beginning and the end of the planning
horizon, respectively. In the case of the lunch vertex a time window is given, i.e.,
e2n+5 = eH and l2n+5 = lH (see above). The service times at the attendant vertices
are set to d2n+3 = d2n+4 = 0 and to d2n+5 = H in the case of the lunch vertex. The
load is set to q0

2n+3 = q0
2n+4 = 1 at the attendant vertices and to zero for all other

resources of artificial vertices.

4.1.2 Label management

For each label the following data are stored: η the vertex of the label, δ the departure
time at η, Qr

cum the cumulative load of resource r when leaving vertex η, ccum the
accumulated cost up to vertex η, b ∈ {0, 1} whether a lunch stop has already taken
place or not, α ∈ {0, 1} whether an attendant is aboard the vehicle or not, o ∈ {0, 1}
whether the noon depot has already been visited or not, V ⊆ {0, . . . , 2n+5} the set of
vertices visited along the path, O ⊆ {1, . . . , n} the set of open requests, f the forward
time slack, wcum the accumulated waiting time, and a pointer to its parent label. The
resources f and wcum are needed to check whether the route duration limit can be
respected; f gives the maximum time the departure at the noon depot can be shifted
forward in time. Section 4.1.4 will explain these resources in further detail.

The extension of a label κ along an arc (η(κ), j) is only possible if the following
holds:

δ(κ)+ tη(κ), j ≤ l j , (43)

Qr
cum(κ)+ qr

j +
2∑

r ′=r+1

qr ′
j ≤ Cr,t

cum ∀r ∈ R, (44)

α(κ) ≥ a j , (45)

(1− b(κ))
(
max

{
δ(κ)+ tη(κ), j , e j

}+ d j
) ≤ lH , (46)

max
{
max

{
δ(κ)+tη(κ), j , e j

}+d j , (1− b(κ))eH
}+(1− b(κ))H−e0−F0

j ≤ T,

(47)

j /∈ V(κ). (48)

Here, Cr,t
cum is set to Cr,t+∑2

r ′=r+1 Cr ′,t . The final time slack F0
j at vertex j is given

by F0
j = min

{
min[ f (κ), l j − (δ(κ)+ tη(κ), j )+ wcum(κ)], wcum(κ)+max[0, e j−
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(δ(κ)+ tη(κ), j )]
}
, i.e., the minimum over all forward time slacks and the total waiting

time until vertex j (see Sect. 4.1.4 for further details). Condition (43) ensures time
window feasibility: the departure from the previous vertex η(κ) plus the travel time
from η(κ) to j has to be smaller than or equal to the end of the time window at ver-
tex j . According to condition (44) a path can only be extended along arc (η(κ), j) if
all loading restrictions are satisfied. Condition (45) states that if vertex j demands an
attendant aboard the vehicle (a j = 1), it can only be visited if an attendant is currently
on the vehicle (α(κ) = 1). If the lunch node is not yet part of the path, extension
along arc (η(κ), j) is only possible if it can still be feasibly inserted after vertex j .
This is taken care of by (46). Feasibility with respect to route duration is guaranteed
by condition (47). For further details on this issue we refer to Sect. 4.1.4. Finally,
elementarity is ensured by (48).

Moreover, κ and j must comply with the following conditions:

j ∈ D ⇒ j − n ∈ O(κ), (49)

j = 2n + 2⇒ O(κ) = ∅ ∧ α − o ≤ 0. (50)

Condition (49) ensures that if j is a delivery, it can only be visited if the request is
open, i.e., the corresponding pickup has already been visited. Condition (50) ensures
that a label can only be extended to the end depot 2n + 2 if there are no more open
requests. In addition, the noon depot must have been visited if an attendant is currently
on the vehicle.

If a label can feasibly be extended along arc (η(κ), j), a new label κ ′ is generated
at vertex j :

η(κ ′) = j, (51)

δ(κ ′) = max
{
δ(κ)+ tη(κ), j , e j

}+ d j , (52)

Q0
cum(κ ′) =

{
Q0

cum(κ)− 1 if j = 2n + 1 ∧ α(κ) = 1,

Q0
cum(κ)+ q0

j +
∑2

r ′=1 qr ′
j otherwise,

(53)

Qr
cum(κ ′) = Qr

cum(κ)+ qr
j +

2∑
r ′=r+1

qr ′
j ∀r ∈ R\ {0} , (54)

ccum(κ ′) = ccum(κ)+ c̄η(κ), j , (55)

b(κ ′) =
{

1 if j = 2n + 5,

b(κ) otherwise,
(56)

α(κ ′) =

⎧⎪⎨
⎪⎩

1 if j ∈ {2n + 3, 2n + 4} ,
0 if j = 2n + 1,

α(κ) otherwise,

(57)

o(κ ′) =
{

1 if j = 2n + 1,

o(κ) otherwise,
(58)

V(κ ′) = V(κ) ∪ { j} , (59)
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O(κ ′) =

⎧⎪⎨
⎪⎩

O(κ) ∪ { j} if j ∈ P,

O(κ)\ { j − n} if j ∈ D,

O(κ) otherwise,

(60)

wcum(κ ′) = wcum(κ)+max
{
0, e j − (δ(κ)+ tη(κ), j )

}
(61)

f (κ ′) = min
{

f (κ), wcum(κ)+ l j − (δ(κ)+ tη(κ), j )
}
. (62)

At the origin depot (the first vertex along each path) these labels are initialized by
setting δ(0) = e0, Qr

cum(0) = 0 for all r ∈ R, ccum = 0, b(0) = 0, α(0) = 0, o = 0,
f (0) = l0 − e0, and wcum(0) = 0.

4.1.3 Dominance

The dominance criterion used here is similar to the one denoted by DOM1’ by Ropke
and Cordeau (2009). Let U(κ) denote the set of unreachable requests of label κ , where
U(κ) = V ∪ {

i ∈ P : δ(κ)+ tη(κ),i > li
}
. According to this criterion a label κ domi-

nates another label κ ′ if

η(κ) = η(κ ′), δ(κ) ≤ δ(κ ′), ccum(κ) ≤ ccum(κ ′),U(κ) ⊆ U(κ ′),O(κ) ⊆ O(κ ′).
(63)

In addition, in our case, the following has to hold:

f (κ) ≥ f (κ ′), wcum(κ) ≥ wcum(κ ′), b(κ) = b(κ ′), α(κ) = α(κ ′), o(κ) = o(κ ′).
(64)

This implies that the amount of time by which the departure from the origin depot
can be shifted forward in time in label κ has to be at least as large as in label κ ′. If the
lunch node or the noon depot have already been visited by the partial path represented
by label κ the same has to be true for κ ′. This also applies to whether an attendant is
aboard the vehicle or not. Furthermore, we only apply the dominance check to labels
with η ∈ V .

4.1.4 Time windows at the start depot and minimum route duration

Imposing a route duration limit together with a non-empty time window at the origin
depot in a label setting algorithm requires further adjustments. One option, intro-
duced by Desaulniers and Villeneuve (2000) and reviewed by Irnich (2008), consists
in appending two resources to each label, coupled by a max-term, denoted as q and z.
These are extended as follows:

q(κ ′) = tη(κ), j +max
{
q(κ)− (tη(κ), j + dη(κ)), z(κ)− l j

}
(65)

z(κ ′) = tη(κ), j +max
{
z(κ), q(κ)− (tη(κ), j + dη(κ))+ e j

}
. (66)
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Here, we show that this is equivalent to using the forward time slack notion devel-
oped by Savelsbergh (1992).

The idea of Desaulniers and Villeneuve (2000) can be explained as follows. Let
U = {0, 1, 2, . . . , ñ} denote a feasible path. The earliest possible departure time ẽ j at
node j when traveling along U can be calculated as

ẽ0 = e0, (67)

ẽ j = max
{
ẽ j−1 + (d j−1 + t j−1, j ), e j

} ∀ j ∈ {1, . . . , ñ} . (68)

Similarly, the latest arrival time l̃ j at node j for which waiting can be avoided is
computed by setting

l̃0 = l0, (69)

l̃ j = min
{

l̃ j−1 + (d j−1 + t j−1, j ), l j

}
∀ j ∈ {1, . . . , ñ}. (70)

Let now U be a feasible (partial) path starting at the origin depot 0 and ending at node
i . Then, let si = ∑

(k,l)∈U (tkl + dk) denote the sum of actual travel times along U
(including service time but excluding waiting time), the following two parameters can
be defined:

q̃i = si − l̃i , (71)

z̃i = max {si , q̃i + ẽi } . (72)

Then the minimum duration of path U (ending at i) is equal to max {z̃i , q̃i + δi }, where
δi denotes the departure time from vertex i .

Now it can be shown that q̃i is equivalent to the forward time slack defined by
Savelsbergh (1992). Let f̃ 0

i denote the forward time slack from the origin depot to
the end of the path U (here node i). It is the maximum amount of time by which the
departure at the depot can be shifted forward without violating any other time window
constraint. It is computed as follows (where B j denotes the beginning of service at
node j):

f̃ 0
i = min

0≤ j≤i

⎧⎨
⎩l j −

⎡
⎣B0 +

j∑
p=1

(dp−1 + tp−1,p)

⎤
⎦

⎫⎬
⎭ . (73)

Let us assume that e0 = 0 and therefore B0 = 0. We obtain,

f̃ 0
i = min

0≤ j≤i

⎧⎨
⎩l j −

j∑
p=1

(dp−1 + tp−1,p)

⎫⎬
⎭ . (74)
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Let us now rewrite l̃i as

l̃i = min
0≤ j≤i

⎧⎨
⎩l j +

i∑
p= j+1

(dp−1 + tp−1,p)

⎫⎬
⎭ , (75)

and replace l̃i by this formulation in q̃i . We obtain

q̃i =
i∑

p=1

(dp−1 + tp−1,p)− min
0≤ j≤i

⎧⎨
⎩l j +

i∑
p= j+1

(dp−1 + tp−1,p)

⎫⎬
⎭ (76)

= − min
0≤ j≤i

⎧⎨
⎩l j −

j∑
p=1

(dp−1 + tp−1,p)

⎫⎬
⎭ . (77)

This shows that q̃i = − f̃ 0
i . Furthermore, let us examine the minimum route duration

time as defined by Desaulniers and Villeneuve (2000). It is given by max {z̃i , q̃i + δi }.
We still assume that B0 = e0 = 0. By substituting z̃i this term can be rewritten as
max {si , q̃i + ẽi , q̃i + δi } = max {si , q̃i +max(ẽi , δi )}. If δi is computed correctly it
will always be greater than or equal to ẽi in our case. Therefore, max {si , q̃i + δi } is
equivalent to the above expression. Now if we denote by w̃i the accumulated wait-
ing time until node i , it is easy to see that δi − w̃i = si . Thus, max {si , q̃i + δi } =
δi−min(−q̃i , w̃i ) = δi−min( f̃ 0

i , w̃i ). This corresponds to what Cordeau and Laporte
(2003) use to compute the minimum duration of a given route.

Thus, to handle a time window at the start depot together with a route duration
limit, the notion of forward time slack defined by Savelsbergh (1992) can be used. In
order to do so, we use the additional resources wcum and f (see above). To generalize
what has been shown to the case of e0 > 0, these resources are initialized, as already
pointed out, with f (0) = l0 − B0 (B0 = e0) and wcum(0) = 0.

4.1.5 Label elimination

Labels that are currently in the queue of labels to be processed can be eliminated if the
deliveries of open requests cannot be reached in a feasible path. As in Ropke (2005)
and Ropke and Cordeau (2009) we consider sets of one and two deliveries and one set
of three deliveries. The last set consists of the following three vertices: the delivery
that is farthest away from the current vertex; the delivery that is farthest away from
these two; and the delivery that is farthest away from the current vertex and the two
previously selected deliveries. If for one of these sets no path can be found that serves
all deliveries in the set in a feasible way, the label can be eliminated.

In addition to these sets of deliveries, we check whether there is an attendant on the
vehicle and if the noon depot has not been visited yet. If this is the case and the noon
depot cannot be reached in a feasible way the label can also be eliminated.
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4.2 Heuristic algorithms

To accelerate the column generation process several heuristic procedures are used
to generate negative reduced cost columns. These can be divided into two classes;
those based on the labeling algorithm, and those that rely on simple construction and
improvement principles.

4.2.1 Heuristics based on the labeling algorithm

Two of the heuristic algorithms used to generate columns are based on the exact label-
ing algorithm. Both are also used by Ropke and Cordeau (2009) in the context of the
PDPTW. The first heuristic (LimLabels) simply limits the number of labels that can
be in the queue of unprocessed labels at any time. At first the limit is set to 500. If
no negative reduced cost column can be found with this limit, it is increased to 1,000.
If again no negative reduced cost columns are generated the limit is set to 2,000. The
second heuristic (LimGraph) applies the exact labeling algorithm on a reduced graph.
Two reduced graphs are used. In Graph G5 every pickup vertex and every delivery
vertex is only connected to the five closest pickup vertices and the five closest delivery
vertices. In addition, if not already present, connections between each pickup ver-
tex and its corresponding delivery vertex are added. Furthermore, the start depot is
connected to all pickup vertices and the morning attendant node. The noon depot is
connected to the afternoon attendant node. All delivery vertices are connected to the
end depot. All vertices except the end depot are connected to the lunch node and the
noon depot. The morning attendant node, the afternoon attendant node and the lunch
node are connected to all vertices except the start depot. The second reduced Graph
G10 is constructed in the same way. However, instead of the five closest pickups and
deliveries, it considers the ten closest. Using the five or ten closest pickups and the
five or ten closest deliveries seems to provide a good balance between computing time
and the quality of the columns identified by the heuristic.

4.2.2 Construction/improvement based heuristics

The four remaining pricing heuristics use construction or improvement algorithms.
Like the labeling heuristics described above, they are based on those used by Ropke
and Cordeau (2009) to solve the PDPTW. ConstrHeur is a simple construction heuris-
tic that starts from every pickup and delivery vertex pair and iteratively adds requests
by means of a best insertion criterion regarding reduced cost. RandConstrHeur is also
a construction heuristic but here randomized best insertion is used to insert additional
requests. The randomization process favors requests that least increase the reduced
costs of the partial route. In both construction heuristics, every time a new request is
inserted, the resulting route is checked to see whether it has a negative reduced cost.
If this is the case, the corresponding column is generated. After the check, the route
undergoes local search based improvement (see Sect. 6.3). The local search algorithm
minimizes the actual routing cost and it only considers moves that yield a feasible
route. If this results in another negative reduced cost route, the corresponding column
is again added to the pool. This additional local search phase has not been used by

123



610 S. N. Parragh et al.

Ropke and Cordeau (2009). Preliminary experiments showed that it is beneficial
with respect to solution quality. Heuristic LNSCurrBasis applies Large Neighborhood
Search (LNS) (Shaw 1998) on the routes in the current basis. It works as follows. In
a removal step, up to 50% of the requests forming the route are randomly removed
from it. In an insertion step, requests are reinserted using randomized best insertion
as described above. These two steps are repeated until no further improvement can be
found. Between 15 and 20 non-improving steps are performed. Finally, LNSRandCon-
str simply improves all solutions obtained by the randomized construction algorithm
with LNS.

5 The column generation framework

The overall column generation framework that we use to solve the HDARPD is sum-
marized in Algorithm 1. During the initialization phase initial columns are generated
(Sect. 5.1) and added to �′. In addition, a number of pre-processing steps (Sect. 5.2)
are applied. Then, LSP is solved on �′ and the dual variable values associated with
the different constraints are retrieved. Based on these values, negative reduced cost
columns are generated using the different heuristics. They are invoked in a certain
sequence (Sect. 5.3). If all fail, then the exact dynamic programming procedure is
called. All new negative reduced cost columns are added to �′ and LSP is solved
again. This is repeated until no new negative reduced cost column can be identified. In
this case, the optimal solution to LSP has been found. Additionally, every ten iterations
the proposed VNS heuristic (Sect. 6) is applied to the current solution of LSP. This
process is represented in Fig. 1. The so-called collaborative scheme is described in
further detail in Sect. 5.4.

Algorithm 1 The column generation framework
initialization generate initial columns by VNS (Sect. 6), introduce artificial columns and add them to the
current set of routes or columns �′, do pre-processing (graph pruning, time window tightening; Sect. 5.2)
repeat

solve linear relaxation of set-partitioning problem (LSP) on �′ (Sect. 3.3)
collaborative scheme: every 10 iterations apply VNS to the current LSP solution (Sect. 5.4)
generate new negative reduced cost columns heuristically (Sect. 4.2)
if no negative reduced cost columns are found then

run exact label setting algorithm to find negative reduced cost columns (Sect. 4.1)
end if

until no more negative reduced cost columns can be found
return optimal solution of LSP

5.1 Initial columns

An initial set of columns is generated by means of a heuristic algorithm, namely a
VNS. The VNS is described in detail in Sect. 6. A limit of 2 × 104 iterations is
applied regardless of whether a feasible solution can be found within this time limit
or not. Here, ascending moves are not allowed. In addition, one artificial column for
each i ∈ P is generated, having a coefficient of 1 in the row corresponding to the

123



Models and algorithms for the heterogeneous dial-a-ride problem 611

Fig. 1 The collaborative
scheme

demand constraint for request i and zeros in all other rows. These columns are given
a sufficiently large cost of M .

5.2 Pre-processing

Before starting the column generation process, several pre-processing steps are per-
formed. These are mostly based on time window tightening and graph pruning tech-
niques. They are based on those described in detail by Cordeau (2006). In addition,
we use the cyclic time window tightening steps described by Desrochers et al. (1992)
and Kallehauge et al. (2005):

ek := max

{
ek, min[lk, min

(i,k)
(ei + (tik + di ))]

}
, (78)

ek := max

{
ek, min[lk, min

(k, j)
(e j − (tk j + dk))]

}
, (79)

lk := min

{
lk, max[ek, max

(i,k)
(li + (tik + di ))]

}
, (80)

lk := min

{
lk, max[ek, max

(k, j)
(l j − (tk j + dk))]

}
. (81)

These steps are repeated until no further time window tightening is possible. Note that
only arcs are considered that have not been eliminated in previous pre-processing steps.
Arcs that would lead to an infeasible solution regarding vehicle capacity restrictions
are also removed from the graph.

5.3 Sequence of pricing heuristics

Instead of the fixed pricing heuristic sequence used by Ropke and Cordeau (2009) and
which always invokes ConstrHeur first, we use a roulette wheel selection mechanism.
Initially, only ConstrHeur can be chosen. Its score is set to one, while the score of all
others is set to zero. Thereafter, in every column generation iteration, the score of the
heuristic that obtained one or more new negative reduced cost columns is increased
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by one. Thus, its probability of being chosen as the first heuristic is increased. The
heuristics are ordered as in Ropke and Cordeau (2009): ConstrHeur–LNSCurrBasis–
RandConstrHeur–LNSRandConstr–LimLabels– LimGraph. If ConstrHeur is chosen
as the first heuristic but it fails to yield a new negative reduced cost column for either
vehicle types, we switch to LNSCurrBasis. If LNSCurrBasis fails we switch to Rand-
ConstrHeur and so on. If LNSCurrBasis is chosen as the first heuristic and fails to
obtain negative reduced cost columns, only the heuristics following LNSCurrBasis in
the list are tried in the above order. This applies to all heuristics. If also LimGraph (the
last one on the list) fails to generate negative reduced cost columns, the exact label
setting algorithm is started. If this procedure also fails to generate negative reduced
cost columns, the optimal solution of the relaxed problem (LSP) has been found. If it
is also integer the optimal solution of SP has been found. In all labeling algorithms we
stop as soon as 50 negative reduced cost columns have been generated. All labeling
algorithms use a sorted queue of unprocessed labels. Labels are ordered according to
increasing reduced cost.

LSP is solved again on �′ every time at least one new negative reduced cost column
for either vehicle type could be generated. Every heuristic tries to find negative reduced
cost columns for T1 and T2 vehicles in alternating order. If new negative reduced cost
columns for T1 vehicles are generated their validity for T2 vehicles is checked. If they
are valid, they are added to the column pool for T2 vehicles. Only then LSP is solved.
This is not done if one of the heuristics yields new negative reduced cost columns for
T2 vehicles; it is not very likely that columns for T2 vehicles are also valid for T1
vehicles.

5.4 Collaborative scheme

For every ten iterations (one iteration corresponds to finding one or more negative
reduced cost columns, adding these columns to �′, and solving LSP) the optimal
solution of the current LSP is passed to the VNS. If there is still an artificial column
in the basis the VNS resumes the search using the last incumbent of the previous run.
If there are no more artificial columns in the basis, we distinguish between an integer
and a fractional solution. In the former case, it is passed to the VNS as it is. In the latter
case, all duplicate requests are removed before passing it on to the VNS. Duplicate
requests are kept on the route that is associated with the yω closest to one. Empty
routes are eliminated. In this case there can be more vehicles in use of a certain type
than actually available. However, it is still passed to the VNS keeping all increased
limits on the number of routes per vehicle type. The number of drivers available is
set to m̄d := max(md , mcg − 1) (mcg gives the number of routes used after having
removed duplicate requests). If mcg − 1 > md , as many drivers as there are currently
needed minus one are available. Otherwise, at most the original number of drivers
md can be used. A new best solution generated by the VNS might thus be infeasi-
ble regarding two aspects: the number of vehicles of a certain vehicle type employed
and the total number of drivers. All other constraints are respected. This entails that
the resulting columns might not be combinable as such but they are all feasible.
If the solution obtained by the VNS is of lower cost (actual costs not reduced costs)
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than the current solution of the master problem without duplicate requests, the corre-
sponding routes are transformed into columns and added to the master. Here, the VNS
is run for 104 iterations and ascending moves are not considered, i.e., a deteriorating
solution cannot become a new incumbent solution (see Sect. 6.4). This collaborative
scheme is inspired by Danna and Lepape (2005). In contrast to Danna and Lepape
(2005), however, we do not only use the collaborative local search method to improve
the best integer solution found so far. We use it to improve the current optimal solution,
regardless of whether it is integer of fractional.

6 Variable neighborhood search

This section introduces the VNS heuristic that we have developed to solve the
HDARPD. VNS was introduced by Mladenovic and Hansen (1997) and, as sum-
marized in Algorithm 2, it consists of four major design elements: the initialization
phase, the shaking operators, the iterative improvement mechanism, and the decision
whether to move to the new solution or not.

Algorithm 2 Variable neighborhood search
initialization {determine an initial solution s and set h ← 1}
repeat

shaking {determine a solution s′ in the neighborhood h of s}
iterative improvement {apply local search to s′ yielding s′′}
move or not {if s′′ meets the acceptance requirements the incumbent solution s is replaced by s′′ and
h ← 1, otherwise h ← (h mod hmax)+ 1; if s′′ is feasible and better than sbest , set sbest ← s′′}

until some stopping criterion is met
return sbest

In the initialization phase a first incumbent solution s is generated. In the repeat
loop the algorithm iterates through neighborhoods of different sizes. At each iteration
a solution s′ is generated at random in the neighborhood of the current incumbent solu-
tion s (shaking phase). The new solution s′ may be improved by means of an iterative
improvement procedure (local search) yielding s′′. If s′′ meets the acceptance criteria
(move or not) it replaces s and becomes the new incumbent. In this case or whenever
the largest neighborhood size is reached, the search continues with the smallest neigh-
borhood. If s′′ does not constitute a new incumbent, the size of the neighborhood is
increased.

Infeasibilities are allowed during the search. They are penalized through the fol-
lowing evaluation function:

f̂ (s) = c(s)+
∑
r∈R

α̂r qr (s)+ β̂d(s)+ γ̂ w(s)+ ζ̂a(s). (82)

The term c(s) gives the routing cost of solution s. The terms qr (s), d(s), w(s), and
a(s) represent load violations (∀r ∈ R), duration violations, time window
violations, and attendant violations (if there are more attendants needed in s than
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there are available), respectively. The associated penalty parameters α̂r , β̂, γ̂ , and ζ̂

are dynamically adjusted throughout the search (see Parragh et al. (2010) and Parragh
(2009) for details). Note that a solution s can only become a new best solution sbest if
qr (s) = d(s) = w(s) = a(s) = 0 for all r ∈ R.

This VNS is based on the ones developed by Parragh et al. (2009); Parragh et al.
(2010) and Parragh (2009) for the standard DARP and the multi-objective DARP: it
also uses a simulated annealing type mechanism (Kirkpatrick et al. 1983) in order to
decide whether or not an ascending move shall be carried out. In addition, the employed
iterative improvement phase is largely based on the one employed by Parragh et al.
(2009); Parragh et al. (2010). However, in the current implementation, different neigh-
borhood operators are employed. Instead of the zero split neighborhood, we introduce
a second move operator. It randomly relocates requests to other vehicles, including
all currently unused vehicles. The first move operator may move requests to one addi-
tional, currently unused, vehicle and also the chain operator may involve currently
empty vehicles. These mechanisms aim at changing the current fleet configuration.
However, if it results in a solution that employs more drivers than are available, the
solution has to be repaired. Therefore, a repair mechanism is introduced. In addition, a
new route evaluation scheme and a noon depot insertion algorithm are designed. The
former determines the best location for the lunch break. The latter determines the best
insertion position for the noon depot. In the following, the different design elements
of the VNS for the HDARPD are described in further detail.

6.1 Initialization

The initialization procedure generates an initial solution which will often be infea-
sible. It is constructed as follows. In a first step the average number of requests per
vehicle is computed and rounded to the next integer. Then, all requests are inserted
into routes in the order in which they appear in the instance file. We start with the
first route of the first type, opening the next route as soon as the average number of
requests per vehicle has been reached. If a request does not fit into a route due to a lack
of the demanded resource on the current vehicle, it is inserted into the next vehicle
route with this resource available. The procedure ends as soon as all requests have
been inserted into some route. Finally, all routes are checked to see whether a request
demands an attendant aboard the vehicle. If this is the case, the noon depot is inserted
at the best possible position and an attendant is assigned to the corresponding vehicle
for the corresponding shift (morning or afternoon).

6.2 Shaking

During the shaking phase four different neighborhood operators are employed: the
first swaps two sequences of vertices, the next two are based on the move oper-
ator, and the last one makes use of the ejection chain idea described by Glover
(1996). A swap, a move, and an ejection chain neighborhood operator in combi-
nation with a “zero split” neighborhood are successfully employed by Parragh et al.
(2009) in a solution framework for the multi-objective DARP. Two of the
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neighborhoods are also employed by Parragh et al. (2010) in the context of the stan-
dard DARP. The neighborhood operators employed in the current work are based on
those. They are adapted, however, in order to cope with the special characteristics of
the HDARPD.

Swap neighborhood In the swap neighborhood (S) two sequences of vertices are
exchanged. Two routes are chosen at random from all routes currently in use (vehicles
not assigned to a driver are not considered). Then, the starting points and the lengths
of the sequences to be moved are randomly selected. Insertion into the new routes is
conducted in a one by one fashion: considering each request at a time and inserting
it into its best position. The notion of critical vertices as described by Cordeau and
Laporte (2003) is employed. Note that if a sequence of vertices is moved their corre-
sponding origins (destinations) have to be moved as well. The neighborhood size in
this context refers to the maximum length (number of vertices) of the two sequences.

Move neighborhoods The first move neighborhood (M) consists in moving requests
from their current routes to other routes. First, the requests to be moved are randomly
chosen from the set of all requests. Second, for each request to be moved an inser-
tion route is determined across all routes, excluding the request’s original route. At
most one additional route that is currently not assigned to a driver can be considered.
As described in further detail in Parragh (2009), insertion routes are either selected
randomly or the “closest” route in terms of spatial distance is taken. Random and
“closeness” selection are chosen with a probability of 0.5 each. Third, the selected
requests are moved to the best position in their new routes (again using the notion of
critical vertices). The size of this neighborhood structure is defined by the maximum
number of requests moved.

The second move neighborhood (Mx) distinguishes itself from the first one in the
way the insertion routes are selected. Here, only random selection is employed. Fur-
thermore, all routes, also those lacking a driver, are eligible for selection.

Chain neighborhood The third neighborhood is referred to as chain neighborhood
(C). It works in a similar way as the ejection chain neighborhood defined by Glover
(1996). In contrast to its original version, the number of routes affected is a parameter.
From the first route a sequence of requests (selected as in the swap neighborhood) is
moved to the second route. In a second step, the sequence that decreases the evaluation
function value of the second route by the most is moved to a third route (it may also be
the first route). The second step is repeated until the maximum number of sequences
moved has been reached. All insertions of sequences into their new routes are done one
by one in the best possible way. Again the notion of critical vertices is employed. All
routes are selected randomly. Here, the neighborhood size represents at the same time
the number of sequences moved and the maximum sequence length. Again, empty
routes may be selected.

Repair function Both of the move operators as well as the chain neighborhood
operators may construct a solution with more vehicles in use than drivers available.
Such a solution has to be “repaired”. The repair procedure employed here simply
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chooses one route at random out of all non-empty routes and redistributes the requests
forming this route to other non-empty routes. Request insertion is done one by one in
the best possible way, again using the notion of critical vertices. The repair procedure
is repeated until the number of vehicles in use meets the number of available drivers.

Neighborhood sequence The shaking operators described above are applied in the
following order: S1–M1–C1–S2–M2–C2–S3–M3–C3–S4–M4–C4–Mx4 (the number
given in addition to the neighborhood abbreviation indicates the neighborhood size).
This means that the first neighborhood (h = 1) corresponds to applying the shaking
operator S1, whereas, e.g. in the case of h = 6 operator C2 will be used. In Parragh
et al. (2009); Parragh et al. (2010), the last neighborhood is the parameterless zero
split neighborhood which distributes requests forming a natural sequence to other
routes. Here, Mx4 is the last neighborhood. In combination with the repair function it
is the strongest diversification mechanism in place. It may relocate the largest num-
ber of requests and it may easily change the number of vehicles of each vehicle type
employed.

6.3 Iterative improvement

At every iteration, after moving requests and repairing the resulting solution, the
obtained solution may undergo local search-based improvement. As in Parragh et al.
(2010), if c(s′) < 1.02c(s), s is automatically subject to local search-based improve-
ment, otherwise it has a 1% chance to undergo local search. If s′ meets the acceptance
criteria to become the new incumbent solution it is also subject to local search based
improvement, given that c(s′) > 1.05c(s). In any case only those routes that are
affected by the shaking step are improved. Here again the notion of critical vertices is
used. The search moves along each of these routes. At every origin it removes the cor-
responding request and reinserts it at every possible position. Tentative re-insertion
always starts at the beginning of the route. If an improving position is found, the
request is kept at its new position and the search restarts at the first origin on the route
(first improvement). If no improving position is encountered, the request is kept at
its original position and the search continues with the next origin on the route. The
improvement heuristic terminates as soon as the last origin on the route is reached and
no improving position has been found.

6.4 Move or not

The decision as to whether the search moves to the new solution s′′ or not is based on
a simulated annealing acceptance criterion (C̆erny 1985; Kirkpatrick et al. 1983). As
in Parragh et al. (2010), if f̂ (s′′) < f̂ (s), s′′ is always accepted. If f̂ (s′′) ≥ f̂ (s), s

is accepted with a probability equal to exp(− f̂ (s′′)− f̂ (sbest)

t̂
). The temperature t̂ is set

such that as soon as the first feasible solution has been identified, a solution that is
0.5% worse than the current best solution is accepted with probability 0.2. Before the
first feasible solution has been identified every solution that has an evaluation function
value f̂ (s′′) ≤ 1.05 f̂ (s) is accepted with a probability of 1%.

123



Models and algorithms for the heterogeneous dial-a-ride problem 617

6.5 Route evaluation

Every time a route is modified its routing cost and constraint violations have to be
evaluated. Here, the notion of forward time slack, as for the label setting algorithm
in Sect. 4.1.4, is applied. In a first step the lunch location is determined. Thereafter,
the forward time slack is calculated. In a separate procedure the noon depot is either
inserted in the best possible way or removed, if there are no more requests on the route
that demand an attendant. In the local search step, the noon depot insertion/removal
procedure is only invoked at the very end. The same applies to the request insertion
routine. Whenever a request is removed from a route it is also invoked.

7 Computational experiments

All programs are implemented in C++. In the column generation framework, the LP
solver of CPLEX 11.1 is used together with Concert Technology 2.6. All experiments
are carried out on a 3.2 GHz Pentium D computer with a memory of 4 GB. All solu-
tion procedures are tested on three artificial data sets and on real-world data. In the
following we first describe the characteristics of the different instances and we then
discuss the results obtained.

7.1 Artificial instances

For each instance of the data set “A” introduced by Cordeau (2006) three instances
with different degrees of heterogeneity are generated. The original instances contain
between 16 and 48 requests and between 2 and 4 vehicles. In all new instances the
vehicle fleet is increased, containing 2 T1 and 4 T2 vehicles. The number of available
drivers is set to the original number of vehicles (between 2 and 4). The choice of the
fleet configuration reflects the real-world situation: In reality, only some T1 vehicles
and many (more than drivers) T2 vehicles are available. However, at most as many
T2 vehicles as there are drivers available can be used. Therefore, it does not make
sense to consider a larger vehicle fleet. The characteristics of the new instances are
summarized in Table 1. Setting “X” is the most homogeneous one: 50% of the original

Table 1 Artificial instances: data

Data set Probability for patient to be Probability Probability ma Fleet

Seated On stretcher In wheelchair for AP AT demanded

X 0.50 0.25 0.25 0.00 0.25 �m(0.5+ ρ)� 2 T1, 4 T2

Y 0.25 0.25 0.50 0.10 0.50 �m(1+ ρ)� 2 T1, 4 T2

Z 0.83 0.11 0.06 0.50 0.50 �m(1+ ρ)� 2 T1, 4 T2

ρ randomly chosen in [0, 1]
T1: 1 staff seat, 6 patient seats, 1 wheelchair place
T2: 2 staff seats, 1 patient seat, 1 stretcher, 1 wheelchair place
AP accompanying person, AT attendant
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users are converted into seated passengers; 25% into patients on stretchers; and 25%
into persons needing a wheelchair. The probability that an accompanying person (AP)
is present is set to zero. The number of attendants available is randomly set to between
0.5 of and 1.5 times the number of drivers available (rounded up to the next integer).
The probability for an attendant to be demanded by a patient is set to 25%. For setting
“Y”, 25% of the original users are transformed into seated patients, 25% into patients
on stretchers and 50% into wheelchair patients; 10% of all patients are assumed to be
accompanied by someone. The number of attendants is randomly set to at least the
number of drivers available and at most to twice the number of drivers. The proba-
bility for an attendant to be demanded by a patient is set to 50%. In the third setting,
denoted by “Z”, 83% of the patients are assumed to be seated, 11% are assumed to
be on a stretcher, and 6% are assumed to be in a wheelchair. This setting is based on
the data provided by the ARC. Finally, the probability for a patient to be accompanied
by someone is set to 50%. All other settings are equal to those of data set “Y”. In all
instances, a 60- min time window is associated with the start depot. The maximum
route duration is reduced by 60 min with respect to the original data. As before, it is
equal for all vehicles. The time window at the noon depot is set to e2n+1 = e0 + T/2
and l2n+1 = e2n+1 + 15. The lunch time window is set to eH = 180 and lH = 360
and its duration to H = 30 min.

7.2 Real-world instances

We also apply the different solution algorithms to 15 real-world instances from the
ARC. They possess the following characteristics. As in data set “Z” 83% of the pas-
sengers are seated patients, 11% have to be transported on a stretcher, and 6% in a
wheelchair; 50% of all these passengers take an accompanying person with them and
about 40% demand additional personnel (an attendant) on the vehicle. Three T1 vehi-
cles and 31 T2 vehicles are available. The maximum route duration (driver working
hours) is 510 min. The lunch break has to start between 11 am and 2 pm. It lasts
30 min. Every driver starts working between 6:30 and 8:30 am. These two points in
time give the time window at the start depot. The time window at the noon depot lasts
from 12:30 to 1:00 pm. Users specify a time window for either the pick-up or the
drop-off location. Time window width is equal to 30 min. Maximum user ride times
have been set to Li = ti,n+i + 30 for all i ∈ P . As mentioned above, ride time limits
are not explicitly considered; depending on which time window has been specified by
the user, the time window for the corresponding location without time window is set
relative to the existing time window; in the case of a time window at the destination, it
is set to ei = en+i − (Li + di ) and li = ln+i − (ti,n+i + di ) at the origin; in the case of
a time window at the origin, it is set to en+i = ei + di + ti,n+i and ln+i = li + di + Li

at the corresponding destination.

7.3 Column generation results

In a first step two versions of the column generation framework are tested on the artifi-
cial data sets. The first version only uses pure column generation, while in the second
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version the collaborative scheme is employed. Both procedures are first compared
within a restrictive time limit of 1 h. Within this time limit, pure column generation
solves 24 out of 36 instances. With the collaborative scheme in place, one additional
instance (i.e., 25 instances) can be solved. Within an increased time limit of 5 days,
pure column generation solves 32 out of 36 instances and the collaborative scheme
31 out of 36 instances. Tables 2 and 3 contain the results obtained with the increased
limit. Table 2 gives the results for pure column generation while Table 3 gives the
results for the collaborative scheme. The following information is provided. First, the
time needed to compute the initial VNS solution and the total run time, excluding
the initial VNS, of the respective program is given. Then, the lower bounds and the
best integer solutions found throughout the search are presented. In the case where
the time limit is reached, the current “best” lower bound is given in brackets; it may
not be the optimal one. If the obtained lower bound is integer, then the best integer
solution corresponds to the optimal integer solution. Otherwise, it corresponds to the
solution obtained from solving SP on the set of generated columns within a run time
limit of 10 min. If the corresponding instance is identified as infeasible, neither a lower
bound nor an integer solution is provided. The status of the obtained lower bound is
indicated in the next column (integer (int.), fractional (frac.), or infeasible (inf.)). This
is followed by the total number of columns generated, and by the number of times
the different pricing procedures found at least one new negative reduced cost column.
Rows X , Y , and Z give the average values for the respective data set. Row XY Z gives
the total average values across all data sets.

In both cases, pure column generation and the collaborative approach, the two
heuristic pricing procedures which prove to be the most useful are ConstrHeur and
LimLabels. Also, all other heuristic pricing procedures contribute a number of negative
reduced cost columns and thus should not be left out. When comparing the two tables,
the following differences can be observed. In the case of the smallest instances, pure
column generation is faster than the collaborative approach. This is due to the fact that,
in the case of the smallest instances, the initial VNS quite often already finds the opti-
mal solution. Thus, intermediate calls to the VNS do not improve this solution. They
only increase computation times. This relation changes in the case of medium-sized
and larger instances. Here, in some cases the collaborative approach is faster while
in others, lower computation times are due to pure column generation. The intuition
is that calls to the intermediate VNS are not always useful although in many cases
they are. When comparing the “best” lower bound (i.e., either the lower bound or the
best objective value obtained, if the time limit is reached), the collaborative approach
is slightly better than pure column generation on average. When comparing the best
integer solution found during the search, the collaborative approach outperforms pure
column generation on average within the 1 h time limit and also within the 5-day time
limit. Comparison of the results given in the two tables on a per instance level shows
that the collaborative scheme is better or equal in all but three cases. Finally, in the
case of instance a4-48 of data set Y (marked by an asterisk) the provided lower bound
computed by the collaborative approach is optimal. However, the optimality check of
the collaborative scheme (i.e., the last call to the pricing routines) ends after the run
time limit. Therefore, it is not counted to the number of instances solved within 5 days
but it is used for comparison purposes for the heuristic method.
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As the original real-world instances are too large to be solved with either of the
two exact procedures, results for these will only be provided for the heuristic method.
However, in order to get an idea of how difficult practical instances are, we generated
two additional real-world-based data sets containing eight instances each. In these
two data sets, the number of requests in every instance is reduced by a factor of 5
or 3 with respect to the original data, respectively, and the time window length is
decreased to 15 min. In Table 4, we compare the results of pure column generation to
those of the collaborative scheme for those instances that are five times smaller than
the original ones. Similar information as in the previous tables is given. In addition,
we also provide the size of each instance in terms of the total number of requests
n, the number of drivers md , and the number of attendants ma available. Within a
time limit of 1 h, the collaborative scheme solves four out of eight instances, while
pure column generation only solves three instances. Within the increased time limit
of 5 days, both procedures solve seven out of eight instances. However, considerable
differences in terms of run times can be observed. For example, in the case of instance
mai0605a the collaborative scheme is 2.3 times faster than pure column generation,
while in the case of instance mai1805a, pure column generation is 2.7 times faster
than the collaborative scheme. When comparing the best integer solutions obtained,
the collaborative scheme again outperforms pure column generation on average. Only
for instances aug0508a and mai2105a the integer solutions of pure column generation
are better than those obtained by means of the collaborative scheme.

Given these results, it seems fair to say that the integration of a collaborative local
search method into the column generation framework has a positive impact on the
performance of the whole method but it does not outperform pure column generation
in all cases.

We also applied both methods to those instances that have been reduced by a factor
of 3. They comprise between 49 and 91 requests and between 6 and 10 drivers. Within
a 1-h time limit none of the instances is solved with either of the two methods. With an
increased time limit, both methods solve instance aug1208b (58 requests and 7 driv-
ers) within a couple of hours of run time; in more than 3 days, pure column generation
also solves instance aug1308b (55 requests and 7 drivers). All other instances remain
unsolved. Therefore, we only provide heuristic results for this set of instances.

Summarizing the above results, both methods consistently solve both artificial and
real-world-based instances with up to 34 requests and some instances with up to 58
requests.

7.4 Heuristic results

In Table 5, the results obtained by means of the proposed VNS for the artificial data
sets are presented. A limit of 105 iterations is used as stopping criterion. For each data
set the following information can be taken from the table: the name of the instance;
the average solution values over five random runs; the best solution values out of
these five runs; and the respective percentage deviations from the exact lower bounds,
where known (see above). The average percentage gap between the lower bound and
the obtained average solution value is less than 2% for all three data sets. Computing
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Table 6 Real-world-based instances (5 times smaller): VNS (5 runs)

n md ma VNS 105 iterations VNS 2× 105 iterations

Avg. % Best % CPU Avg. % Best % CPU

aug0508a 29 4 6 384.96 2.02 383.10 1.53 274.54 383.64 1.68 378.89 0.42 519.25

aug1108a 30 4 6 458.75 2.00 451.03 0.29 229.47 459.30 2.13 453.15 0.76 445.85

aug1208a 34 4 6 431.95 1.39 428.99 0.70 313.55 436.23 2.40 428.99 0.70 671.22

aug1308a 33 4 6 480.80 1.59 479.66 1.35 316.00 483.59 2.18 479.66 1.35 651.54

mai0605a 41 5 7 488.11 3.53 485.94 3.07 287.16 483.61 2.58 473.38 0.41 590.89

mai0705a 42 5 7 664.30 – 654.11 – 471.91 640.08 – 627.32 – 769.51

mai1805a 54 6 9 623.57 7.07 603.78 3.67 495.44 622.99 6.97 615.81 5.74 937.00

mai2105a 28 4 5 409.49 4.82 391.62 0.25 190.51 399.35 2.23 391.10 0.12 375.15

Avg 492.74 3.21 484.78 1.55 322.32 488.60 2.88 481.04 1.36 620.05

Avg. average

times are not really low, but acceptable (less than 9 min on average). The rather long
computing times with respect to the low total iteration limit are due to the complex
evaluation procedure, including a possible repositioning of the noon depot and the
appropriate choice of the lunch break location.

Table 6 contains the results obtained for the 8 real-world instances that have been
reduced by a factor 5 with respect to the original data. The following information is
provided: the name of the instance; the size of the instance in terms of the total num-
ber of requests n; the number of drivers md ; the number of attendants ma available;
and for each iteration limit, the average and the best solution value out of five random
runs, the corresponding deviation from the lower bound (only where the optimal lower
bound is known), and the total average run time in seconds. On average, the proposed
VNS yields solutions within 3.21% of the lower bound, using 105 iterations. With an
increased limit of 2 × 105 iterations, the average percentage gap is reduced to 2.88.
In the case of instance mai1805a, the lower bound solution is highly fractional. This
explains why the obtained gap between the heuristic upper bound and the column
generation lower bound is so large. It can be assumed that it is at least partly due to
a larger integrality gap with respect to the other instances. Total run times are below
16 min for all instances.

Table 7 provides similar information to Table 6. However, for this medium-sized
data set, which is again based on the available real-world data, a lower bound can only
be computed for two instances. Thus, we only provide average and best solution values
for the proposed VNS within a limit of 105 and 2 × 105 iterations. The percentage
deviations presented in Table 7 give the deviations from the best solutions encountered
with the two iteration limits. As expected, more iterations lead, on average, to better
solution values.

Finally, Table 8 provides the results for those data sets that are based on ARC data
from 15 days in the city of Graz. As mentioned above, all of them are too large to be
solved by means of column generation. Therefore, only the proposed VNS is applied.
Because of the large size of these instances, two different iteration limits are used.
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First, VNS is run for 5× 105 iterations. This configuration results in solution values
that are on average 3.77% worse than the best solution found during both experimental
settings. On average, slightly less than 3 h of run time is needed. Then, the limit is
increased to 106 iterations. In less than twice the time (on average 5.5 h), the average
gap from the best known solution is reduced to 1.47%.

For the smallest instances containing up to 50 requests, 105 iterations will lead to
solutions of high quality when compared to the lower bound. For medium size real-
world instances more iterations are necessary to yield solutions of acceptable quality.
In the case of the largest real-world instances, a limit of 5×105 or even 106 iterations,
if time allows, should be used.

8 Conclusion

This paper has described a heterogeneous dial-a-ride problem with driver-related con-
straints and has introduced two new formulations of the problem. A column generation
approach has been proposed to compute lower bounds based on the set-partitioning
formulation. A variable neighborhood search heuristic has also been developed. Com-
putational experiments show that on the artificial instances, high-quality solutions are
obtained within rather short run times. A collaborative scheme, integrating the VNS
heuristic into the column generation framework, has also been developed. Compari-
sons with the pure column generation show that the collaborative scheme improves
the efficiency of the original method but does not outperform it in all cases. Finally,
also realistic instances are solved by means of the proposed VNS algorithm. Given the
fact that about 80% of the requests carried out by the ARC are already known the day
before, the proposed algorithm can be run for several hours in order to provide a good
initial routing plan. We thus hope that the methods proposed in this paper will serve
as the basis for the development of a computer-aided routing tool that will support
ambulance dispatchers at the Austrian Red Cross in their day-to-day work.
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