
OR Spectrum (2012) 34:133–154
DOI 10.1007/s00291-010-0227-y

REGULAR ARTICLE

Cyclic transfers in school timetabling

Gerhard Post · Samad Ahmadi ·
Frederik Geertsema

Published online: 14 September 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract In this paper we propose a neighbourhood structure based on sequen-
tial/cyclic moves and a cyclic transfer algorithm for the high school timetabling prob-
lem. This method enables execution of complex moves for improving an existing
solution, while dealing with the challenge of exploring the neighbourhood efficiently.
An improvement graph is used in which certain negative cycles correspond to the
neighbours; these cycles are explored using a recursive method. We address the prob-
lem of applying large neighbourhood structure methods on problems where the cost
function is not exactly the sum of independent cost functions, as it is in the set par-
titioning problem. For computational experiments we use four real world data sets
for high school timetabling in the Netherlands and England. We present results of the
cyclic transfer algorithm with different settings on these data sets. The costs decrease
by 8–28% if we use the cyclic transfers for local optimization compared to our initial
solutions. The quality of the best initial solutions are comparable to the solutions found
in practice by timetablers.

This research has been supported by BSIK grant 03018 (BRICKS: Basic Research in Informatics for
Creating the Knowledge Society).

G. Post (B)
Department of Applied Mathematics, University Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
e-mail: G.F.Post@ewi.utwente.nl

G. Post
ORTEC, Groningenweg 6k, 2803 PV Gouda, The Netherlands

S. Ahmadi
Department of Informatics, Faculty of Technology,
De Montfort University, The Gateway, Leicester LE1 9BH, UK

F. Geertsema
GEPRO, St. Jacobsstraat 26-28, 8911 HV Leeuwarden, The Netherlands

123

134 G. Post et al.

Keywords Timetabling · High school · Cyclic transfer · Scheduling

1 Introduction

In the past 25 years, extensive research has been carried out on automated high school
timetabling. This research ranges from theoretical investigations and surveys (Burke
and Petrovic 2002; Carter and Laporte 1998; Cooper and Kingston 1993; Hertz 1991;
Schaerf 1999a; Smith et al. 2003; de Werra 1985, 1999) to case studies in specific
schools from different countries (such as Australia Abramson 1991; Kingston 2001,
2005, Brazil Ribeiro Filho and Nogueira Lorena 2001; Santos et al. 2004, Greece Birbis
et al. 1997; Valouxis and Housos 2003, Italy Colorni et al. 1998; Schaerf 1999b, The
Netherlands, de Gans 1981; de Haan et al. 2007; Willemen 2002, Spain Alvarez-Valdes
et al. 1996, and the UK Wright 1996). Investigation into these case studies demon-
strates that school timetabling problems change from one country to another based on
different educational systems and philosophies. Design and implementation of algo-
rithms that can deal with this variety of constraints and objectives is a great challenge.
Our research on a standard modelling language for timetabling problems and on stan-
dard data formats for high school timetabling problems (Post et al. 2008) enables us to
deal with this problem in a wider context than is normally dealt within the literature.

The aim of this paper is to design a neighbourhood structure and neighbourhood
search method for the high school timetabling problem based on sequential moves and
a cyclic transfers algorithm. Improvements to timetables are represented by certain
negative cycles in an improvement graph.

The main contributions of this research are:

– Modelling the high school timetabling problem in a suitable format with appropri-
ate definitions of moves/cyclic transfers; as shown in Sect. 4, the model used here
is more complicated than the one used in Abdullah et al. (2007a) and Jha (2004).

– Proposing a method of resolving the problem of interdependency of different ele-
ments of the objective function for the high school timetabling problem, and show-
ing that even an ‘approximate’ improvement graph can be useful in practice.

– Contributing an algorithm for finding admissible negative cycles, based on the
lemma in Sect. 4.3.

– Making public real world benchmark data sets.

In the following section the common concepts and the terminology used in this
paper are described. Section 3 gives a literature review, and in Sect. 4 we describe the
improvement graph and the algorithm for searching negative cycles. Section 5 gives an
overview of the data sets, and in Sect. 6 the computational experiments are described
and the results presented. Finally Sect. 7 contains our major conclusions.

2 Problem definition

High school timetabling is the problem of assigning resources to lessons. The objec-
tive is to assign a fixed set of time slots and rooms to a given set of lessons subject
to constraints. Assets and possible constraints considered in this paper are described

123

Cyclic transfers in school timetabling 135

in the next subsection. Constraints for the school timetabling problem fall into two
categories: hard constraints and soft constraints. The hard constraints describe which
assignments of time slots and rooms to lessons are regarded as feasible. The most
important set of hard constraints are the ‘no clash’ constraints: a teacher, student or
room can only be scheduled at most once in a time slot.

Soft constraints express the preferences and the quality of the timetable. The cost
of a solution is measured by the weighted sum of violations of the soft constraints
for every teacher and student. In this paper allocation of rooms to lessons is based
on room types and not specific rooms; there are no soft constraints expressing room
preferences.

A lesson is defined as a meeting between a group of students and one or more
teachers at the same time and in the same venue(s). We assume that the students and
teachers of a lesson are given beforehand. The problem of finding a timetable for
lessons without clashes can be formulated as a graph coloring problem. Here each
vertex represents a lesson, and an edge between two vertices represents that the two
corresponding lessons have at least one teacher or student in common. For any graph
coloring problem we can find a corresponding timetabling problem. Hence the problem
we consider is NP-hard.

2.1 The assets

We use the term ‘assets’ for data describing the physical resources and time. Assets
in the school timetabling problem are:

– Time slots The time slots have a day attribute (Monday, Tuesday, etc.), and usually
there are five to ten time slots per day; this number can vary per day depending on
the school and the educational system.

– Students, teachers, and rooms Each of these is available only once per time slot.
– Lessons These are the actual meetings between a group of students and one or more

teachers. We assume that the students and teachers are preassigned. Throughout
we assume that similar lessons, i.e. lessons to a group of students in the same
subject, have to be scheduled on different days. A lesson has a duration, describing
the number of consecutive time slots on the same day needed for this lesson. In
practice the duration is one or two.

– Room types Each room will have exactly one room type, and each lesson will have
one room type. The meaning of this is that a lesson with room type A must be
scheduled in a room of room type A.

– Events Lessons that have to be scheduled at the same time slot, we call an event.
We call the corresponding lessons linked lessons. This happens for instance if two
groups are mixed because of level or sex. More intricate links exist, and are due to
the requirement that certain optional lessons must be scheduled at the same time
(de Haan et al. 2007).

– School class In most schools students are organized into base groups, which we
call school classes; every student is in exactly one school class. Usually students
in a school class take more or less the same lessons, while sometimes all students

123

136 G. Post et al.

take the same lessons. In the last case we can speak of idle times of a school class,
being equivalent to the idle times for any individual student in this school class.

2.2 The constraints

Below is a list of constraints that we encountered in practice. For each constraint we
list whether it is considered as a hard constraint {H} or a soft constraint {S}, or can
appear in both modes {HS}.

{H} (EventsConstraint) Some lessons have to be taught simultaneously, leading to
linked lessons (events).

{H} (AvailabilityConstraint) A teacher or a room can be unavailable in one or more
time slots.

{HS} (OffConstraint) A teacher can have preferences for days off or off hours on
specific days.

{S} (DayLoadConstraint) A teacher or a student can prefer a minimum and/or
maximum number of lessons per day.

{HS} (DayIdleTimes Constraint) A teacher or a student can prefer a maximum num-
ber of idle times per day. Here an idle time is a time slot without a lesson for
this teacher or student, but with a lesson earlier, and a lesson later on that day.

{HS} (WeekIdleTimesConstraint) A teacher or student can prefer a maximum num-
ber of idle times per week. For example we could ask for a teacher to have at
most one idle time per day, but at most three idle times per week.

{HS} (NumberOfDaysConstraint) A teacher can prefer to have lessons on at most a
maximum number of days, or at least a minimum number of days. For exam-
ple, a part-time teacher can have the right to have at most three or four days
with lessons.

3 Literature review

In most of the research in the area of high school timetabling, local search meth-
ods and meta-heuristics are used to find good solutions in reasonable computational
time. These methods include simulated annealing (Abramson 1991), genetic algo-
rithms (Colorni et al. 1998; Drexl and Salewski 1997; Ribeiro Filho and Nogueira
Lorena 2001), and tabu search (Alvarez-Valdes et al. 1996; Hertz 1991; Santos et al.
2004; Schaerf 1999b). The main characteristic of these algorithms is using simple
moves/changes in defining the neighbourhood for their current timetable. Previous
research on humanising automated scheduling systems (Ahmadi et al. 2002; Cheng
et al. 2002, 2003; Cowling et al. 2002) shows that sequential moves are used by expert
timetablers to improve a timetable. This was the main motivation for our research.

Some researchers (Birbis et al. 1997, 2008; Lawrie 1969; Santos et al. 2008) have
developed integer linear programming (ILP) models for their high school timetabling
problems. In Santos et al. (2008), advanced integer programming techniques are used
to solve relatively small class-teacher models (see de Werra 1985) to optimality.
In Birbis et al. (1997, 2008), instances are studied more similar to our data sets.

123

Cyclic transfers in school timetabling 137

In Birbis et al. (2008), the authors introduce ‘shifts’ for teachers in a preprocessing
phase. In this way the schedules for teachers are of good quality. Compared to the
Dutch data sets we note the following differences:

– Dutch students have highly individual schedules in the higher grades; hence the
number of ‘class-sections’ is much higher in our data sets.

– Because of the many individual schedules, compact schedules are not feasible in
the higher grades.

– In The Netherlands 80% of the teachers work part-time. We expect that the shift
structure imposed has a bigger impact than in the Greek situation.

Summarising we believe that solving ILP models for the data sets in Sect. 5 is still out
of scope.

The concept of improvement graph was introduced in Thompson and Orlin (1989)
and further examined by Thompson and Psaraftis (1993). Cyclic transfers are applied
to a wide variety of combinatorial optimisation problems including the travelling sales-
man problem (Deineko and Woeginger 2000; Lin and Kernighan 1973; Punnen and
Kabadi 2002), the quadratic assignment problem (Ahuja et al. 2002b), vehicle rout-
ing problems (Agarwal et al. 2003; Ergun 2001), the capacitated minimum spanning
tree problem (Ahuja et al. 2001), the generalized assignment problem (Yagiura and
Ibaraki 2004; Yagiura et al. 2004), parallel machine scheduling problems (Agarwal
et al. 2004), and timetabling problems (Abdullah et al. 2007a,b; Jha 2004). For a sur-
vey on very large neighbourhood search, cyclic transfers and their applications we
refer the reader to Ahuja et al. (2002a) and Meyers and Orlin (2007). Essential in all
cases is that an admissible cycle in the improvement graph corresponds to a move
to a neighbour of the current solution. The cost change of this move equals the cost
of the cycle, which is the sum of the costs of the arcs in the cycle. For cycles that
are not admissible this correspondence in cost is not guaranteed, or even worse: the
corresponding move can be infeasible.

Unfortunately, finding an admissible negative cost cycle in an improvement graph
is an NP-hard problem, see Lemma 3.4.2 in Thompson and Orlin (1989). Like
Thompson and Orlin we believe that it is still reasonable in practice to search for such
cycles. In our opinion the cyclic transfer is very suitable as a search strategy transversal
to local search methods like Simulated Annealing or Tabu Search. The cyclic transfer
can search a large neighbourhood, and as such can correspond to an intensification
step of the complete algorithm. On the other hand our experiments show the cyclic
transfers will not generate good schedules starting from poor ones, see Sect. 6.

Cyclic transfers have been applied to timetabling problems only recently, see
Abdullah et al. (2007a,b) and Jha (2004). In the dissertation (Jha 2004), the university
course timetabling problem is discussed. The main objective here is to schedule the
meetings of courses to time slots such that there are no clashes for teachers and stu-
dents and the number of rooms used does not exceed the number of rooms available.
A node in the improvement graph corresponds to a meeting of the course, and the
resource attached to the node corresponds to the current time slot of the meeting. The
technique used for finding the admissible negative cycles is dynamic programming.

In Abdullah et al. (2007a,b), the examination timetabling problem is studied. Here
the main objective is to schedule exams to time slots to find a clash-free timetable

123

138 G. Post et al.

and such that the clashes of higher order between exams (proximity clashes) are min-
imised. Extra requirements can be obeying the room capacities and relations between
different exams (precedence, distance in time). A node in the improvement graph cor-
responds to an exam, while the resource is the current time slot of the exam. A negative
cycle is found with a modified label correcting algorithm as introduced in Ahuja et al.
(2001) starting from some initial nodes; this method assures that the selected negative
cycle is admissible; however there is no guarantee that all admissible negative cycles
are found.

4 The improvement graph

As stated above in the papers (Abdullah et al. 2007a,b; Jha 2004), the main objective
is feasibility. For this reason the resource in the improvement graph can be a time slot:
we only have to make sure that each time slot is scheduled well, i.e. we are looking
for a clash-free schedule.

In high school timetabling we (of course) look for clash-free schedules as well.
However, this is not the end point. Clash-free schedules may abound, but can be unac-
ceptable due to the poor quality. The quality of a schedule for a teacher or student is
judged primarily on a day basis: each day the number and grouping of lessons should
satisfy certain constraints, see Sect. 2.2. This difference in objective means that the
resource ‘time slot’ is not suitable here. We describe the resources we use instead
in the next subsection. In Sect. 4.2 we explain the construction of the improvement
graph. Sect. 4.3 contains the basic lemma, that is the foundation of our algorithm. The
algorithm itself is described in Sect. 4.4.

4.1 Cyclic exchanges and the objective value

In our local search approach we use cyclic transfers as our moves. A cyclic exchange
is a sequence of insertions and ejections. Here we investigate the influence of two
consecutive shifts on the objective function. In the first shift, S1, lesson L1 is moved
(from a time slot not on day D) to time slot t1 on day D, while the next shift, S2,
removes lesson L2 from time slot t2 on day D (to another day). When studying the
change in objective value, we merely have to study what happens to the cost functions
of the teachers and students involved. So assume teacher T is involved in lesson L1 or
L2; for students the situation is similar. If the cyclic transfer is executed, the schedule
of teacher T changes. Our basic assumption is that the schedule of teacher T on day
D is not effected by other shifts in the cyclic transfer. Our aim is to calculate the cost
change for teacher T by looking at all pairs of consecutive shifts separately (‘local
changes’). We will demonstrate that this is not completely possible, and we describe
how we treat such cases.

We distinguish three slightly different cases:

a. Teacher T is involved in both shifts, i.e. in the schedule of teacher T on day D
lesson L1 is added now at time slot t1, while lesson L2 disappears from time slot
t2. It is possible that t1 = t2. We need to recalculate the cost of the OffConstraints,

123

Cyclic transfers in school timetabling 139

DayIdleTimesConstraints for day D, and the WeekIdleTimesConstraints as far
as valid for teacher T . The other types of constraints do not generate any change
in cost. For the first two constraints it is sufficient to know the old and the new
schedules of teacher T only on day D. For the WeekIdleTimesConstraints the
situation is more subtle. The knowledge of the old and new schedules of day
D suffice to find the change in the number of idle times throughout the week.
However, if the cost is not proportional to the number of idle times, we cannot
find the cost change, as the number of idle times might change on other days as
well. For approximating the cost change due to the pair (S1, S2) we will assume
that other parts of the cyclic transfer did not change the number of idle times.
For example, if originally there are three idle times, and on day D we generate
an extra idle time, we suppose that the number of idle times changes from three
to four. If the cost is quadratic in the number of idle times and the weight of the
soft constraint is ten, the cost change is estimated at 10 ∗ (42 − 32) = 70. If this
happens on two days, we have assumed a cost change of 140 instead of the correct
10 ∗ (52 − 32) = 160.

b. Teacher T is not involved in lesson L2. So teacher T will have an extra les-
son on day D, namely, L1 at time slot t1. Now we need to recalculate the cost
of the OffConstraints, DayLoadConstraints, DayIdleTimesConstraints on day D
as well as the WeekIdleTimesConstraints and the NumberOfDaysConstraints
for teacher T . The cost change for the first three constraints can be calculated
exactly. For the WeekIdleTimesConstraints the situation is similar to the first
case. The NumberOfDaysConstraint only generates a non-zero cost change if
lesson L1 is the only lesson on day D. Moreover, teacher T should either be
at the maximum number of days with lessons for teacher T as specified by
NumberOfDaysConstraint, or the teacher was below the minimum number of
days with lessons. If a maximum is specified, we always assume that teacher T
was already at this maximum, and penalise lesson L1 accordingly. Note that this
is not correct in all cases, especially for cases with only a few days of lessons
for teacher T : in the cyclic exchange there could be several days which get a
first lesson, all of them penalised separately instead of together. Regarding the
minimum, we take no action at all, i.e. we neglect that one day extra might be
planned for teacher T . The reason is that we want to avoid the double bonus, as
the NumberOfDaysConstraint is usually highly weighted in the objective func-
tion.

c. Teacher T is not involved lesson L1. So teacher T will have a lesson less on
day D, namely, L2 disappears from time slot t2. This situation is similar to the
case above, with the NumberOfDaysConstraints treated in the same way with the
minimum and maximum interchanged.

4.2 Construction of the improvement graph

In Sect. 2.2 we described the constraints that we consider. An important hard constraint
is the EventsConstraint, which states that certain lessons are to be taught at the same
time: such linked lessons we called events. Since we want to maintain feasibility at all

123

140 G. Post et al.

times, we will move events instead of separate lessons. For this reason we continue
with events.

4.2.1 Nodes and arcs

The improvement graph will contain three types of nodes:

– A node for each event.
– A node for each time slot.
– One dummy node.

We add arcs according to the following scheme.

– We add an arc from the dummy node to each event node.
– We add an arc from each time slot node to the dummy node.
– We try to move each event node to a time slot (‘A’) on a different day. In trying to

do this, three things can happen:
• This can be done without moving another lesson, i.e. all involved students and

teachers (and enough rooms) are available at time slot ‘A’. In this case we
add an arc from the corresponding event node to the time slot node of time
slot ‘A’.

• This can be done by moving one (conflict) event to another day. In this case,
we add an arc from the original event to the conflict event.

• Several events have to be moved from time slot ‘A’. In this case, no arc is added.

Note that due to the construction there are two types of cycles:

– Cycles that do not contain the dummy node. Hence they contain no TimeSlotNode
as well, since only the TimeSlotNodes have arcs to the dummy node. Consequently
such cycle of length k has the form:

Event1 → Event2 → · · · → Eventk → Event1

Hence each event has a conflict event.
– Cycles that contain the dummy node. If the cycle has length k it is of the form:

Dummy → Event1 → Event2 → · · · → Eventk−2 → TimeSlot → Dummy

Hence Eventk−2 is moved to the time slot corresponding to the TimeSlotNode, and
has no conflict event.

4.2.2 Cost on arcs

The costs on the arcs are determined along the lines described in Sect. 4.1. We describe
the interpretation of each arc. The cost on the arc corresponds to the cost change of
the interpretation.

– An arc from the dummy node to an event node: the event (on day D) is removed.
For the teachers and students in lesson L of the event, the schedule on day D

123

Cyclic transfers in school timetabling 141

changes, because lesson L moves to another day. The cost change is calculated as
described in item c. of Sect. 4.1.

– An arc from the time slot node to the dummy node. This arc is added to turn a path
ending in a time slot node to a cycle. Hence the cost is 0.

– An arc from an event node to a time slot node. The event is moved to time slot t ,
which corresponds to the time slot node, but no event on day D of time slot t is
moved. For a teacher or student involved in lesson L of the event, in the schedule
on day D the lesson L is added at time slot t . The cost change is calculated as in
item b. of Sect. 4.1.

– An arc from event node to event node. Hence some linked lessons move to time slot
t1 on day D, while another group of linked lessons moves from day D to another
day. For the teachers and students involved in one of these lessons, we calculate
the cost change according to Sect. 4.1.

4.2.3 Resources

The construction of the improvement graph shows that a cycle in this graph cor-
responds to a sequence of changes in the timetable. The change in the timetable
we called the cyclic transfer. The cost of the cycle is the sum of the arc costs in
the cycle. Of course, our aim is that the cycle cost reflects the cost change of the
cyclic transfer. In Sect. 4.1 we explained that this works reasonably well if for each
teacher and student the schedule on a certain day is changed only once. Hence we
want the cycles we construct to satisfy this condition. We will force this property
by adding resources to nodes and arcs, and we require that a cycle has disjoint
resources. In the improvement graph a resource is a combination (teacher, day) or
a combination (student, day). The way we add resources to nodes and arcs is as
follows:

– For each event node (on day D), we consider the teachers and students of the linked
lessons. Each one of these teachers and students is paired to D, and this pair is a
resource which we add to the node.

– For each arc from an event node to time slot node t , we find all teachers and stu-
dents in the lessons of the event, pair them to the day of the time slot node t and
add these pairs to the arc.

– For each arc from an event node to another event node, we find all teachers and
students in the lessons of the first event, pair it to the day of the second event and
add these pairs to the arc.

4.3 Algorithm for finding negative cycles

Here we present a recursive method to determine a cycle of negative cost with disjoint
resources. Our method is based on the following lemma.

Lemma Suppose C = (N0, N1, N2, . . . , N�−1) is a cycle with � nodes and negative
cost. Let ci be the cost of the arc from node Ni to node Ni+1, where these indices are
taken modulo �.

123

142 G. Post et al.

Then there exists an index i ∈ {0, 1, 2, . . . , �} such that

ci < 0

ci + ci+1 < 0

ci + ci+1 + ci+2 < 0 (1)

. . .

ci + ci+1 + · · · + ci+�−1 < 0

Proof (by induction on �).
If C is a negative cycle of length 2, then the result is clear, since c0 + c1 < 0 (C is

a negative cycle), and hence either c0 < 0 or c1 < 0 (or both).
Suppose now that we have a negative cycle of length �. If two consecutive arcs

are both either non-negative or non-positive, we can merge them to a single arc with
cost the sum of the cost of the separate ones, and apply induction. So we can assume
that the arcs in the cycle are alternating in sign (and consequently � is even). We put
indices such that the arc from N0 to N1 has negative cost. Now starting from index
0, consider the arcs two by two. These two arcs together have cost c2i + c2i+1, for
i = 0, 1, . . . , �

2 . Since the total sum is negative, at least one of these pairs is negative
as well. Merging these two arcs, we can apply induction to find the start index i such
that all conditions in the equations (1) hold. Expanding the merged arcs again, we find
our solution. ��

For detecting a negative cycle, we use a recursive algorithm. We sort all the arcs
in increasing order of their costs; each arc is tried as the starting arc for a cycle.
In the construction of a cycle, we recursively add an extra arc to the directed path
found so far. We avoid duplicate resources, and arcs that will lead to a directed path
of non-negative cost. When the arc is added, we update the resources, and the total
cost of the path. In the case that the newly added arc ends at the start of the first arc,
we have an admissible negative cycle. If we look for the first descent, we return this
cycle, otherwise we replace the best found if appropriate, and apply the ‘partial gain’
criterion: we do not allow any path to exceed the cost of the best found cycle. This
might prevent us from obtaining the steepest descent, but the gain in computation time
is too high to ignore. We call this descent ‘partial gain descent’. If we get stuck (the
path cannot be extended anymore), we backtrack. The correctness of this approach for
finding a negative cycle is guaranteed by the previous lemma.

In practice we use one extra condition. We require the length of the cycle to be
restricted by some number L; hence we allow only cycles with at most L arcs. In
theoretical sense this is a major difference: without length restriction, the problem is
NP-hard (see for example Boland et al. 2006), while with restriction the number of
possible cycles is polynomial in the number of arcs. In practical sense, this restriction
has a major effect on the computation time.

4.4 Algorithm and imperfections of the network model

The basic algorithm that we will run looks as follows:

123

Cyclic transfers in school timetabling 143

function CyclicTransfers(TimeTable);
Success := true;
while Success do begin

G := ImprovementGraph(TimeTable);
Cycle := NegativeCycle(G);
Success := Assigned(Cycle);
if Success then begin

TimeTable := ExecuteCycle(TimeTable);
SaveToBestIfNeeded(TimeTable);

end;
end; % of while
return BestTimeTable;

end.

Several remarks are in order here. The part within the while-loop we will call a
round. We can continue the algorithm as long as we find a negative cycle, i.e we put
no a priori limit on the number of rounds. The negative cycle is executed, no matter
what the effect is on the cost of the schedule. Indeed, the cost of the new schedule
can be higher than the original one, due to imperfections of the model, as explained
in Sect. 4.1. This leads to the following two aspects.

– Cycling To eliminate cycling we put the first two1 events of the cycle at the begin-
ning of a Tabu list. At the same time the events at the end of the list are removed
as far as the length of the Tabu list exceeds maximum length, which we put at 15.
As long as an event is in the Tabu list, it cannot be shifted (the corresponding event
node is not created). If a new best timetable is found, we clear the Tabu list.

– Hill climbing We investigate the algorithm as ‘hill climber’. Especially when long
cycles are allowed, after some time many negative cycles do not give rise to an
improved timetable. If the algorithm is in hill climber setting, we stop the algorithm
after five rounds without improving the best timetable.

5 Data sets

5.1 Real world data

To test the efficiency of our approach, we used four sets of real world data from three
different schools (see Sect. 5). These data sets are available at http://www.utwente.
nl/ctit/hstt. Problems K1 and K2 are defined in collaboration with the corresponding
secondary school, where an expert timetabler builds schedules manually. The methods
of this paper were not applied to them at that time, as these methods were developed
afterwards. In 2007 parts of the schedule were generated using cyclic transfers. In
2008 the complete schedule was generated interactively using Tabu Search and cyclic
transfers all the time; the improvements found by cyclic transfers usually were above

1 We tried to include as few events as possible. When we added only the first event, cycling reappeared
rather soon.

123

http://www.utwente.nl/ctit/hstt
http://www.utwente.nl/ctit/hstt

144 G. Post et al.

25%, and even up to 50%. In 2009 we used a hybrid search based on the Tabu search
and the cyclic transfers, thus automating the interactive approach of 2008.

For the experiments that we describe here we constructed ten “good” schedules,
and ten “bad” schedules using Tabu Search. On these initial schedules we perform the
cyclic transfer experiments, controlling the maximum length of the cycles. In particular
we perform hill-climbing experiments with ‘first descent’ and ‘partial gain descent’.
Finally we present some results based on a simple Tabu mechanism for escaping from
local optima.

For our research we used four real data sets from schools; two schools called K
and G from the Netherlands (school K with data K1 and K2 from 2 years), and one
school E from the UK. The instances have the following basic characteristics. Here
the students are only the students with optional subjects. The precise data for the other
students are not provided by the school.

The objective function was set by us, based on communications with the planners,
along the lines described in Sect. 2.2. In all data sets we try to minimise the num-
ber of idle times of teachers and school classes, whilst trying to maintain a balanced
spreading of the lessons. There are two important aspects in the Dutch situation:

– The students in higher grades have optional subjects. The number of optional sub-
jects, and the number of lessons can vary between students, even within the same
grade and level. As a consequence of this, it is impossible to create schedules for
(all) these students without idle times. In contrast we require compact schedules
for the school classes in lower grades. The usual way of handling the optional
subjects is to link their lessons to events. The linked lessons have to be such that
the students in these lessons are disjoint.

– The majority of teachers work part-time. If a teacher has to teach x lessons, we
require that these lessons take place on 1

5 x (rounded up) days, but not more than
5.2 These teachers can have preferences for which days off as well. In addition we
try to spread these lessons evenly over the teaching days.

In the Netherlands the teachers usually are preassigned to the lessons. In the English
situation, this is not the case. The data set E that we use, is in fact the end result of the
scheduling process, with the time slots removed (rooms play no role). We describe
some further details for each of the cases.

A possible scaling for weights could be

– weight is 0: the constraint is ignored;
– weight is 1: it would be nice to respect this constraint;
– weight is 10: the constraint is important;
– weight is 100: the constraint is very important;
– weight is 1,000: the constraint is essential (almost a hard constraint).

This scaling is used in the data sets presented in Sect. 5.

2 Full-time teachers have lessons for 26 time slots. This rule will give them 5 days with lessons, as required.
A part-timer with lessons for 18 time slots will be entitled to have one day off.

123

Cyclic transfers in school timetabling 145

5.1.1 K1

The data set K1 is from the year 2003/2004. It represents an average Dutch secondary
school, with around 1,000 students, in 36 school classes. Of these students, 453 are
in the higher grades with optional subjects. In this data set, and in K2, there is one
special room type for gym lessons; there are two rooms, which are in use for 100% of
the time. There are eight time slots per day, but on Thursday there are only six time
slots available, due to the weekly staff meeting. The last time slot on Friday should be
avoided, but is not forbidden (in K2 it is). The data set contains 928 events.

5.1.2 K2

This data set is from 2005/2006, from the same school as K1. Between 2003 and 2005
the school organisation changed considerably. The classes in the lower levels have
two by two combined lessons, giving rise to two linked lessons. For this reason there
are now only 762 events to schedule, but now of higher complexity.

5.1.3 G

This is a data set of a large school, with approximately 2,000 students, of which 846
have optional subjects. Room requirements are not provided. Special attention has to
be paid to scheduling the school classes on all weekdays. Originally there were ten
times slots (of 40 min) per day. Since the school classes have around 35 lessons, it
is possible to have a day without lessons. This is not acceptable. Similarly the last
time slot, and time slot nine on Friday should be avoided. In the data set, we removed
these time slots, leaving 44 in total. It turns out that it is easy to find feasible schedules
within these 44 time slots. There are 2,186 events, of which 38 are fixed.

5.1.4 E

This data set from an English school is very tight. All lessons should be scheduled in
five time slots per day, leading to compact schedules for students and most teachers.
As described above we preassigned the teachers to the lessons, which is normally done
afterwards. No feasible solutions were found by our algorithms. For this reason we
added an extra time slot to each day, and penalise its use by a penalty of 1,000. Even
in the best known solution, the sixth time slot is used 17 times. The number of events
is 543.

6 Experiments and results

In the previous sections we described the problem we study and the algorithm to
improve previously found schedules. In this section our purpose is to show that the
method we propose can improve the schedules considerably. These improvements
are shown to be relatively stable in different data sets. In Sect. 6.1 we describe the
basic schedules on which all tests were performed. In Sect. 6.2 we give the results for

123

146 G. Post et al.

Table 1 Start schedules and size of network per instance

Set Good schedules Bad schedules Best known Nodes Arcs

K1 1,665–1,933 (1,822) 2,600–2,892 (2,745) 1,287 924 10,280

K2 1,308–1,579 (1,435) 2,875–3,659 (3,374) 1,082 786 5,542

E 24,488–29,642 (27,855) 43,166–48,416 (45,596) 19,760 574 3,169

G 630–680 (652) 1,196–1,551 (1,380) 468 2,270 31,694

cyclic transfers algorithm in ‘hill climbing’ mode. In Sect. 6.3 we turn to some further
experiments, where more room is given to diversifications.

6.1 Experimental set-up

To perform our experiments for the four data sets E, G, K1, and K2, we constructed
initial schedules. In these timetables all lessons are scheduled to time slots, in such
a way that rooms are available for all lessons. The way we generate these solutions
is by a Tabu search algorithm, which we will not describe here. The best solutions
produced by this Tabu search algorithm are of good quality, comparable to or better
than hand-made schedules, at least for the data sets K1 and K2. A weakness of the
algorithm is its greediness: the algorithm places lessons one by one, not being aware
of global aspects of the schedule. Due to this, one can expect that cyclic transfers are
able to improve the schedules found.

For all four data sets, we performed several runs of the constructive algorithm.
From the constructed schedules we select the ten best results (“good schedules”), as
well as a sequence of ten results (“bad schedules”) of which the cost is approximately
twice that of the ten best schedules. Our starting point is summarised in Table 1.

For each data set we list in the columns:

– the range of the good schedules: best–worst (average),
– the range of the bad schedules: best–worst (average),
– the overall best schedule known to us,
– the number of nodes in the improvement graph,
– the (approximate) number of arcs in the improvement graph.

The best known solutions were found in an ad hoc way: running a mix of algorithms
with different parameters, keeping the best ones, and trying to improve those.

The number of nodes in the improvement graph is less than the number of lessons
listed in Table 2, although the nodes include time slot nodes as well. This is partially
due to skipping lessons that are fixed, or occupy two time slots. More important is that
in the network we use events, instead of lessons. The number of arcs varies a little bit
with the current schedule, since the admissible shifts depend on the number of conflict
lessons, see Sect. 4.2. The amounts presented below correspond to the start of the run
of the first (best) good schedule.

The data sets differ a lot in size: the smallest set (E) contains only 25% of the
nodes and 10% of the arcs of the biggest set (G). We will see in Table 5 that this has a

123

Cyclic transfers in school timetabling 147

Table 2 Data of the instances
K1, K2, G and E

Data set K1 K2 G E

Days 5 5 5 5

Time slots 38 37 44 30

Teachers 86 87 136 76

Classes 36 38 84 67

Students 453 498 846 0

Room types 2 2 1 1

Lessons 1,178 1,238 2,800 1,227

Table 3 Results for the good schedules and both descents (hill climbing)

L Start 2 3 4 5 6 7 8 9 10 11 12

K1 100 96.4 95.1 94.8 94.9 92.9 92.1 93.1 92.2 91.9 91.8 91.7

100 96.5 95.2 95.5 96.1 93.4 93.7 94.7 92.8 95.2 94.0 94.7

K2 100 95.6 94.8 94.3 93.8 93.6 93.5 93.9 93.6 93.7 93.6 93.6

100 96.2 94.7 94.6 94.1 93.8 93.9 93.4 93.2 93.6 93.9 93.6

E 100 97.4 97.3 95.1 94.6 93.3 93.2 92.6 92.5 92.1 91.6 91.2

100 97.5 97.0 94.6 94.5 92.4 93.1 92.7 92.8 92.6 92.9 93.3

G 100 94.2 91.7 91.3 89.4 89.1 89.7 90.5 87.1 88.8 88.0 89.3

100 94.3 92.3 93.5 91.8 94.3 93.9 95.8 96.4 97.4 97.8 97.3

major effect on the running times. The experiments were performed on a Dell Latitude
D810 with a 2.13 GHz processor and 2 GB of RAM, working under Windows XP.
The implementation was done in Delphi 7.

6.2 Experiments with cyclic transfers as hill climber

The first experiments we discuss are the basic cases of a fixed maximum cycle length
L , and stopping the run after five rounds without improvement. As in Sect. 4.4, we
call this cyclic transfer as ‘hill climber’. We apply the algorithm to the 10 good and to
the 10 bad schedules for L ranging from 2 to 12. Only the data set G for partial gain
descent and L = 12 and bad schedules were not completed; the third instance was
stopped after 12 h of running time.

The results for the good schedules are displayed in Table 3 for partial gain and first
descent, respectively. The tables display the average cost per data set, as a percentage
of the average initial cost.

For example in Table 3 we have for K1 the numbers 100, 96.4, 95.1, etc. in the
second row. The row gives the results for partial gain descent, while the next row is
for first descent. The number 100 represents that originally the average cost is 100%
of the average cost 1,822 (see Table 1), while the number 96.4 represents that after
applying the algorithm for L = 2, the average cost is 96.4 % of 1,822 (so 1,756),

123

148 G. Post et al.

Table 4 Results for the bad schedules and both descents (hill climbing)

L Start 2 3 4 5 6 7 8 9 10 11 12

K1 100 95.3 93.6 93.3 93.1 92.2 92.1 91.9 90.7 90.8 90.5 90.8

100 95.5 93.6 93.0 93.0 92.1 91.8 93.3 92.8 94.4 94.8 93.2

K2 100 85.7 79.6 77.4 76.1 75.2 76.3 75.4 74.4 74.0 73.3 73.7

100 86.1 79.3 77.0 77.8 76.6 79.9 82.2 78.4 79.9 80.9 79.4

E 100 96.8 96.1 95.6 95.0 93.6 94.0 92.7 92.5 92.5 92.5 92.8

100 96.8 95.9 95.1 94.9 94.2 93.6 92.2 92.5 92.5 92.7 92.5

G 100 92.6 89.4 83.7 77.5 74.4 72.2 74.3 73.2 74.9 74.2 –

100 92.4 88.9 86.0 84.1 81.6 85.8 88.4 91.5 95.6 93.1 96.6

and with L = 3 the average cost is 95.1% of 1,822, hence 1,733. We display only
the averages, as this seems enough to analyse the performances of the algorithms; the
results on the individual schedules are homogeneous in the sense that the standard
deviations of these remain in the same order of magnitude.

A similar comparison for the bad schedules can be found in Table 4.
The first observation is that the largest L does not always give the best results;

this is only the case for two of the eight tests, both for partial gain descent. For first
descent we have the best results four times for L = 6, and once for L = 5, L = 7,
L = 8, and L = 9. For all tests with first descent, the best average of the cases
L = 10, 11, 12 is worse than the best average for L = 6, 7, 8. This behaviour seems
to be due to the hill climbing aspect of our cyclic transfers. Looking at data set G,
where the differences are the largest, we see that the number of executed cycles for
the bad schedules drops from an average of 53 for L = 6 to 13 for L = 12. Hence we
conclude that the limitations of our model take their toll here; the algorithm, being in
hill climbing mode, was stopped, because the last five cycles executed did not yield
a better result. As explained in Sect. 4.4, the imperfections of the improvement graph
are due to combined effects of different arcs in a cycle. If cycles are long, the chance
of interference becomes larger.

A second observation is that partial gain descent gives better results than first
descent. Of the 87 comparisons that can be made, partial descent performs better with
0.5% or more in 45 cases, while for first descent this is only 6 times the case. Even
if we limit the range to L ≤ 8, we see a score of 22 for partial gain versus 6 for first
descent, out of 56 cases to compare. Note that for L = 2 and L = 3 the results do not
differ very much. For L = 2 partial gain descent performs six times (out of 8) better
than first descent, while for L = 3 first descent is better in five cases. In Table 5 we
compare the running times between partial gain descent and first descent. The times
listed are the average running times per schedule in seconds. As expected the first
descent is faster, but remarkably not very much for the data sets K1, K2, and E. For
data set G the difference is growing with L: for small L = 2 the times are more or less
the same, while for L = 12, the factor is 1,608/275 ≈ 5.8. This is partly due to the
number of rounds the algorithm executes, but mostly to the time per round: for L = 2
the running time per round is 1.75 s for partial gain descent, and 1.39 s for first descent,
while for L = 12 the running times per round are 59.6 and 17.1 s, respectively.

123

Cyclic transfers in school timetabling 149

Table 5 Running times for the good schedules and both descents (hill climbing)

L 2 3 4 5 6 7 8 9 10 11 12

K1 4.3 5.0 5.6 5.4 5.6 6.2 6.3 6.3 6.5 7.5 16.9

3.8 4.5 4.5 4.3 6.2 6.6 6.4 7.1 4.5 7.2 6.0

K2 3.4 3.9 4.3 4.0 4.2 4.3 4.1 4.2 4.6 5.2 6.9

2.5 3.4 3.6 3.7 4.0 4.0 4.7 5.0 5.0 5.1 6.0

E 1.2 1.6 1.6 1.6 1.8 1.8 1.8 2.0 2.0 2.0 2.4

1.3 1.5 1.7 1.7 1.9 1.8 1.8 2.0 2.0 2.1 2.0

G 47 60 53 63 54 62 53 118 249 591 1,608

43 60 38 56 39 36 35 43 53 88 275

We omitted the tables with the running times for the bad schedules. These running
times are higher than those for the good schedules, because of the increase in the num-
ber of rounds. This happens especially for K3 (increase of 250%) and G (increase of
400%), the cases where the relative improvements are much higher, compare Tables 3
and 4.

6.3 Further experiments with cyclic transfers

In Sect. 6.2 we broke off the computation of the cyclic transfers after five rounds with-
out improvement. This was done to make the cyclic transfers algorithm work (more
or less) as a hill climber. Due to our choice to execute any cycle that has negative cost
in the improvement graph, without checking the effect on the timetable in advance,
some changes are not climbing the hill. If several of these moves, say five or more,
are executed, this can be viewed as a kind of diversification. Hence, it is reasonable
to expect that we will obtain better results in this case, clearly at the cost of larger
running times. In fact, it is not even clear that the algorithm will stop. Indeed, while
for the data sets K1, K2, and E this poses no problem up to L = 12, for G the running
times increase rapidly. For this reason, we omitted the cases L > 10 for data set G.
We combined the results for partial gain and first descent in Table 6.

We observe that the differences between partial gain descent and first descent dimin-
ished. This is mainly due to the fact that the results for first descent improved quite
a lot; only in 15 of the 42 cases, of which 7 for data set E, there is no improvement.
For partial gain descent, the improvements are much less. For data set E there is no
improvement at all, while for the K data sets, there are only small improvements for
L ≥ 8. Only for data set G, the improvements are substantial.

In Table 7 we present the average running times. This table should be compared to
Table 5, where the same is listed for the hill climber. For small L the running times
did not increase very much,3 but for larger L the differences grow, especially for first
descent. This is in agreement with the fact that for small L the computation is stopped,

3 Note that for data set G and L = 3 the hill climber seemed to take more time; this is due to rounding.

123

150 G. Post et al.

Table 6 Results for the good schedules and both descents

Set Start 2 3 4 5 6 7 8 9 10 11 12

K1 100 96.4 95.1 94.8 94.9 92.9 92.1 92.1 91.4 91.9 91.1 91.7

100 96.5 95.2 95.0 95.5 93.0 93.6 93.1 91.0 93.8 92.3 92.7

K2 100 95.6 94.8 94.3 93.8 93.6 93.5 93.2 92.9 93.2 93.2 93.2

100 96.2 94.7 94.2 94.1 93.8 93.7 93.4 93.0 93.1 92.6 92.8

E 100 97.4 97.3 95.1 94.6 93.3 93.2 92.6 92.5 92.1 91.6 91.2

100 97.5 96.9 94.6 94.5 92.4 93.1 92.7 92.8 92.5 92.8 92.8

G 100 94.2 91.7 90.8 89.2 87.5 86.1 85.2 83.8 82.5 – –

100 94.3 92.0 90.9 89.3 87.7 86.7 85.0 83.9 83.2 – –

Table 7 Running times for the good schedules and both descents

L 2 3 4 5 6 7 8 9 10 11 12

K1 4.3 5.0 5.6 5.4 5.6 6.2 6.7 7.1 6.5 8.5 18.4

3.8 4.6 4.8 5.6 6.8 6.8 9.4 11.0 9.4 20.0 20.3

K2 3.4 4.0 4.3 4.0 4.2 4.3 4.7 5.0 5.4 5.6 7.4

2.5 3.5 4.1 3.7 4.1 4.1 5.1 5.3 6.0 6.4 7.1

E 1.2 1.6 1.6 1.6 1.8 1.9 1.9 2.0 2.0 2.0 2.5

1.3 1.5 1.7 1.7 1.9 1.8 1.8 2.0 2.2 2.3 2.5

G 47 59 62 74 73 105 139 240 519 – –

43 63 63 84 105 192 244 596 5,007 – –

because no new cycle was found, while for larger L , it is more often the case that
cycles are still found, but they do not improve the result. For large L the results of
partial gain descent and first descent are comparable. Note however that the running
times in first descent are usually larger than in the partial gain descent.

6.4 Using oscillating descent

The results in Table 6 show that it is useful to continue the search based on our neigh-
bourhood, even if for some time no better solution is found. This situation seems a
paradox: we execute a negative cycle, but initially the obtained solutions are worse.
Still, after doing this for some time, we end up with better solutions. In other words, we
try to do local optimization, but end up doing diversification, leading to improvements
later on. In this subsection we try to improve this behaviour a little bit by allowing
small cost increases from time to time. It is not meant as a systematic study, but arose
out of curiosity: is it possible to improve the results even further, using the same
neigbourhoods?

The method we employ is the following: we start performing our basic algorithm
with partial gain descent. If no better timetable is found for some time, we switch to
first descent, and allow a (small) cost increase (of 10 maximally) per cycle. We chose

123

Cyclic transfers in school timetabling 151

Table 8 Results for the good schedules and oscillating descent

Set Start 2 3 4 5 6 7 8 9 10 11 12

K1 100 94.4 92.5 91.7 89.8 89.1 86.7 87.7 87.6 86.7 85.9 88.0

K2 100 94.7 91.8 89.3 89.9 89.0 87.7 89.3 88.1 89.2 89.3 89.4

E 100 96.8 94.8 90.7 90.0 88.4 89.5 89.1 87.2 88.2 88.4 87.8

G 100 92.8 88.5 87.5 85.5 83.8 82.9 83.6 84.3 88.7 90.7 94.4

an ‘oscillation period’ of 15 rounds, of which we wait 11 rounds before switching to
first descent mode. However:

– Each time the new timetable has the same cost as the previous timetable, we wait
one round less.

– Each time the new timetable is better than the previous timetable, we wait one
round more.

After four rounds of first descent, we turn back to partial gain descent, and start
counting again. The period of four rounds with first descent are meant to improve the
diversification. Switching from partial gain descent to first descent has two advanta-
ges: first descent is faster, and first descent might choose different types of cycles to
execute. The parameters 11 (for partial gain mode) and 4 (for first descent mode) are
rather arbitrary, and were set with the idea that we shouldn’t wait too long, and should
not divert too much. In pseudo code our method looks as follows.
function OscillatingDescent(TimeTable);
begin
while time left do begin

i := 11;
while i > 0 do begin

NewTimeTable = CyclicTransfersPartialGain(TimeTable);
if NewTimeTable.Cost > TimeTable.Cost then i := i - 1;
if NewTimeTable.Cost = TimeTable.Cost then i := i - 2;
TimeTable := NewTimeTable;

end;
for i := 1 to 4 do

TimeTable := CyclicTransfersFirstDescentMaxCost10(TimeTable);
end; % of time left
return BestTimeTable;

end;

The results are shown for the good schedules in Table 8 and for the bad schedules
in Table 9. We fixed a running time of 100 s for the data sets K1, K2 and G, and 250 s
for data set G.

Comparing to the results in the Tables 4 and 6 we see a significant improvement
of around 5% for seven out of the eight cases. Only for the good schedules of data
set G the difference is smaller: the best result for partial gain descent is 82.5%, while
in oscillating descent it is 82.9%. Note however that the time needed to reach 82.5 %
was 519 s, which is twice as much as in oscillating descent.

Another result which is prominent is that the best results are reached for L = 7 in
five of the eight cases. Hence it pays off to use cycles longer than three or four, but in
this phase of the optimisation it seems useless to use cycles of length more than ten.

123

152 G. Post et al.

Table 9 Results for the bad schedules and oscillating descent

Set Start 2 3 4 5 6 7 8 9 10 11 12

K1 100 94.1 90.4 88.1 88.6 86.2 85.6 86.2 84.1 84.4 86.1 86.2

K2 100 83.1 74.1 71.4 71.5 69.7 68.3 68.6 69.1 69.8 70.5 72.8

E 100 95.1 93.5 90.1 89.0 88.5 88.3 87.7 88.9 88.7 89.1 88.4

G 100 89.8 85.3 79.1 73.8 70.8 68.7 71.8 75.7 80.7 85.7 91.2

7 Conclusions

Our aim was to show how cyclic transfers can be used in high school timetabling.
Though the improvement graph cannot exactly model our problem, we are able to
use it in a profitable way. Especially for long cycles, we encounter serious problems
which usually lead to the cost changes being underestimated.

The algorithm we use for finding the negative cycles in the improvement graph, is
a recursive method based on the lemma in Sect. 4.3. For the smaller graphs of the data
sets K1, K2, and E, the performance is above expectation. For the larger data set G, the
performance becomes a problem if long cycles are allowed. An obvious method for
performance improvement is updating the network after a cycle is executed, instead of
rebuilding as we do now. Especially when using first descent, generating the network,
and more specifically calculating the costs of the thousands of arcs will take time,
which can be avoided by more than 90% in most cases.

For the cases K1, K2, and E the oscillating descent gives improvements of more
than 10% for maximum cycle length 7. For the bad schedules of the data sets K2
and G the improvements are over 30%. For data set G the higher improvements can
be explained from the size of the data set, and the way the original schedules were
created: for all data sets we use a similar generation time, which, apparently, led to
relatively poor solutions for G. For K2, we can note that the bad schedules compared
to the good ones, are of poorer quality than for other data sets.

We did not attempt fine tuning of our methods, as far as parameter settings are
concerned. We are convinced that adapting parameters to the data sets will give even
better results.

Acknowledgments We thank Dr. Maria Kavanagh for proof reading of the manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Abdullah S, Ahmadi S, Burke EK, Dror M (2007) Investigating Ahuja–Orlin’s large neighbourhood search
approach for examination timetabling. OR Spectr 29:351–372

Abdullah S, Ahmadi S, Burke EK, Dror M, McCollum B (2007) A tabu-based large neighbourhood search
methodology for the capacitated examination timetabling problem. J Oper Res Soc 58:1494–1502

123

Cyclic transfers in school timetabling 153

Abramson D (1991) Constructing school timetables using simulated annealing: sequential and parallel
algorithms. Manag Sci 37:98–113

Agarwal R, Ahuja R, Laporte G, Shen Z (2003) A composite very large-scale neighborhood search algorithm
for the vehicle routing problem. In: Handbook of scheduling: algorithms, models and performance
analysis, Chap 49. Chapman & Hall/CRC, Boca Raton

Agarwal R, Ergun O, Orlin J, Potts C (2004) Solving parallel machine scheduling problems with variable
depth local search. Working paper, Operations Research Center, MIT, Cambridge, MA

Ahmadi S, Barone R, Burke E, Cheng P, Cowling P, McCollum B (2002) Integrating human abilities and
automated systems for timetabling: a competition using STARK and HuSSH representations at the
PATAT 2002 conference. In: Proceedings of the 4th international conference on the practice and theory
of automated timetabling (PATAT 2002), KaHo St.-Lieven, Gent, pp 265–273

Ahuja R, Orlin J, Sharma D (2001) Multi-exchange neighborhood structures for the capacitated minimum
spanning tree problem. Math Program 91:71–97

Ahuja RK, Ergun O, Orlin JB, Punnen AP (2002) A survey of very large-scale neighborhood search tech-
niques. Discret Appl Math 123:75–102

Ahuja R, Jha K, Orlin J, Sharma D (2002) Very large-scale neighborhood search for the quadratic assignment
problem. Working Paper, Operations Research Center, MIT, Cambridge, MA

Alvarez-Valdes R, Martin G, Tamarit JM (1996) Constructing good solutions for the Spanish school timet-
abling problem. J Oper Res Soc 47:1203–1215

Birbis T, Daskalali S, Housos E (1997) Timetabling for Greek high schools. J Oper Res Soci 48:1191–1200
Birbis T, Daskalali S, Housos E (2008) School timetabling for quality student and teacher schedules.

J Sched. doi:10.1007/s10951-008-0088-2
Boland N, Dethridge J, Dumitrescu I (2006) Accelerated label setting algorithms for the elementary resource

constrained shortest path problem. Oper Res Lett 34:58–68
Burke EK, Petrovic S (2002) Recent research directions in automated timetabling. Eur J Oper Res 140:

266–280
Carter MW, Laporte G (1998) Recent developments in practical course timetabling. In: Burke E, Carter M

(eds) Practice and theory of automated timetabling II. Lecture notes in computer science, vol 1408.
Springer, Berlin, pp 3–19

Cheng P, Barone R, Cowling P, Ahmadi S (2002) Opening the information bottleneck in complex scheduling
problems with a novel representation: STARK diagrams. Diagrammatic representations and inference:
second international conference, Diagrams 2002, pp 264–278

Cheng P, Barone R, Ahmadi S, S, Cowling P (2003) Integrating human abilities with the power of automated
scheduling systems: representational epistemological interface design. In: AAAI spring symposium
on human interaction with autonomous systems in complex environments

Colorni A, Dorigo M, Maniezzo V (1998) Metaheuristics for high school timetabling. Comput Optim Appl
9:275–298

Cooper TB, Kingston J (1993) The solution of real instances of the timetabling problem. Comput J 36:645–
653

Cowling P, Ahmadi S, Cheng P, Barone R (2002) Combining human and machine intelligence to produce
effective examination timetables. In: Proceedings of the 4th Asia-Pacific conference on simulated
evolution and learning (SEAL2002), pp 662–666

de Gans OB (1981) A computer timetabling system for secondary schools in the Netherlands. Eur J Oper
Res 7:175–182

de Haan P, Landman R, Post G, Ruizenaar H (2007) A case study for timetabling in a Dutch secondary
school. In: Burke E, Rudová H (eds) Practice and theory of automated timetabling VI. Lecture Notes
in Computer Science, vol 3867. Springer, Berlin, pp 267–279

de Werra D (1985) An introduction to timetabling. Eur J Oper Res 19:151–162
de Werra D (1999) On a multiconstrained model for chromatic scheduling. Discret Appl Math 94
Deineko V, Woeginger G (2000) A study of exponential neighborhoods for the travelling salesman problem

and for the quadratic assignment problem. Math Programm 87:255–279
Drexl A, Salewski F (1997) Distribution requirements and compactness constraints in school timetabling.

Eur J Oper Res 102:193–214
Ergun O (2001) New neighborhood search algorithms based on exponentially large neighborhoods. PhD

dissertation, Massachusetts Institute of Technology, Cambridge, MA
Hertz A (1991) Tabu search for large scale timetabling problems. Eur J Oper Res 54:39–47

123

http://dx.doi.org/10.1007/s10951-008-0088-2

154 G. Post et al.

Jha K (2004) Very large-scale neighborhood search heuristics for combination optimization problems.
PhDdissertation, University of Florida

Kingston JH (2001) Modelling timetabling problems with STTL. In: Burke EK, Erben W (eds) Practice and
theory of automated timetabling III. Lecture notes in computer science, vol 2079. Springer, Berlin, pp
309–321

Kingston JH (2005) A tiling algorithm for high school timetabling. In: Burke E, Trick M (eds) Practice and
theory of automated timetabling V. Lecture notes in computer science, vol 3616. Springer, Berlin, pp
208–225

Lawrie NH (1969) An integer linear programming model of a school timetabling problem. Comput J
12:307–316

Lin S, Kernighan B (1973) An effective heuristic algorithm for the traveling salesman problem. Oper Res
21:498–516

Meyers C, Orlin JB (2007) Very large-scale neighborhood search techniques in timetabling problems. In:
Burke E, Rudová H (eds) Practice and theory of automated timetabling VI. Lecture notes in computer
science, vol 3867, pp 24–39

Post G, Ahmadi S, Daskalaki S, Kingston JH, Kyngas J, Nurmi C, Ranson D, Ruizenaar H (2008) An XML
format for Benchmarks in high School Timetabling. In: Proceeding of the 7th international conference
on the practice and theory of automated timetabling (PATAT 2008)

Punnen A, Kabadi S (2002) Domination analysis of some heuristics for the traveling salesman problem.
Discret Appl Math 119:117–128

Ribeiro Filho G, Nogueira Lorena LA (2001) A constructive approach to school timetabling. In: Boers EJW
et al (eds) EvoWorkshop 2001. Lecture notes in computer scienLawr69ce, vol 2037. Springer, Berlin,
pp 130–139

Santos HG, Ochi LS, Souza MJF (2004) An efficient tabu search heuristic for the school timetabling prob-
lem. In: Ribeiro CC, Martins SL (eds) WEA 2004. Lecture notes in computer science, vol 3059.
Springer Verlag, pp 468–481

Santos HG, Uchoa E, Ochi LS, Maculan N (2008) Strong bounds with cut and column generation for class-
teacher timetabling. In: Proceedings of the 7th international conference on the practice and theory of
automated timetabling PATAT 2008

Schaerf A (1999) A survey of automated timetabling. Artif Intell Rev 13:87–127
Schaerf A (1999) Local search techniques for large high school timetabling problems. IEEE Trans Syst

Man Cybern Part A Syst Hum 29:368–377
Smith KA, Abramson D, Duke D (2003) Hopfield neural networks for timetabling: formulations, methods

and comparative results. Comput Indus Eng 44:283–305
Thompson PM, Orlin JB (1989) The theory of cyclic transfer. Working paper OR200-89, Operation Research

Center, MIT, Cambridge, MA
Thompson PM, Psaraftis HN (1993) Cyclic transfer algorithm for multivehicle routing and scheduling

problems. Oper Res 41:935–946
Valouxis C, Housos E (2003) Constraint programming approach for school timetabling. Comput Oper Res

30:1555–1572
Willemen RJ (2002) School timetable construction; algorithms and complexity. PhD-thesis, Technical

University Eindhoven, The Netherlands
Wright M (1996) School timetabling using heuristic search. J Oper Res Soc 47:347–357
Yagiura M, Ibaraki T (2004) Recent metaheuristic algorithms for the generalized assignment problem.

In: Proceedings of the twelfth international conference on informatics research for development of
knowledge society infrastructure, pp 229–237, Kyoto, Japan

Yagiura M, Iwasaki S, Ibaraki T, Glover F (2004) A very large-scale neighborhood search algorithm for
the multi-resource generalized assignment problem. Discret Optim 1:87–98

123

	Cyclic transfers in school timetabling
	Abstract
	1 Introduction
	2 Problem definition
	2.1 The assets
	2.2 The constraints

	3 Literature review
	4 The improvement graph
	4.1 Cyclic exchanges and the objective value
	4.2 Construction of the improvement graph
	4.2.1 Nodes and arcs
	4.2.2 Cost on arcs
	4.2.3 Resources

	4.3 Algorithm for finding negative cycles
	4.4 Algorithm and imperfections of the network model

	5 Data sets
	5.1 Real world data
	5.1.1 K1
	5.1.2 K2
	5.1.3 G
	5.1.4 E

	6 Experiments and results
	6.1 Experimental set-up
	6.2 Experiments with cyclic transfers as hill climber
	6.3 Further experiments with cyclic transfers
	6.4 Using oscillating descent

	7 Conclusions
	Acknowledgments
	References

