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Abstract Specializing a general framework of logical analysis of data for efficiently
handling large-scale genomic data, we develop in this paper a probe design method
for selecting short oligo probes for genotyping applications. When tested on genomic
sequences obtained from the National Center of Biotechnology Information in vari-
ous monospecific and polyspecific in silico experiments, the proposed probe design
method was able to select a small number of oligo probes of length 7 or 8 nucleo-
tides that perfectly classified all unseen testing sequences. These results demonstrate
the efficacy of the proposed probe design method and illustrate the usefulness and
potential a well-designed optimization-based probe selection method has in genotyp-
ing applications.

Keywords Oligo probes · Microarrays · LAD · Set covering · Classification ·
Optimization · SARS · AI

1 Introduction

Between November 1, 2002 and July 31, 2003, Severe Acute Respiratory Syndrome
(SARS) virus infected 8,096 people and proved fatal to 774 worldwide.1 The avian
influenza (AI) virus subtype H5N1 alone infected 152 people worldwide between 2003

1 From http://www.who.int/csr/sars/country/table2004_04_21/en/index.html, accessed on January 30,
2006.
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and January 2006, and 83 died of the disease.2 Luckily, none of the outbreaks of SARS
and AI infections at the beginning of the new millennium brought about the worst-case
scenario. Alarmingly, influenza experts seem to agree that another pandemic may be
imminent (Webby and Webster 2003) and, as of this writing, a fearful AI H5N1 virus
continues to spread in part of Asia and Europe.

A microarray or a DNA chip is a small glass or silica surface bearing DNA probes.
Probes are single stranded reverse transcribed mRNAs, each located at a specific spot
of the chip for hybridization with its Watson–Crick complementary sequence in a
target to form the double helix (e.g., Schena 1999; Stears et al. 2003). Microarrays
currently use two forms of probes, namely, oligonucleotide (shortly, oligo) and cDNA,
and have prevalently been used in the analysis of gene expression levels, which mea-
sures the amount of gene expression in a cell by observing hybridization of mRNA to
different probes, each targeting a specific gene. With the ability to identify a specific
target in a biological sample, microarrays are also well suited for detecting biological
agents for genetic and chronic disease (e.g., Eom et al. 2004; Heller et al. 1997; Lee
and Lee 2003; Liu et al. 2003). Furthermore, as viral pathogens can be detected at the
molecular and genomic level much before the onset of physical symptoms in a patient,
the microarray technology can be used for an early detection of patients infected with
viral pathogens (e.g., Sengupta et al. 2003; Vernet 2002; Wang et al. 2002; Zhou et al.
2005).

The success of microarrays depends on the quality of probes that are tethered on
the chip. Having an optimized set of probes is beneficial for two obvious reasons. One,
the background hybridization is minimized; hence true gene expression levels can be
more accurately determined (e.g., Li and Stormo 2001). The other, as the number of
oligos needed per gene is minimized, the cost of each microarray is minimized or the
number of genes on each chip is increased, yielding oligo fingerprinting a much faster
and more cost-efficient technique (e.g., Borneman et al. 2001; Li and Stormo 2001).
Short probes consisting of 15–25 nucleotides (nt) are used in genotyping applications
(e.g., Stears et al. 2003). Having short optimal probes means a high genotyping accu-
racy in terms of both sensitivity and specificity (e.g., Li and Stormo 2001; Sengupta
et al. 2003), hence can play a key role in genotyping applications. For example, in a
pandemic, an effective method for selecting short optimal probes may be used in the
mass production of a cost-efficient device for screening for the disease in suspected
or susceptible hosts. Reverse genetics would be the most rapid means by which to
produce an antigenically matched vaccine in a pandemic (Webby and Webster 2003).
An effective probe selection methodology can identify conserved regions of a viral
family and hence may prove useful in the preparation of a vaccine via reverse genetics.
Furthermore, the methodology can promote the availability of affordable home testing
kits for accurate and confidential diagnosis of genetic and infectious disease and allow
advanced and adequate medical treatment planning for patients.

A well-studied problem in machine learning and data mining deals with the dis-
covery of a classification rule for different types of data. The probe design, say, for
genotyping applications, can be roughly stated as selecting oligo probes for detecting

2 From http://www.who.int/csr/disease/avian_influenza/country/cases_table_2006_01_25/en/index.html,
accessed on January 30, 2006.
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a specific disease-agent in genomic sequences, hence falls into the realm of classi-
cal classification. Thus far, this interesting problem at the intersection of molecular
biology and optimization has received relatively little attention from the optimiza-
tion community, and systematic oligo design methods proposed so far are based on
a simple greedy procedure (Herwig et al. 2000), the set covering-based classification
methodology (Borneman et al. 2001), support vector machines (Lee and Lee 2003),
an evolutionary algorithm (Eom et al. 2004; Lee et al. 2004), and mixed integer and
linear programming (Klau et al. 2004), briefly summarizing.

From the perspective of numerical optimization, genomic data present an unprec-
edented challenge for supervised learning approaches for a number of reasons. To
name a few, first, genomic data are long sequences over the nucleic acid alphabet
� = {A,C,G,T}. Second, for example, the complexity of viral flora, owing to con-
stantly evolving viral serotypes, requires a supervised learning theory to be trained
on a large collection of target and non-target samples. That is, a typical training set
contains a large number of large-scale samples. Furthermore, a supervised learning
framework usually requires a systematic pairing or differencing between each target
and non-target samples during the course of training a decision rule (e.g., Borneman
et al. 2001; Boros et al. 2000; Klau et al. 2004; Rahmann 2003). Owing to these and
the nature of general data analysis and classification (Megiddo 1988), a supervised
learning approach to classification of genomic data without specialized features for
efficiently handling large-scale data is confronted by a formidable challenge.

Based on a general framework of logical analysis of data (LAD) from Ryoo and
Jang (2005), we develop in this paper a probe design method for selecting short oligo
probes of length l nt, where l ∈ [6, 10]. To list some advantages of selecting oligo
probes by the proposed method, first, the method selects probes via sequential solution
of a small number of compact set covering (SC) instances, which offers a great advan-
tage from computational point of view. To be more specific, consider classification of
two types of data and suppose that a training set is comprised of m+ target and m−
non-target sequences. The size of the SC training instances solved by the proposed
method is minimum of m+ and m− orders of magnitude smaller than optimization
learning models used in Borneman et al. (2001) and Klau et al. (2004), for instance.
Second, the method uses the sequence information only and selects probes via opti-
mization based on principles of probability and statistics. That is, the probability of an
l-mer (oligo of length l) appearing in a single sequence by chance is (0.25)l . Unless
statistically significant, an l−mer appearing in multiple samples of one type and none
or only a few of the sequences of the other type by chance is extremely small. Third,
the proposed method does not rely on any extra tool, such as BLASTn (Altschul et
al. 1990), a local sequence alignment search tool that is commonly used for probe
selection (e.g., Sengupta et al. 2003; Wang et al. 2002; Wang and Seed 2003), or
the existence of pre-selected representative probes (e.g., Sengupta et al. 2003). This
makes the method truly stand-alone and free of problems that may possibly be caused
by limitations associated with external factors. As mentioned earlier, the proposed
probe design selects optimal probes via sequential solution of SC instances. Although
SC is NP-complete (Garey and Johnson 1979), its wide practical applications have
invited an array of efficient (meta-)heuristic solution procedures to be developed.
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Therefore, last, the proposed method is readily implementable for efficient selection
of oligo probes.

This paper is organized as follows. In Sect. 2, we specialize a LAD framework
from Ryoo and Jang (2005) for efficiently analyzing genomic sequences and develop
an effective method for selecting short oligo probes. In Sect. 3, we test the proposed
probe design algorithm in various in silico genotyping experiments using viral genomic
sequences and report superb experimental results. To summarize, in all monospecific
and polyspecific genotyping experiments on classification of viral pathogens using
genomic sequences obtained from the National Center of Biotechnology Information
website, the proposed probe design method selected a small number of probes of
length 7 or 8 nt that perfectly classified all unseen testing sequences. Classifying the
“noisy” human papillomavirus (HPV) sequences from the Los Alamos Laboratory by
high and low risk types, the proposed probe design method selected optimal probes
in a few CPU seconds that classified the testing sequences with 90.6% accuracy. For
comparison, Eom et al. (2004) and Park et al. (2003) experimented with the same
HPV dataset and reported the classification accuracy of 85.6 and 81.1%, respectively.
These in silico results demonstrate efficacy and efficiency of the proposed oligo design
method and further illustrate the usefulness and potential of a well-designed optimi-
zation-based probe design method in the forthcoming era of biotechnology. Finally,
Sect. 4 concludes the paper with a few remarks.

Before proceeding, we refer interested readers to Schena (1999), Stears et al. (2003)
and Vernet (2002) for background in microarray analysis and its usage in the diag-
nosis of infectious disease. Furthermore, as classification of more than two types of
data can be accomplished by sequential classification of two types of data (see, for
example, Cortes and Vapnik 1995; Ullman 1973; Vapnik 1998 and Sect. 3), we present
the material below in the context of the classification of + and − types of data for
convenience and without loss of generality.

2 Proposed probe selection method

The backbone of the proposed procedure is LAD. LAD is a relatively new supervised
learning methodology that is based on Boolean logic, combinatorics and optimization.
A typical implementation of LAD analyzes data on hand via four sequential stages
of data binarization, support feature selection, pattern generation and classification
rule formation. As a Boolean logic-based, LAD first converts all non-binary data into
equivalent binary observations. A+ (−) “pattern” in LAD is defined as a conjunction
of one or more binary attributes or their negations that distinguishes one or more +
(−) type observations from all − (+) observations. The number of attributes used in
a pattern is called the “degree” of the pattern. As seen from the definition, patterns
hold the structural information hidden in data. After patterns are generated, they are
aggregated into a partially defined Boolean discriminant function/rule to generalize
the discovered knowledge to classify new observations.

Referring readers to Boros et al. (2000), Hammer (1986) and Ryoo and Jang (2005)
for more background in LAD, we design a LAD-based method below for efficiently
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handling and analyzing large-scale genomic data and selecting optimal oligo probes
for genotyping applications.

2.1 Data binarization

Let there be m+ and m− sample observations of type + (target) and − (non-target),
respectively. For • ∈ {+,−}, let us use •̄ to denote the complementary element of •
with respect to the set {+,−}. Let S• denote the index set of m• sample sequences for
• ∈ {+,−}.

A DNA sequence is a sequence of nucleic acids A, C, G and T, and the training
sequences need to be converted into Boolean sequences of 0 and 1 before LAD can
be applied. Toward this end, we first choose an integer value for l, usually l ∈ [6, 10]
(see Sect. 3), generate all 4l possible l-mers over the four nucleic acid letters and then
number them consecutively from 1 to 4l by a mapping scheme. Next, each l-mer is
selected in turn and every training sample is fingerprinted with the oligo for its pres-
ence or absence. That is, with oligo j , we scan each sequence pi , i ∈ S+ ∪ S−, from
the beginning of the sequence and shifting to the right by a base and stamp

pi j =
{

1, if oligo j is present in sequence i ; and

0, otherwise.

After this, the oligos that appear in all or none of the training sequences can be
deleted from further consideration. We re-number the surviving l-mers consecutively
from 1 to n and replace the original training sequences described in the nucleic acid
alphabets by their Boolean representations. Let N = {1, . . . , n}.

2.2 Pattern generation

The data are now described by n attributes a j ∈ {0, 1}, j ∈ N . For observation
pi , i ∈ S•, • ∈ {+,−}, let pi j denote the binary value the j-th attribute takes
in this observation. Denote by l j the literal of binary attribute a j . Then, l j = a j

(l j = a j ) instructs to take (negate) the value of a j in all sequences. A term t is
a conjunction of literals. Given a term t , let Nt ⊆ N denote the index of literals
included in the term. Then, we have t = ∧

j∈Nt
l j . A • pattern is a term that satis-

fies t (pi ) := ∏
l j=a j , j∈Nt

pi j
∏

l j=ā j , j∈Nt
p̄i j = 1 for at least one pi , i ∈ S•, and

t (pk) = 0 for all pk , k ∈ S•̄. Note here that Nt of a • pattern identifies probes that
collectively distinguish one or more • sequences from the sequences of the other type.

To aid in presentation, let us temporarily introduce n additional features an+ j ,
j ∈ N , and use an+ j to negate a j . Let N ′ = {1, . . . , 2n} and let us introduce a binary
decision variable x j for a j , j ∈ N ′, to determine whether to include l j in a pattern.
Ryoo and Jang (2005) formulated a compact mixed integer and linear programming

123



254 K. Kim, H. S. Ryoo

(MILP) model below with respect to a reference sample pi , i ∈ S•, • ∈ {+,−}:

(MILP-2.i•)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z2.i = min
x,y,d

∑
l∈S•\{i}

yl

s. t.
∑
j∈Ji

x j = d

∑
j∈Ji

pl j x j + yl ≥ d, l ∈ S• \ {i}
∑
j∈Ji

pl j x j ≤ d − 1, l ∈ S•

1 ≤ d ≤ n
x ∈ {0, 1}n
0 ≤ y ≤ n,

where Ji := { j ∈ N ′ : pi j = 1} for pi , i ∈ S•. Consider the following.

Lemma 1 Let (x, y, d) denote a feasible solution of (MILP-2.i•). Let Nt = { j ∈ Ji :
x j = 1}. Then,

P :=
∧

j∈Ji ,x j=1

a j

forms a • pattern.

Proof First, via the first constraint of (MILP-2.i•) and the definition of Ji , we trivially
have

P(pi ) =
∏
j∈Nt

pi j = 1

for the reference observation pi , i ∈ S•. Next, the second set of hard constraints yields
that at least one of pl j = 0 for j ∈ Nt for each pl , l ∈ S•̄. This gives

P(pl) =
∏
j∈Nt

pl j = 0

for all pl , l ∈ S•̄, and completes the proof. ��
Lemma 1 shows that any feasible solution of (MILP-2.i•) can be used to form a •

pattern. Now, note that if yl = 0 for l ∈ S• \ {i} in the solution, then the • pattern P
formed also distinguishes pl from the •̄ observations. Therefore, with the objective of
minimizing the sum of yl ’s, the MILP model can be understood as a way to generate
a • pattern that distinguishes (more or less) a maximum number of • observations
from the •̄ observations. As easily seen, the number of 1’s in the (optimal) solution
determines the degree of the pattern generated.
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As demonstrated in Ryoo and Jang (2005), this model efficiently generates patterns
of all degree with equal ease, provided that the number of training samples used is
moderate and that n is not a big number. Genomic data are large-scale in nature,
however. Furthermore, owing to constantly evolving viral serotypes, the complexity
of viral flora is high and this requires large numbers of target and non-target viral
samples to be used for selecting optimal genotyping probes. Adding to these the diffi-
culties associated with numerical solution of MILP in general, we see that (MILP-2.i•)
presents no practical way of selecting genotyping probes.

With the need to develop a more efficient pattern generation scheme, we select a
reference sequence pi , i ∈ S•, • ∈ {+,−}, and set

a(i,k)
j =

{
1, if pi j 	= pkj ; and

0, otherwise,
(1)

for k ∈ S•̄ and j ∈ N . Next, we set

a(i,l)
j =

{
1, if pi j = pl j ; and

0, otherwise,

for l ∈ S• and j ∈ N . Now, consider the set covering model

(SC•i )

∣∣∣∣∣∣∣∣∣∣∣

minx,y
∑

j∈N c j x j +∑
l∈S•\{i} yl

s.t.
∑

j∈N a(i,l)
j x j + yl ≥ 1, l ∈ S• \ {i}∑

j∈N a(i,k)
j x j ≥ 1, k ∈ S•̄

x j ∈ {0, 1}, j ∈ N
yl ∈ {0, 1}, l ∈ S• \ {i},

where c j ( j ∈ N ) are positive real numbers (refer to Remark 4).

Theorem 1 Let (x, y) denote a feasible solution of (SC•i ). Then,

P :=
∧

xl=1,
p•il=1

al

∧
xl=1,
p•il=0

āl
(2)

forms a • LAD pattern.

Proof To show the result, we need to show that the conjunction of literals formed via
(2) distinguishes at least one • observation from all •̄ observations. Toward the end,
recall that pik = 1(0) indicates the presence (absence) and the absence (presence) of
probe k in the reference sequence selected pi , i ∈ S•, and in pk , k ∈ S•̄, respectively.
With the cover (x, y) of (SC•i ) on hand, let us subdivide the index set Nt = { j ∈ N :
x j = 1} into two subsets N 1

t := { j ∈ Nt : pi j = 1} and N 0
t := { j ∈ Nt : pi j = 0}.
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Observe now that

P(pi ) =
∏

l∈N 1
t

pil

∏
l∈N 0

t

p̄il = 1

for pi , i ∈ S•, hence P(pi ) = 1 for at least one • observation.
Note in (1) that a(i,k)

j = 1 if pi j 	= pkj for k ∈ S•̄. That is, a(i,k)
j = 1 implies that

exactly one of pi j and pkj equals 1 for pi and pk , k ∈ S•̄. The cover (x, y) of (SC•i )
by definition satisfies all constraints of (SC•i ), and the hard constraints of the problem
in the first set of cover inequalities require that at least one xl in the cover is set to 1
among l ∈ N with a(i,k)

l = 1 for all k ∈ S•̄. This in turn implies that at least one pkl

for l ∈ N 1
t or pil for l ∈ N 0

t equals 0 for all pk , k ∈ S•̄ and yields

P(pk) =
∏

l∈N 1
t

pkl

∏
l∈N 0

t

p̄kl = 0

for all pk , k ∈ S•̄, hence P(pi ) = 0 for all •̄ observations. ��
Note that P generated on the solution (x, y) of (SC•i ) via (2) also satisfies P(pl) = 1

for all l ∈ S• \ {i} with yl = 0. The following result is immediate.

Lemma 2 With a feasible solution (x, y) of (SC•i ), let Nt = { j ∈ N : x j = 1}. Then,
yl = 0 for l ∈ S• \ {i} if and only if plk = pik for all k ∈ Nt .

As (MILP-2.i•), (SC•i ) is also formulated in reference to pi for some i ∈ S• and
finds a cover that distinguishes most • observations from the •̄ observations. Therefore,
although not identical, (SC•i ) can be seen as an SC version of (MILP-2.i•). Although
smaller than the MILP model by only one constraint and one integer variable, (SC•i )
has a much simpler structure and is defined only in terms of 0–1 variables. In addition,
owing to having a wide range of practical applications, SC has invited the develop-
ment of an array of efficient (meta-)heuristic solution procedures (e.g. Caprara et al.
1999 and references therein) and any of these can be used for solving (SC•i ) (refer to
Remark 1). From the computational point of view, therefore, (SC•i ) is much preferred
over its MILP counterpart.

Note that (SC•i ) is defined by m+ + m− − 1 cover inequalities and n + m• − 1
binary variables. Also, recall that n is large for genomic sequences and the analysis of
viral sequences requires large numbers of target and non-target sequences, that is, m+
and m− are also large numbers. To develop a more compact SC-based probe selection
model, we select a reference sequence pi , i ∈ S•, • ∈ {+,−}, and set the values of
a(i,k)

j for k ∈ S•̄ and j ∈ N via (1). Consider the following SC model

(SC-pg•i )

∣∣∣∣∣∣
minx

∑
j∈N c j x j

s.t.
∑

j∈N a(i,k)
j x j ≥ 1, k = 1, . . . , m •̄

x j ∈ {0, 1}, j ∈ N .

where c j ’s are positive reals (again, refer to Remark 4).
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Theorem 2 Let x denote a feasible solution of (SC-pg•i ). Then, P generated on x via
(2) forms a • LAD pattern.

Proof Same as the proof for Theorem 1. ��
We immediately have the following result that can be used for efficiently identifying

the • observations that are also distinguished from the •̄ observations by the pattern
generated on the solution of (SC-pg•i ).

Lemma 3 With a feasible solution x of (SC-pg•i ), generate a • pattern P via (2).
Then, P distinguishes every • sequence pl , l ∈ S•, with plk = pik for all k ∈ Nt from
the •̄ observations, where Nt = { j ∈ N : x j = 1}.

Note that (SC-pg•i ) can be considered as a relaxation of (SC•i ): to see this, project
(SC•i ) onto the space of x. Generally speaking, therefore, a feasible solution of (SC•i )
has more x j ’s set to 1 in it than in a feasible solution of (SC•i ) formulated on the
same data, hence tends to generate a higher degree pattern that generally explains a
difference between the target and non-target sequences. As more • observations are
distinguished from the •̄ observations at a time by a solution of (SC•i ), it is formulated
and solved for a less number of times for generating a set of • patterns that collec-
tively distinguish all • observations from the •̄ data in a dataset under analysis (refer to
the oligo selection procedure detailed below). On the other hand, (SC-pg•i ) generates
per solution a lower degree pattern that explains the specific difference between the
reference • observation and the •̄ sequences and, hence, is formulated and solved for
a more number of times for generating a set of • patterns. Overall, the two models
select about the same number of probes. However, as (SC-pg•i ) is much smaller in
size, hence, is more efficiently solved, and because a high specificity is desired in
genotyping applications, we prefer (SC-pg•i ) for selecting genotyping oligo probes.

Using (SC-pg•i ), we design one simple oligo probe selection procedure below, where
P• denotes the set of • patterns generated so far.

procedure SC-pg
begin

for • ∈ {+,−} do
set P• = ∅ and S← S•.
while S 	= ∅ do

- randomly choose pi , i ∈ S, and formulate (SC-pg•i ).
- solve (SC-pg•i ).
- generate a • pattern P via (2).
- set P• ← P• ∪ {P}.
- set S← S \ {i} \ { j ∈ S, j 	= i : p jk = pik,∀k ∈ Nt }.

end while
end for

end

The following is immediate.

Theorem 3 procedure SC-pg terminates finitely.

A few remarks are due now.
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Remark 1 Simply put, the number of 1’s in the covers generated via procedure
SC-pg determines the number of probes to be used for a specific genotyping pur-
pose. In other words, the quality of an SC solution determines the cost of genotyping
applications.

SC is a well-known NP-complete problem (Garey and Johnson 1979). Owing
to having a wide range of practical applications (despite its simple structure), SC has
invited an array of (meta-)heuristic solution procedures to be developed for its efficient
heuristic solution (e.g., Caprara et al. 1999 and references therein) and any of these
can be used for solving (SC-pg•i ). In fact, the genotyping accuracy is not affected at
all as long as the covers found are near-optimal and “good enough” (see results in the
following section) and this was the rationale behind our developing SC-based probe
selection models in this paper: recall that probe selection is a large-scale combinatorial
optimization problem in nature.

Furthermore, the efficiency of SC heuristic solution procedures allows one to apply
procedure SC-pg or the similar directly to the binarized data to generate patterns
without going through the feature selection phase. This is another benefit the SC-based
pattern generation offers over its MILP counterparts from Ryoo and Jang (2005) or
the standard term-enumeration-based procedure for generating patterns in the LAD
literature (e.g., Boros et al. 2000).

Remark 2 If constraint j in (SC-pg•i ) has all zero coefficients, the SC instance is infea-
sible. This case arises when the reference sequence pi , i ∈ S•, and the sequence p j ,
j ∈ S•̄, have identical 0–1 fingerprints, which is a contradiction. Supervised learning
methodologies, including LAD, presume for the existence of a classification function
that each unique sequence in the training set belongs to exactly one of the two clas-
ses. When this holds, contradiction-free 0–1 clones of the original data can always be
obtained by using oligos of longer length for data binarization.

Remark 3 If desired, the hybridization affinity of probes can be ensured in a number
of ways, including the following. First, during data binarization, one can remove from
further consideration each l-mer with the GC content less than a prescribed level or
with the melting temperature calculated via, for example, the formula found in Wang
and Seed (2003) that falls outside a certain prescribed range from the median melting
temperature of all l-mers generated. Next, the proposed LAD-based method can be
applied to select an optimal set of probes on the surviving l-mers that are “compatible”
in terms of their hybridization behavior.

Remark 4 (SC-pg•i ) is a general-purpose model and can be specialized to select a mini-
mal set of optimal oligo probes by any quantifiable probe selection criterion. For exam-
ple, one may use the longest common factors from Rahmann (2003) or the OVL scores
from Herwig et al. (2000) for c j values in (SG-pg•i ) to select probes by the (dis-)simi-
larity preference. One may use, for example, the Shannon entropy scores from Herwig
et al. (2000) for c j ’s and incorporate the complexity of oligos in probe selection.

2.3 Classification rules

Denote by P+1 , . . . , P+n+ and P−1 , . . . , P−n− the positive and negative patterns, respec-
tively, generated via procedure SC-pg. In classifying unseen + (target) and −
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(non-target) sequences, we use three decision rules. First, in polyspecific genotyp-
ing applications (see, for example, Experiment 4 in Sect. 3.2), we form the standard
LAD classification rule (Boros et al. 2000)

� :=
n+∑
i=1

ω+i
|S+| P

+
i −

n−∑
i=1

ω−i
|S−| P

−
i , (3)

where ω•i denotes the number of • training sequences covered by P•i and assign class
+ (−) to new sequence p if �(p) > 0 (�(p) < 0). We fail to classify sequence p if
�(p) = 0.

For the monospecific genotyping, we use a strict classification rule. Specifically,
for classification of two viral (sub-)types (see, for example, Experiment 1 in Sect. 3.2),
we form a decision rule by

�+ :=
n+∑
i=1

P+i and �− :=
n−∑
i=1

P−i (4)

and assign p to class • if �•(p) > 0 while �•̄(p) = 0. When �•(p) > 0 and
�•̄(p) > 0 or when �•(p) = 0 and �•̄(p) = 0, we fail in classifying the sequence.

For the monospecific classification of more than two viral (sub-)types k = 1, . . . , m
(see, for example, Experiment 7 in Sect. 3.2), we use the decision rule

�k :=
nk∑

i=1

Pk
i , (5)

where Pk
1 , . . . , Pk

nk
are the probe(s) selected to for virus (sub-)type k, and assign p to

class k if �k(p) > 0 while �i (p) = 0 for all i = 1, . . . , m, i 	= k. When �(p) > 0
for more than two virus types or �k = 0 for all k, then we fail to assign a class to
sequence p.

3 In silico experiments

In this section, we extensively test the proposed probe design for classification of
viral disease-agents in in silico setting. To make these experiments as “realistic” as
possible, we design each of these experiments based on information from the litera-
ture and the official website of the World Health Organization (WHO) and use viral
genomic sequences obtained from the National Center for Biotechnology Information
(NCBI) and human papillomavirus (HPV) sequences from the Los Alamos National
Laboratory. To be more specific about the data used, we obtained the HPV data from
the Los Alamos National Laboratory site for illustrative and comparative purposes.
These data correspond to the 72 high and low risk HPV sequences that are used in
Eom et al. (2004) and Park et al. (2003). Although some of these manually classified
virus sequences contain classification errors (Eom et al. 2004), we used the data with
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Table 1 Viral sequences used in experiments

Viral sequence Number
Length

Minimum Average ± standard deviation Maximum

Human papillomavirus (HPV):

High risk HPV 18 449 7,365 ± 1,730 7,989

Low risk HPV 54 455 7,198 ± 1,683 8,027

SARS coronavirus 105 29,350 29,692 ± 91 29,765

Coronavirus 39 9,203 29,013 ± 3,569 31,526

Other virus:

Human respiratory syncytial virus 10 13,933 15,091 ± 386 15,226

Human adenovirus 32 34,125 35,215 ± 618 36,015

Human parainfluenza virus 4 15,646 15,652 ± 3 15,654

Human rhinovirus (A, B) 8 7,102 7,157 ± 36 7,212

Influenza virus (A, B, C) 53 838 1,701 ± 527 2,368

Influenza virus hemagglutinin (H) subtype:

H1 137 1,698 1,749 ± 24 1,778

H3 660 1,695 1,735 ± 21 1,768

H5 148 1,677 1,721 ± 25 1,779

H7 77 1,659 1,690 ± 27 1,792

H9 93 1,683 1,704 ± 26 1,742

H else (2, 4, 6, 8, 11, 12, 13, 16) 65 1,689 1,742 ± 29 1,773

Influenza virus neuraminidase (N ) subtype:

N1 218 1,344 1,410 ± 39 1,463

N2 1,050 1,341 1,434 ± 28 1,467

N3 44 1,326 1,411 ± 29 1,460

N else (4, 5, 6, 7, 8, 9) 64 1,341 1,434 ± 25 1,467

their classification from Park et al. (2003) to allow a comparison among our result
and results reported in Eom et al. (2004) and Park et al. (2003). For the experiments
on genotyping viral pathogens, we used genomic sequences of SARS virus, influenza
virus classified by their hemagglutinin (H) and neuraminidase (N) types (influenza
viruses are typed according to their H and N surface glycoproteins), coronavirus and
other viral agents of disease with SARS-like symptoms. In Table 1, we provide the
number and the length (the minimum, average ± 1 standard deviation and maximum
length) of each type of the genomic data used in our experiments.

In analyzing data in an experiment, we first decided on a length of oligos to use
by calculating the smallest integer value l such that 4l became larger than or equal to
the average of the lengths of target and non-target sequences of the experiment. Then,
4l candidate oligos were generated to fingerprint and binarize the data. If the length
of oligos turned out to be not long enough during the pattern generation stage (see
Remark 2), the data binarization stage was repeated with the value of l incremented
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by 1 and this process was repeated until the binary representations of the data became
contradiction free. Next, procedure SC-pg was applied to generate patterns, hence,
probes. In applying procedure SC-pg in these in silico experiments, we did not con-
sider any oligo picking criterion that is non-theoretical in nature (refer to Remark 4)
and selected a minimal set of oligo probes with using c j = 1 for all j ∈ N . For solving
the unicost (SC-pg•i )’s generated, we used for ease of implementation the textbook
heuristic procedure (e.g., Nemhauser and Wolsey 1988) that selects one variable at a
time by the rule

k ← argmax
{

j ∈ N , x j = 0 : ∣∣I j ∩ Mu
∣∣} ,

where I j denotes the index of rows k with a(i,k)
j = 1 and Mu denotes the set of rows

that are not yet covered by the partial cover x on hand.
In each of the experiments in this section, in order to fairly assess the classification

capabilities of oligo probes selected by the proposed probe design procedure, we

1. randomly selected 90% of the target and of the non-target data to form a training
set of sequences;

2. binarized the training data;
3. selected optimal oligo probes on the training data via procedure SC-pg;
4. formed a classification rule by one of (3), (4) and (5) with the selected oligo

probes;
5. used the classification rule to (sub-)type each of the reserved testing sequences,

consisting of the remaining 10% of the target and the non-target sequences; and
6. repeated steps above 20 times to obtain the average testing performance and other

relevant information of the experiment.

The computational platform used for experiments was an Intel 2.66GHz Pentium
Linux PC with 512Mb of memory.

3.1 A comparative experiment: classification of high and low risk HPV

Infection with HPV is the main cause of cervical cancer, the second most common
cancer in women worldwide (Bosch et al. 2002; Muñoz et al. 2003). There are more
than 80 identified types of HPV and the genital HPV types are subdivided into high
and low risk types: low risk HPV types are responsible for most common sexually
transmitted viral infections while high risk HPV types are a crucial etiological factor
for the development of cervical cancer (e.g., McFadden and Schumann 2001).

We applied the proposed probe design method on the 72 HPV sequences down-
loaded from the Los Alamos National Laboratory with their classification found in
Table 3 of Park et al. (2003). The selected probes were used to form a decision rule
by (3) and tested for their classification capability.

Results from this polyspecific probe selection experiment are provided in Table 2.
In this and the other tables in this section, the target (+) and the non-target (−) virus
types of the experiments are specified in the first column. Then, the tables provide two
bits of information on the candidate oligos, namely, the length l and the average and
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Table 2 Polyspecific classification of high and low risk HPV

Experiment l-mers used Probes selected Testing

l Numbera Numbera Patterns accuracya,b

High risk HPV (+) vs.
8 58,359.9 ± 130.4

18.7 ± 1.7 Degree 1 & 2 patterns
90.6 ± 9.8

Low risk HPV (−) 22.8 ± 1.6 Degree 1 & 2 patterns

a In format average ± standard deviation
b Percentage of correct classifications of testing/unseen data

the standard deviation of the number of features generated and used in the 20 runs of
each experiment for data binarization and for pattern generation: recall that we skip
the feature selection stage of LAD (see Remark 1). Provided next in the tables is the
information on the number of probes selected in the format “the average± 1 standard
deviation” and information on the LAD patterns generated. Finally, the testing per-
formance of the probes selected is provided in the format “the average ± 1 standard
deviation” of the percentage of the correct classifications of the unseen sequences.

Briefly summarizing, the proposed probe design method selected probes on the
HPV data in a few CPU seconds that tested 90.6% accurate in classifying unseen HPV
samples. For comparison, the same HPV dataset was used in Eom et al. (2004) and
Park et al. (2003) for the classification of HPV by high and low risk types. In brief,
the probe design methods of Eom et al. (2004) and Park et al. (2003) required several
CPU hours of computation and selected probes that obtained 85.6 and 81.1% correct
classification rates, respectively.

Before moving on, we note that the sequences belonging to the target and the non-
target groups in this experiment all have different HPV subtypes (see Table 3 in Park
et al. 2003). The combination of all target and non-target sequences being different
from one another and the presence of noise in the data (the classification errors) gave
rise to selecting a relatively large number of polyspecific probes in this experiment.

3.2 Experiments on genotyping viral pathogens

The proposed probe design method was extensively tested on genomic viral sequences
from NCBI for selecting monospecific and polyspecific probes for screening for SARS
and AI in a number of different binary and multicategory experimental setting and
performed superbly on all counts. We summarize the results from some of these exper-
iments in this section.

Before proceeding, we briefly illustrate the benefit of probe selection via (SC-pg•i )
from the computational point of view with Experiment 5 below. For the purpose, let
us first recall that probe selection is a combinatorial optimization problem. Therefore,
for the selection of oligo probes for differentiating lethal AI virus H5 and H9 from
the other AI virus H subtypes in Experiment 5, a supervised learning method based
on a complete pairwise differencing of the target and non-target training sequences
(e.g., Borneman et al. 2001; Boros et al. 2000; Klau et al. 2004; Rahmann 2003)
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Table 3 Monospecific classification of SARS virus and coronavirus, a phylogenetically closest sibling of
SARS

Experiment 1 l-mers used Probes selected Testing

l Numbera Numbera Patterns generated accuracya,b

SARS virus (+)
8 57,745.3 ± 306.1

1 ± 0 Degree 1
100 ± 0

Coronavirus (−) 1 ± 0 Degree 1

a In format average ± standard deviation
b Percentage of correct classifications of testing/unseen data

would require solving one or more combinatorial optimization problems with between
(148+93)×(137+660+77+65) = 226, 299 and 137×660×148×77×93×65 ≈
6.23× 1012 rows (refer to Table 1 above for the numbers of the target and non-target
viral sequences) and with at least 39, 056 0–1 decision variables (see Table 7 for the
average number of l−mers generated in this experiment). For Experiment 5, we note
in comparison that the largest (SC-pg•i ) instance generated and solved by procedure
SC-pg had max{148+ 93, 137+ 660+ 77+ 65} = 939 rows and 39, 056 columns.

Experiment 1 SARS virus vs. coronavirus.
SARS virus is phylogenetically most closely related to group 2 coronavirus (Snijder

et al. 2003). 105 SARS sequences and 39 coronavirus samples were used to select 1
monospecific probe for screening for SARS. Used in a classification rule (4), the SARS
probe and one probe selected for coronavirus together perfectly classified all testing
sequences (see Table 3).

Experiment 2 SARS virus vs. influenza virus.
This experiment simulates a SARS pandemic where suspected patients with SARS-

like symptoms are screened for the disease. We used the 105 SARS virus sequences
and 107 samples of other influenza virus types (the “other virus” in Table 1) in this
experiment and selected polyspecific probes. Used in a classification rule (3), these
probes collectively gave the perfect classification of all testing sequences (see Table 4).

Experiment 3 Classification of pathogenic AI virus H7 and other influenza virus H
subtypes.

AI virus H7N7 is highly pathogenic with the capacity to pass from human-to-human,
and this raised concerns for a possible viral reassortment with human influenza H1N1
and H3N2 strains during a large outbreak of H7N7 infection in the Netherlands in
2003 (Koopmans et al. 2004; Webby and Webster 2003).

Based on information from Koopmans et al. (2004), we replicated the classifica-
tion of H7 and other influenza virus H subtypes in this experiment by using 77 H7
sequences and 1,103 other H subtype samples. Polyspecific probes were selected and
tested in a classification rule (3) to give the perfect classification rate (see Table 5).

Experiment 4 Classification of pathogenic AI virus H5 and H7 and other influenza
virus H subtypes.
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H5 and H7 have an ominous capacity to pass from human to human (http://www.
who.int; Webby and Webster 2003). This experiment, using 225 H5 and H7 viral sam-
ples and 955 other H subtype sequences, selected polyspecific probes for detecting the
two pathogenic H subtypes of the AI virus from the other influenza virus H subtypes
and vice versa. A classification rule was formed by (3) for testing the selected probes,
and we obtained the perfect testing result (see Table 6).

Experiment 5 Classification of lethal AI virus H5 and H9 and other influenza virus
H subtypes.

AI virus H5 and H9 subtypes cause a most fatal form of the disease (Koopmans
et al. 2004), and they were separated from the other H subtypes of influenza virus in
this experiment. 241 H5 and H9 target sequences and 939 other H subtype sequences
were used to select polyspecific probes for detecting AI virus H5 and H9 subtypes
from the rest. In a classification rule (3), the selected probes collectively classified all
testing sequences correctly (see Table 7).

Experiment 6 Monospecific classification of SARS, human influenza H1, human
influenza H3, AI H5 and AI H7 virus.

This multicategory classification experiment selects monospecific probes for dis-
tinguishing one from another a few notorious viral pathogens. We used 103 SARS
virus, 137 human influenza virus H1, 660 human influenza virus H3, 148 lethal AI
virus H5 and 77 pathogenic AI virus H7 sequences and selected monospecific probes
for each virus type in sequential binary classification of “one type against the rest.” The
selected probes were tested in a classification rule (5) to classify the testing sequences
p by a strict decision rule of “assign class i to p only if one or more probes selected
for virus type i is found in p while none of the probes selected for the other types
are not” and gave the perfect classification result (see Table 8; Note that only a small
number of monospecific probes were selected, as in Experiment 1).

Experiment 7 Monospecific Classification of N1, N2 and N3 influenza virus.
The statement “monospecific neuraminidase (NA) subtype probes were insuffi-

ciently diverse to allow confident NA subtype assignment” from Sengupta et al. (2003)
motivated us to design this experiment on multicategory and monospecific classifica-
tion of influenza virus by N subtypes. We used the three influenza virus N subtypes
with 30 or more samples in Table 1 and selected monospecific probes for their classi-
fication. Tested in a classification rule (5), the selected probes performed perfectly in
classifying all testing sequences (see Table 9; note again that only a small number of
monospecific probes were selected and proved “needed” in this experiment, as in the
other two monospecific genotyping experiments, Experiments 1 and 6).

4 Concluding remarks

The problem of probe design for hybridization-based experiments is an interesting
problem lying at the intersection of molecular biology and optimization but has
received relatively little attention from the OR community. In this paper, we special-
ized a general LAD framework from Ryoo and Jang (2005) for efficiently handling
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Table 4 Classification of SARS virus and influenza virus that cause disease with SARS-like symptoms

Experiment 2 l-mers used Probes selected Testing

l Numbera Numbera Patterns generated accuracya,b

SARS virus (+)
8 64,141.5 ± 36.5

1 ± 0 Degree 1
100 ± 0

Influenza virus (−) 10.1 ± 0.8 Degree 1 only

a In format average ± standard deviation
b Percentage of correct classifications of testing/unseen data

Table 5 Classification of highly pathogenic H7 AI virus (with capacity to pass from human to human) and
other H subtypes of influenza virus

Experiment 3 l-mers used Probes selected Testing

l Numbera Numbera Patterns generated accuracya,b

H7 (+)
7 14,724.2 ± 30.9

1 ± 0 Degree 1
100 ± 0

Other H strains (−) 7 ± 1 Degree 1 only

a In format average ± standard deviation
b Percentage of correct classifications of testing/unseen data

Table 6 Classification of highly pathogenic H5 and H7 AI virus and other H subtypes of influenza virus

Experiment 4 l-mers used Probes selected Testing

l Numbera Numbera Patterns generated accuracya,b

H5 & H7 (+)
8 39,164.4 ± 333

15.7 ± 1.5 Degree 1 only
100 ± 0

Other H strains (−) 27.6 ± 1.2 Degree 1 only

a In format average ± standard deviation
b Percentage of correct classifications of testing/unseen data

Table 7 Classification of fatal H5 & H9 AI virus and other H subtypes of influenza virus

Experiment 5 l-mers used Probes selected Testing

l Numbera Numbera Patterns generated accuracya,b

H5 & H9 (+)
8 39,056 ± 398.3

6.7 ± 0.5 Degree 1 only
100 ± 0

Other H strains (−) 21.6 ± 1.3 Degree 1 only

a In format average ± standard deviation
b Percentage of correct classifications of testing/unseen data
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Table 8 Monospecific classification of SARS virus and H1, H3, H5 and H7 subtypes of influenza virus

Experiment 6 l-mers used Probes selected Testing

l Numbera Numbera Patterns generated accuracya,b

SARS virus

8 45,259 ± 527

1 ± 0 Degree 1

100 ± 0
H1 1 ± 0 Degree 1

H3 2.9 ± 0.3 Degree 1 only

H5 3 ± 0 Degree 1 only

H7 1 ± 0 Degree 1

a In format average ± standard deviation
b Percentage of correct classifications of testing/unseen data

Table 9 Monospecific classification of N1, N2 and N3 subtypes of influenza virus

Experiment 7 l-mers used Probes selected Testing

l Numbera Numbera Patterns generated accuracya,b

N1
7 13,151 ± 39.3

3 ± 0 Degree 1
100 ± 0N2 3.7 ± 0.5 Degree 1 only

N3 1 ± 0 Degree 1

a In format average ± standard deviation
b Percentage of correct classifications of testing/unseen data

large-scale genomic data and developed a probe design method for selecting short
oligo probes for genotyping applications. Extensively tested on genomic sequences
obtained from the National Center of Biotechnology Information and the Los Alamos
National Laboratory in various monospecific and polyspecific in silico experiments,
the proposed probe design method was able to select a small number of oligo probes
of length 7 or 8 nucleotides that performed superbly in classifying unseen testing
sequences. These in silico results demonstrate the efficacy of the proposed oligo de-
sign method. Experimental results further illustrate a huge potential a well-designed
optimization-based probe design method has in hybridization-based genotyping appli-
cations.

Collaborative research activities are planned to realize the in silico performance of
the proposed probe design method on microarrays and in real hybridization experi-
ments. Also, we plan to investigate the possibility of exploiting frequently used oligo
selection criteria (e.g., Herwig et al. 2000; Lee et al. 2004; Li and Stormo 2001;
Rahmann 2003) within the proposed probe design framework to further improve its
effectiveness in terms of the number of probes needed.
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