Skip to main content
Log in

Preparation and characterization of nanofibrous scaffolds containing copper nanoparticles and curcumin for wound healing applications

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Advanced therapeutic dressings are the current research interest that achieves rapid and complete wound healing. The healing of skin wounds demonstrates a remarkable cellular function process that is distinct in nature and involves the interaction of various cells, growth factors, and cytokines. In this study, nanofibrous scaffolds were prepared using poly(ε-caprolactone) and polylactic acid as mat scaffolds. Also, copper nanoparticles (CuNPs) and curcumin were added to fabricate a hybrid nanocomposite scaffold using the electrospinning technique. The fabricated scaffolds were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), tensile analysis, porosity, and water vapor transmission rate. SEM analysis proved the nanostructured fibers have suitable porosity without any beads. The presence of CuNPs in the PCL-Cu nanofibrous mat was confirmed by TEM analysis. The tensile test confirmed an increase and decrease in the elongation ratio by CuNPs and curcumin addition, respectively. The biocompatibility and cell attachment to the nanofibers were proved by MTT and DAPI staining which proved a significantly positive effect of curcumin in the cell growth. The scaffold can hinder both the gram-negative and gram-positive bacteria through direct contact with them. This research study showed that the addition of CuNPs and curcumin in the hybrid nanocomposite scaffold compensates for each other's shortcomings and has the potential to be used in wound healing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boateng J, Catanzano O (2015) Advanced therapeutic dressings for effective wound healing—a review. J Pharm Sci 104:3653–3680. https://doi.org/10.1002/jps.24610

    Article  CAS  PubMed  Google Scholar 

  2. Shahriari-Khalaji M, Hu G, Chen L, Cao Z, Andreeva T, Xiong X, Krastev R, Hong FF (2021) Functionalization of aminoalkylsilane-grafted bacterial nanocellulose with ZnO-NPs-doped pullulan electrospun nanofibers for multifunctional wound dressing. ACS Biomater Sci Eng 7:3933–3946. https://doi.org/10.1021/acsbiomaterials.1c00444

    Article  CAS  PubMed  Google Scholar 

  3. Al-Alwany A (2021) Iatrogenic atrial septal defect post radiofrequency ablation in patients with left atrial SVT: predictors and outcomes. Revista Latinoamericana de Hipertension 15:185–191. https://doi.org/10.5281/zenodo.5651240

    Article  Google Scholar 

  4. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542. https://doi.org/10.1177/147323000903700531

    Article  CAS  PubMed  Google Scholar 

  5. Thu H-E, Zulfakar MH, Ng S-F (2012) Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int J Pharm 434:375–383. https://doi.org/10.1016/j.ijpharm.2012.05.044

    Article  CAS  PubMed  Google Scholar 

  6. Al-Zuhairy SAS, Kadhum WR, Alhijjaj M, Kadhim MM, Al-Janabi AS, Salman AW, Al-Sharifi HKR, Khadom AA (2022) Development and evaluation of biocompatible topical petrolatum-liquid crystal formulations with enhanced skin permeation properties. J Oleo Sci 71:ess21344. https://doi.org/10.5650/jos.ess21344

    Article  CAS  Google Scholar 

  7. Hjazi A (2023) The effects of Capsicum annuum supplementation on lipid profiles in adults with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Phytother Res 37:3859–3866. https://doi.org/10.1002/ptr.7922

    Article  PubMed  Google Scholar 

  8. Percival NJ (2002) Classification of wounds and their management. Surg Infect 20:114–117. https://doi.org/10.1383/surg.20.5.114.14626

    Article  Google Scholar 

  9. Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S (2020) Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12(8):735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kadhum WR, See GL, Alhijjaj M, Kadhim MM, Arce FJ, Al-Janabi AS, Al-Rashidi RR, Khadom AA (2022) Evaluation of the skin permeation-enhancing abilities of newly developed water-soluble self-assembled liquid crystal formulations based on hexosomes. Crystals 12:1238. https://doi.org/10.3390/cryst12091238

    Article  CAS  Google Scholar 

  11. Enoch S, Leaper DJ (2005) Basic science of wound healing. Surg Infect 23:37–42. https://doi.org/10.1383/surg.23.2.37.60352

    Article  Google Scholar 

  12. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923. https://doi.org/10.1002/jps.21210

    Article  CAS  PubMed  Google Scholar 

  13. Chen D, Hou Q, Zhong L, Zhao Y, Li M, Fu X (2019) Review article bioactive molecules for skin repair and regeneration : progress and perspectives. Stem Cells Int 2019:6789823

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu M, Duan X-P, Li Y-M, Yang D-P, Long Y-Z (2017) Electrospun nanofibers for wound healing. Mater Sci Eng, C 76:1413–1423. https://doi.org/10.1016/j.msec.2017.03.034

    Article  CAS  Google Scholar 

  15. Naghavi Alhosseini S, Moztarzadeh F, Karkhaneh A, Dodel M, Khalili M, Eslami Arshaghi T, Elahirad E, Mozafari M (2019) Improved cellular response on functionalized Polypyrrole interfaces. J Cellular Physiol 234:15279–15287. https://doi.org/10.1002/jcp.28173

    Article  CAS  Google Scholar 

  16. Endo T, Inoue Y, Kato S, Kaminaka H, Ifuku S (2023) Effects of chitin nanofiber application on plant growth and its differences by soil type. Asian J Agricult Rural Develop 13:163–172. https://doi.org/10.55493/5005.v13i3.4820

    Article  Google Scholar 

  17. Amiri H, Babapour A, Fallahi M, Azimi N, Hadidi A (2023) Optimization of energy in oil pipelines covered with nanofibers of phase change materials using CFD. Iran J Chem Chem Eng. https://doi.org/10.30492/ijcce.2023.2001283.6000

    Article  Google Scholar 

  18. Zahedi P, Rezaeian I, Ranaei-Siadat S, Jafari S, Supaphol P (2010) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 21:77–95. https://doi.org/10.1002/pat.1625

    Article  CAS  Google Scholar 

  19. Meinel AJ, Germershaus O, Luhmann T, Merkle HP, Meinel L (2012) European Journal of Pharmaceutics and Biopharmaceutics Electrospun matrices for localized drug delivery : current technologies and selected biomedical applications. Eur J Pharm Biopharm 81:1–13. https://doi.org/10.1016/j.ejpb.2012.01.016

    Article  CAS  PubMed  Google Scholar 

  20. Kadhum WR, Al-Zuhairy SAS, Mohamed MBM, Abdulrahman AY, Kadhim MM, Alsadoon Z, Teoh TC (2021) A nanotechnological approach for enhancing the topical drug delivery by newly developed liquid crystal formulations. Int J Drug Delivery Technol 11:716–720. https://doi.org/10.25258/ijddt.11.3.11

    Article  Google Scholar 

  21. Esmaeili E, Eslami-Arshaghi T, Hosseinzadeh S, Elahirad E, Jamalpoor Z, Hatamie S, Soleimani M (2020) The biomedical potential of cellulose acetate/polyurethane nanofibrous mats containing reduced graphene oxide/silver nanocomposites and curcumin: antimicrobial performance and cutaneous wound healing. Int J Biol Macromol 152:418–427. https://doi.org/10.1016/j.ijbiomac.2020.02.295

    Article  CAS  PubMed  Google Scholar 

  22. Hosseinzadeh S, Hamedi S, Esmaeili E, Kabiri M, Babaie A, Soleimani M, Ardeshirylajimi A (2019) Mucoadhesive nanofibrous membrane with anti-inflammatory activity. Polym Bull 76:4827–4840. https://doi.org/10.1007/s00289-018-2618-1

    Article  CAS  Google Scholar 

  23. Altaher Y, Kandeel M (2022) Structure-activity relationship of anionic and cationic polyamidoamine (PAMAM) dendrimers against Staphylococcus aureus. J Nanomater 2022:1–5. https://doi.org/10.1155/2022/4013016

    Article  CAS  Google Scholar 

  24. Santoro M, Shah SR, Walker JL, Mikos AG (2016) Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev 107:206–212. https://doi.org/10.1016/j.addr.2016.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Donya H, Darwesh R, Ahmed MK (2021) Morphological features and mechanical properties of nanofibers scaffolds of polylactic acid modified with hydroxyapatite/CdSe for wound healing applications. Int J Biol Macromol 186:897–908. https://doi.org/10.1016/j.ijbiomac.2021.07.073

    Article  CAS  PubMed  Google Scholar 

  26. Sharifi M, Bahrami SH, Nejad NH, Milan PB (2020) Electrospun PCL and PLA hybrid nanofibrous scaffolds containing Nigella sativa herbal extract for effective wound healing. J Appl Polym Sci 137:9–11. https://doi.org/10.1002/app.49528

    Article  CAS  Google Scholar 

  27. Esmaeili E, Didekhani R, Gohari Z, Khalili M (2023) Fabrication and characterization of PCL@PAN nanofibrous scaffold containing nature-derived oyster shell for bone tissue engineering applications. Appl Phys A 129:670. https://doi.org/10.1007/s00339-023-06943-0

    Article  CAS  ADS  Google Scholar 

  28. Khalili M, Keshvari H, Imani R, Sohi AN, Esmaeili E, Tajabadi M (2021) Study of osteogenic potential of electrospun <scp>PCL</scp> incorporated by dendrimerized superparamagnetic nanoparticles as a bone tissue engineering scaffold. Polym Adv Technol. https://doi.org/10.1002/pat.5555

    Article  Google Scholar 

  29. Khalili M, Khalili A, Bokov DO, Golmirzaei M, Oleneva MS, Naghiaei N, Radmehr M, Esmaeili E (2022) Preparation and characterization of bi-layered polycaprolactone/polyurethane nanofibrous scaffold loaded with titanium oxide and curcumin for wound dressing applications. Appl Phys A 128:497. https://doi.org/10.1007/s00339-022-05646-2

    Article  CAS  ADS  Google Scholar 

  30. Vonbrunn E, Mueller M, Pichlsberger M, Sundl M, Helmer A, Wallner SA, Rinner B, Tuca A-C, Kamolz L-P, Brislinger D, Glasmacher B, Lang-Olip I (2020) Electrospun PCL/PLA scaffolds are more suitable carriers of placental mesenchymal stromal cells than collagen/elastin scaffolds and prevent wound contraction in a mouse model of wound healing. Front Bioeng Biotechnol 8:1–16. https://doi.org/10.3389/fbioe.2020.604123

    Article  Google Scholar 

  31. Patrício T, Bártolo P (2013) Thermal stability of PCL/PLA blends produced by physical blending process. Proc Eng 59:292–297. https://doi.org/10.1016/j.proeng.2013.05.124

    Article  CAS  Google Scholar 

  32. Luo Y, Lin Z, Guo G (2019) Biodegradation assessment of poly (Lactic Acid) filled with functionalized Titania nanoparticles (PLA/TiO2) under compost conditions. Nanoscale Res Lett 14:56. https://doi.org/10.1186/s11671-019-2891-4

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Nevoralová M, Koutný M, Ujčić A, Starý Z, Šerá J, Vlková H, Šlouf M, Fortelný I, Kruliš Z (2020) Structure characterization and biodegradation rate of Poly(ε-caprolactone)/Starch blends. Front Mater 7:1–14. https://doi.org/10.3389/fmats.2020.00141

    Article  Google Scholar 

  34. Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L (2023) Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. Netherlands. https://doi.org/10.1007/s11051-023-05690-w

    Article  Google Scholar 

  35. Hosseini MR, Ahangari M, Johar MH, Allahkaram SR (2021) Optimization of nano HA-SiC coating on AISI 316L medical grade stainless steel via electrophoretic deposition. Mater Lett 285:129097. https://doi.org/10.1016/j.matlet.2020.129097

    Article  CAS  Google Scholar 

  36. Esmaeili E, Ghiass MA, Vossoughi M, Soleimani M (2017) Hybrid magnetic-DNA directed immobilisation approach for efficient protein capture and detection on microfluidic platforms. Sci Rep 7:194. https://doi.org/10.1038/s41598-017-00268-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Sabet M, Salavati-Niasari M, Esmaeili E (2016) Synthesis of zinc sulfide nanostructures with different sulfur sources via mild hydrothermal route: investigation of crystal phase and morphology. J Inorg Organomet Polym Mater 26:738–743. https://doi.org/10.1007/s10904-016-0374-y

    Article  CAS  Google Scholar 

  38. Esmaeili E, Sabet M, Salavati-Niasari M, Zarghami Z, Bagheri S (2016) Effect of sulfur source on cadmium sulfide nanostructures morphologies via simple hydrothermal route. J Cluster Sci 27:351–360. https://doi.org/10.1007/s10876-015-0934-2

    Article  CAS  Google Scholar 

  39. Qiu J, Wei WD (2014) Surface plasmon-mediated photothermal chemistry. J Phys Chem C 118:20735–20749. https://doi.org/10.1021/jp5042553

    Article  CAS  Google Scholar 

  40. Salvo J, Sandoval C (2022) Role of copper nanoparticles in wound healing for chronic wounds: literature review. Burns & Trauma. 10:tkab047. https://doi.org/10.1093/burnst/tkab047

    Article  Google Scholar 

  41. Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, Maheshwari RK (1998) Enhancement of wound healing by curcumin in animals. Wound Repair Regeneration 6:167–177. https://doi.org/10.1046/j.1524-475X.1998.60211.x

    Article  CAS  PubMed  Google Scholar 

  42. Shefa AA, Sultana T, Park MK, Lee SY, Gwon JG, Lee BT (2020) Curcumin incorporation into an oxidized cellulose nanofiber-polyvinyl alcohol hydrogel system promotes wound healing. Mater Des 186:108313. https://doi.org/10.1016/j.matdes.2019.108313

    Article  CAS  Google Scholar 

  43. Sharma D, Satapathy BK (2022) Optimization and physical performance evaluation of electrospun nanofibrous mats of PLA, PCL and their blends. J Ind Text 51:6640S-6665S. https://doi.org/10.1177/1528083720944502

    Article  CAS  Google Scholar 

  44. Antunes BP, Moreira AF, Gaspar VM, Correia IJ (2015) Chitosan/arginine–chitosan polymer blends for assembly of nanofibrous membranes for wound regeneration. Carbohyd Polym 130:104–112. https://doi.org/10.1016/j.carbpol.2015.04.072

    Article  CAS  Google Scholar 

  45. Ahmed L, Atif R, Eldeen TS, Yahya I, Omara A, Eltayeb M (2019) Study the using of nanoparticles as drug delivery system based on mathematical models for controlled release. Int J Latest Technol Eng Manag Appl Sci 8:52–56

    Google Scholar 

  46. Esmaeili E, Khalili M, Sohi AN, Hosseinzadeh S, Taheri B, Soleimani M (2019) Dendrimer functionalized magnetic nanoparticles as a promising platform for localized hyperthermia and magnetic resonance imaging diagnosis. J Cell Physiol 234:12615–12624. https://doi.org/10.1002/jcp.27849

    Article  CAS  PubMed  Google Scholar 

  47. Miguel S, Ribeiro M, Coutinho P, Correia I (2017) Electrospun Polycaprolactone/Aloe Vera_chitosan nanofibrous asymmetric membranes aimed for wound healing applications. Polymers 9:183. https://doi.org/10.3390/polym9050183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luyt AS, Gasmi S (2018) Influence of TiO2 nanoparticles on the crystallization behaviour and tensile properties of biodegradable PLA and PCL nanocomposites. J Polym Environ 26:2410–2423. https://doi.org/10.1007/s10924-017-1142-y

    Article  CAS  Google Scholar 

  49. Suamte L, Tirkey A, Barman J, Jayasekhar Babu P (2023) Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Mater Manufact 1:100011. https://doi.org/10.1016/j.smmf.2022.100011

    Article  Google Scholar 

  50. Chen Y-P, Liu H-Y, Liu Y-W, Lee T-Y, Liu S-J (2019) Determination of electrospinning parameters’ strength in Poly(D, L)-lactide-co-glycolide micro/nanofiber diameter tailoring. J Nanomater 2019:1–8. https://doi.org/10.1155/2019/2626085

    Article  CAS  ADS  Google Scholar 

  51. Yuan TT, DiGeorge Foushee AM, Johnson MC, Jockheck-Clark AR, Stahl JM (2018) Development of electrospun chitosan-polyethylene oxide/fibrinogen biocomposite for potential wound healing applications. Nanoscale Res Lett 13:88. https://doi.org/10.1186/s11671-018-2491-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  52. Oh E, Kim E, Park Y (2018) Evaluation of the moisture transfer property of waterproof breathable fabric under low-temperature conditions depending on the pore size and distribution. Cloth Text Res J 36:310–323. https://doi.org/10.1177/0887302X18783089

    Article  Google Scholar 

  53. Prasad S, DuBourdieu D, Srivastava A, Kumar P, Lall R (2021) Metal-curcumin complexes in therapeutics: an approach to enhance pharmacological effects of curcumin. Int J Mol Sci 22:7094. https://doi.org/10.3390/ijms22137094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gholami M, Zeighami H, Bikas R, Heidari A, Rafiee F, Haghi F (2020) Inhibitory activity of metal-curcumin complexes on quorum sensing related virulence factors of Pseudomonas aeruginosa PAO1. AMB Express 10:111. https://doi.org/10.1186/s13568-020-01045-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huo P, Han X, Zhang W, Zhang J, Kumar P, Liu B (2021) Electrospun nanofibers of Polycaprolactone/collagen as a sustained-release drug delivery system for artemisinin. Pharmaceutics 13:1228. https://doi.org/10.3390/pharmaceutics13081228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in Zebrafish ( Danio rerio ). Environ Sci Technol 41:8178–8186. https://doi.org/10.1021/es071235e

    Article  CAS  PubMed  ADS  Google Scholar 

  57. Pohanka M (2019) Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Bratislava Med J 120:397–409. https://doi.org/10.4149/BLL_2019_065

    Article  CAS  Google Scholar 

  58. Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25:135101. https://doi.org/10.1088/0957-4484/25/13/135101

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Zheng D, Huang C, Huang H, Zhao Y, Khan MRU, Zhao H, Huang L (2020) Antibacterial mechanism of curcumin: a review. Chem Biodiver 17:e2000171. https://doi.org/10.1002/cbdv.202000171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Hereby, we extend our gratitude to the stem cell technology research center.

Funding

There are no funders to report for this submission.

Author information

Authors and Affiliations

Authors

Contributions

MK analyzed conceptualization, formal analysis, funding acquisition, investigation, methodology, project administration, validation, visualization, and writing—original draft. AA performed methodology, writing—original draft, and investigation. SM developed software and formal analysis. YQA provided data curation and original draft. EAMS prepared data curation. AARC did data curation. RMRP approved data curation. KP conducted data curation. MR revised review & editing. EE carried out conceptualization, project administration, funding acquisition, supervision, resources, formal analysis, validation, and writing.

Corresponding author

Correspondence to Elaheh Esmaeili.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, M., Afrouzan, A., Mehrjou, S. et al. Preparation and characterization of nanofibrous scaffolds containing copper nanoparticles and curcumin for wound healing applications. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05148-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05148-6

Keywords

Navigation