Skip to main content
Log in

Tuning the swelling behavior and primary amino content of gelatin-DOPA bioconjugate films crosslinked with either genipin or GPTMS

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The 3,4-dihydroxyphenyl-l-alanine (DOPA) is responsible for the outstanding adhesiveness of foot proteins secreted by mussels. Thanks to DOPA these invertebrates could adhere to various surfaces under wet conditions. Inspired by this natural phenomenon, the DOPA could be bioconjugate with a natural polymer to approach the properties of mussel foot proteins. These bioconjugates can be used to create patches and injectable bioadhesives to stop bleeding in medical emergencies. In this work, the DOPA was bioconjugate with gelatin employing N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrocloride (EDC) coupling agents. Up to 67% of bioconjugation degree was achieved when the EDC:NHS ratio was set to 1:1. However since the gelatin is highly soluble in water, the bioconjugate is also soluble. To address this, the GD bioconjugate was manufactured into films and crosslinked with either genipin (GP) or (3-glycidyloxypropyl)trimethoxysilane (GPTMS). Fourier transform infrared spectroscopy showed the C–N and Si–O–Si bonds formed after the modification with GP and GPTMS, respectively. After crosslinking, the GD films modified with GP retained around half of the amino groups, in contrast to those modified with GPTMS which severely lost this functional group. the swelling degree was also higher in GD films treated with GP compared to GPTMS. These findings suggest that the GD films crosslinked with GP have potential use as a tissue adhesive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bal-Ozturk A, Cecen B, Avci-Adali M et al (2021) Tissue adhesives: from research to clinical translation. Nano Today. https://doi.org/10.1016/j.nantod.2020.101049

    Article  PubMed  Google Scholar 

  2. Correia C, Sousa RO, Vale AC et al (2022) Adhesive and biodegradable membranes made of sustainable catechol-functionalized marine collagen and chitosan. Colloids Surf B 213:112409. https://doi.org/10.1016/j.colsurfb.2022.112409

    Article  CAS  Google Scholar 

  3. Li D, Chen J, Wang X et al (2020) Recent advances on synthetic and polysaccharide adhesives for biological hemostatic applications. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00926

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen Y, Wu L, Li P et al (2020) Polysaccharide based hemostatic strategy for ultrarapid hemostasis. Macromol Biosci. https://doi.org/10.1002/mabi.201900370

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chan Choi Y, Choi JS, Jung YJ et al (2014) Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe3+ion crosslinking. J Mater Chem B 2(2):201–209. https://doi.org/10.1039/c3tb20696c

    Article  CAS  PubMed  Google Scholar 

  6. Pham T-N, Su C-F, Huang C-C et al (2020) Biomimetic hydrogels based on L-Dopa conjugated gelatin as pH-responsive drug carriers and antimicrobial agents. Colloids Surf B 196:111316. https://doi.org/10.1016/j.colsurfb.2020.111316

    Article  CAS  Google Scholar 

  7. Montazerian H, Hassani Najafabadi A, Davoodi E et al (2023) Poly-Catecholic functionalization of biomolecules for rapid gelation, robust injectable bioadhesion, and near-infrared responsiveness. Adv Healthcare Mater. https://doi.org/10.1002/adhm.202203404

    Article  Google Scholar 

  8. Wei K, Senturk B, Matter MT et al (2019) Mussel-inspired injectable hydrogel adhesive formed under mild conditions features near-native tissue properties. ACS Appl Mater Interfaces 11(51):47707–47719. https://doi.org/10.1021/acsami.9b16465

    Article  CAS  PubMed  Google Scholar 

  9. Adler C, Monavari M, Abraham GA et al (2023) Mussel-inspired polydopamine decorated silane modified-electroconductive gelatin-PEDOT:PSS scaffolds for bone regeneration. RSC Adv 13(23):15960–15974. https://doi.org/10.1039/d3ra01311a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghorbani F, Zamanian A, Behnamghader A et al (2018) A novel pathway for in situ synthesis of modified gelatin microspheres by silane coupling agents as a bioactive platform. J Appl Polym Sci 135(41):46739. https://doi.org/10.1002/app.46739

    Article  CAS  Google Scholar 

  11. Nouri-Felekori M, Khakbiz M, Nezafati N et al (2019) Comparative analysis and properties evaluation of gelatin microspheres crosslinked with glutaraldehyde and 3-glycidoxypropyltrimethoxysilane as drug delivery systems for the antibiotic vancomycin. Int J Pharm 557:208–220. https://doi.org/10.1016/j.ijpharm.2018.12.054

    Article  CAS  PubMed  Google Scholar 

  12. Yan M, An X, Jiang Z et al (2022) Effects of cross-linking with EDC/NHS and genipin on characterizations of self-assembled fibrillar gel prepared from tilapia collagen and alginate. Polym Degrad Stab 200:109929. https://doi.org/10.1016/j.polymdegradstab.2022.109929

    Article  CAS  Google Scholar 

  13. Inthamat P, Boonsiriwit A, Lee YS et al (2021) Effects of genipin as natural crosslinker on barrier and mechanical properties of chitosan-astaxanthin film. J Food Process Preserv 46(8):e15707. https://doi.org/10.1111/jfpp.15707

    Article  CAS  Google Scholar 

  14. Pirmoradian M, Hooshmand T, Najafi F et al (2022) Design, synthesis, and characterization of a novel dual cross-linked gelatin-based bioadhesive for hard and soft tissues adhesion capability. Biomed Mater. https://doi.org/10.1088/1748-605X/ac9268

    Article  PubMed  Google Scholar 

  15. Zhao Y, Sun Z (2018) Effects of gelatin-polyphenol and gelatin–genipin cross-linking on the structure of gelatin hydrogels. Int J Food Prop 20(sup3):S2822–S2832. https://doi.org/10.1080/10942912.2017.1381111

    Article  CAS  Google Scholar 

  16. Bigi A, Cojazzi G, Panzavolta S et al (2002) Stabilization of gelatin films by crosslinking with genipin. Biomaterials 23(24):4827–4832. https://doi.org/10.1016/s0142-9612(02)00235-1

    Article  CAS  PubMed  Google Scholar 

  17. Lapomarda A, Cerqueni G, Geven MA et al (2021) Physicochemical characterization of pectin-gelatin biomaterial formulations for 3D bioprinting. Macromol Biosci 21(9):2100168. https://doi.org/10.1002/mabi.202100168

    Article  CAS  Google Scholar 

  18. Bubnis WA, Ofner CM (1992) The determination of ϵ-amino groups in soluble and poorly soluble proteinaceous materials by a spectrophotometrie method using trinitrobenzenesulfonic acid. Anal Biochem 207(1):129–133. https://doi.org/10.1016/0003-2697(92)90513-7

    Article  CAS  PubMed  Google Scholar 

  19. Snyder SL, Sobocinski PZ (1975) An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem 64(1):284–288. https://doi.org/10.1016/0003-2697(75)90431-5

    Article  CAS  PubMed  Google Scholar 

  20. Cohen B, Pinkas O, Foox M et al (2013) Gelatin–alginate novel tissue adhesives and their formulation–strength effects. Acta Biomater 9(11):9004–9011. https://doi.org/10.1016/j.actbio.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  21. Cohen B, Shefy-Peleg A, Zilberman M (2013) Novel gelatin/alginate soft tissue adhesives loaded with drugs for pain management: structure and properties. J Biomater Sci Polym Ed 25(3):224–240. https://doi.org/10.1080/09205063.2013.849904

    Article  CAS  PubMed  Google Scholar 

  22. Kuijpers AJ, Engbers GHM, Krijgsveld J et al (2012) Cross-linking and characterisation of gelatin matrices for biomedical applications. J Biomater Sci Polym Ed 11(3):225–243. https://doi.org/10.1163/156856200743670

    Article  Google Scholar 

  23. Liang H-C, Chang W-H, Liang H-F et al (2004) Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide. J Appl Polym Sci 91(6):4017–4026. https://doi.org/10.1002/app.13563

    Article  CAS  Google Scholar 

  24. Bulpitt P, Aeschlimann D (1999) New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res 47(2):152–169. https://doi.org/10.1002/(sici)1097-4636(199911)47:2%3c152::aid-jbm5%3e3.0.co;2-i

    Article  CAS  PubMed  Google Scholar 

  25. Gowda AHJ, Bu Y, Kudina O et al (2020) Design of tunable gelatin-dopamine based bioadhesives. Int J Biol Macromol 164:1384–1391. https://doi.org/10.1016/j.ijbiomac.2020.07.195

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Cheong Ng S, Yu J et al (2019) Modification and crosslinking of gelatin-based biomaterials as tissue adhesives. Colloids Surf, B 174:316–323. https://doi.org/10.1016/j.colsurfb.2018.10.077

    Article  CAS  Google Scholar 

  27. Apte G, Repanas A, Willems C et al (2019) Effect of different crosslinking strategies on physical properties and biocompatibility of freestanding multilayer films made of alginate and chitosan. Macromol Biosci. https://doi.org/10.1002/mabi.201900181

    Article  PubMed  Google Scholar 

  28. Jafari-Sabet M, Nasiri H, Ataee R (2016) The effect of cross-linking agents and collagen concentrations on properties of collagen scaffolds. J Arch Milit Med. https://doi.org/10.5812/jamm.42367

    Article  Google Scholar 

  29. Amornkitbamrung U, In Y, Wang Z et al (2022) c-axis-oriented platelets of crystalline hydroxyapatite in biomimetic intrafibrillar mineralization of polydopamine-functionalized collagen type I. ACS Omega 7(6):4821–4831. https://doi.org/10.1021/acsomega.1c05198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jia Z, Hast K, Izgu EC (2021) Catecholamine-copper redox as a basis for site-specific single-step functionalization of material surfaces. ACS Appl Mater Interfaces 13(3):4711–4722. https://doi.org/10.1021/acsami.0c19396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ng W-C, Lokanathan Y, Fauzi MB et al (2023) In vitro evaluation of genipin-crosslinked gelatin hydrogels for vocal fold injection. Sci Rep. https://doi.org/10.1038/s41598-023-32080-y

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xu J, Strandman S, Zhu JXX et al (2015) Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials 37:395–404. https://doi.org/10.1016/j.biomaterials.2014.10.024

    Article  CAS  PubMed  Google Scholar 

  33. Rezaei H, Asefnejad A, Daliri Joupari M et al (2021) The physicochemical and mechanical investigation of siloxane modified gelatin/sodium alginate injectable hydrogels loaded by ascorbic acid and β-glycerophosphate. Mater Today Commun 26:101914. https://doi.org/10.1016/j.mtcomm.2020.101914

    Article  CAS  Google Scholar 

  34. Tonda-Turo C, Gentile P, Saracino S et al (2011) Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent. Int J Biol Macromol 49(4):700–706. https://doi.org/10.1016/j.ijbiomac.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  35. Rodríguez-González R, Bosch-Rué E, Díez-Tercero L et al (2022) Tailorable low temperature silica-gelatin biomaterials for drug delivery. Ceram Int 48(19):28659–28668. https://doi.org/10.1016/j.ceramint.2022.06.180

    Article  CAS  Google Scholar 

  36. Alavarse AC, Frachini ECG, da Silva RLCG et al (2022) Crosslinkers for polysaccharides and proteins: synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int J Biol Macromol 202:558–596. https://doi.org/10.1016/j.ijbiomac.2022.01.029

    Article  CAS  PubMed  Google Scholar 

  37. Connell LS, Gabrielli L, Mahony O et al (2017) Functionalizing natural polymers with alkoxysilane coupling agents: reacting 3-glycidoxypropyl trimethoxysilane with poly(γ-glutamic acid) and gelatin. Polym Chem 8(6):1095–1103. https://doi.org/10.1039/c6py01425a

    Article  CAS  Google Scholar 

  38. Greenhalgh RD, Ambler WS, Quinn SJ et al (2017) Hybrid sol–gel inorganic/gelatin porous fibres via solution blow spinning. J Mater Sci 52(15):9066–9081. https://doi.org/10.1007/s10853-017-0868-1

    Article  CAS  Google Scholar 

  39. Bai J, Ding R, Wang Y et al (2019) Surface modification of polyetheretherketone by grafting amino groups to improve its hydrophilicity and cytocompatibility. Mater Res Express. https://doi.org/10.1088/2053-1591/ab3782

    Article  Google Scholar 

  40. Haghniaz R, Kim H-J, Montazerian H et al (2023) Tissue adhesive hemostatic microneedle arrays for rapid hemorrhage treatment. Bioactive Mater 23:314–327. https://doi.org/10.1016/j.bioactmat.2022.08.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Bolaina-Lorenzo acknowledges CONAHCYT for her postdoctoral fellowship (CVU 336848) through the “Estancias Posdoctorales por Mexico” program. The authors gratefully acknowledge the financial support of CONAHCYT-Ciencia de Frontera through project 6660.

Author information

Authors and Affiliations

Authors

Contributions

BL wrote the manuscript including interpretation of findings. BG and SV were involved in conceptualization, supervision, reviewing, editing, and funding acquisition. RB performed the experiments and wrote the first draft of the manuscript. PEGC contributed editing and reviewing the manuscript.

Corresponding authors

Correspondence to Rebeca Betancourt-Galindo or Saul Sanchez-Valdes.

Ethics declarations

Conflict of interest

The authors declare there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolaina-Lorenzo, E., Betancourt-Galindo, R., Sanchez-Valdes, S. et al. Tuning the swelling behavior and primary amino content of gelatin-DOPA bioconjugate films crosslinked with either genipin or GPTMS. Polym. Bull. 81, 6773–6784 (2024). https://doi.org/10.1007/s00289-023-05041-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05041-8

Keywords

Navigation