Skip to main content

Advertisement

Log in

Development and evaluation of polysorbate-80 coated Mangiferin PLGA nanoparticles used in the treatment of cerebral ischemia

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

To enhance Mangiferin (MNG) the brain bioavailability by developed novel polysorbate-80 (P 80) MNG PLGA NPs and examined the quantity of MNG through developed a novel method of LC–MS/MS in the ischemic rat brain treatment. The solvent evaporation method used to develop a novel MNG loaded PLGA NPs followed by their coating from polysorbate-80. Polysorbate-80 (P 80) MNG PLGA NPs developed based on EE, particle size, Zeta Potential, PDI, and loading capacity with their characterization followed by drug release and intranasal permeation to enhance the brain bioavailability and also determined their neurobehavioral as well as biochemical evaluation with the histopathological examination. P 80 MNG PLGA NPs were optimized with their particle size 103.4 ± 2.66 nm, PDI: 0.201 ± 0.008, Zeta Potential (−35.8 ± 2.48), and drug loading 37.16 ± 2.09% with 76.08 ± 4.91% entrapment efficiency showed a sustained and controlled release (83.43 ± 6.47%) with great permeation (> 83%) of MNG. MNG & IS showed retention time (0.756 and 1.258 min) and their m/z (421.20/301.20 and 237.2/179.2), respectively. MNG showed a good linearity range, i.e., 10.0–1000.0 ng mL−1; the results of inter-and-intraday accuracy and CV were found to be (93.01–99.43%) and (2.27–4.02%), respectively. An excellent significant results was showed, i.e., p < 0.001 for (AUC)0–24 & Cmax via i.n. dose delivered. A highly significantly results of P 80 MNG PLGA NPs (i.n.) were found based on the examination of biochemical, neurobehavioral, and histopathological in the developed ischemic MCAO brain rat’s model. An excellent significant role of P 80 MNG PLGA NPs for MNG were proved based on enhancement of brain bioavailability of MNG via i.n. delivery of the rats and targeted easily to the brain in the treatment of cerebral ischemia followed by improvement of neuroprotection based on use of a very small dose of MNG.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

MNG:

Mangiferin

P 80:

Polysorbate-80

PLGA:

Poly (lactic-co-glycolic acid)

NPs:

Nanoparticles

LC–MS/MS:

Liquid chromatography-mass spectrometry/mass spectrometry

EE:

Entrapment/encapsulation efficiency

PDI:

Polydispersity index

ZP:

Zeta Potential

CV:

Coefficient of variation

AUC:

Area under curve

i.v.:

Intravenous

i.n.:

Intranasal

MCAO:

Middle cerebral artery occlusion

LOQQC:

Lower limit of quantification of quality control

LQC:

Lower-level quality control

MQC:

Middle level quality control

HQC:

Higher level quality control

RT:

Retention time

ROS:

Reactive oxygen species

DCM:

Dichloromethane

SEM:

Scanning electron microscopy

DSC:

Differential scanning calorimetry

TDDS:

Targeted drug delivery system

PK:

Pharmacokinetic

SMA:

Spontaneous motor activity

FT:

Flexion test

GPx:

Glutathione peroxidase

CAT:

Catalase

SOD:

Superoxide dismutase

GR:

Glutathione reductase

TBARS:

Thiobarbituric acid reactive substances

K el :

Elimination rate cinstatnt

t 1/2 :

Half-life

C max :

The maximum (or peak) serum/plasma/brain concentration

References

  1. Mackay J, Mensah G (2004) Atlas of heart disease and stroke. World Health Organization, Geneva, p 112E

    Google Scholar 

  2. Raza SS, Khan MM, Ashafaq M, Ahmad A, Khuwaja G, Khan A, Siddiqui MS, Safhi MM, Islam F (2011) Silymarin protects neurons from oxidative stress associated damages in focal cerebral ischemia: a behavioral, biochemical and immunohistological study in Wistar rats. J Neurol Sci 309(1–2):45–54

    Article  CAS  PubMed  Google Scholar 

  3. Takemura G, Onodera T, Millard RW, Ashraf M (1993) Demonstration of hydroxyl radical and its role in hydrogen peroxide-induced myocardial injury: hydroxyl radical dependent and independent mechanisms. Free Radic Biol Med 15:13–25

    Article  CAS  PubMed  Google Scholar 

  4. Hangaishi M, Nakajima H, Taguchi J, Igarashi R, Hoshino J, Kurokawa K, Kimura S, Nagai R, Ohno M (2001) Lecithinized Cu, Zn-superoxide dismutase limits the infarct size following ischemia–reperfusion injury in rat hearts in vivo. Biochem Biophys Res Commun 285:1220–1225

    Article  CAS  PubMed  Google Scholar 

  5. Yang Z, Weian C, Susu H, Hanmin W (2016) Protective effects of mangiferin on cerebral ischemia-reperfusion injury and its mechanisms. Eur J Pharmacol 771:145–151

    Article  CAS  PubMed  Google Scholar 

  6. Liu T, Song Y, Hu A (2021) Neuroprotective mechanisms of mangiferin in neurodegenerative diseases. Drug Dev Res 82(4):494–502

    Article  CAS  PubMed  Google Scholar 

  7. Du S, Liu H, Lei T, Xie X, Wang H, He X, Tong R, Wang Y (2018) Mangiferin: an effective therapeutic agent against several disorders (Review). Mol Med Rep 18(6):4775–4786

    CAS  PubMed  Google Scholar 

  8. Xi J, Wang Y, Long X, Ma Y (2018) Mangiferin potentiates neuroprotection by isoflurane in neonatal hypoxic brain injury by reducing oxidative stress and activation of phosphatidylinositol-3-Kinase/Akt/Mammalian target of rapamycin (PI3K/Akt/mTOR) signaling. Med Sci Monit 24:7459–7468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen M, Wang Z, Zhou W, Lu C, Ji T, Yang W, Jin Z, Tian Y, Lei W, Wu S, Fu Q, Wu Z, Wu X, Han M, Fang M, Yang Y (2021) SIRT1/PGC-1α signaling activation by mangiferin attenuates cerebral hypoxia/reoxygenation injury in neuroblastoma cells. Eur J Pharmacol 907:174236

    Article  CAS  PubMed  Google Scholar 

  10. Bhatia HS, Candelario-Jalil E, de Oliveira ACP, Olajide OA, Martínez-Sánchez G, Fiebich BL (2008) Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells. Arch Biochem Biophys 477:253–258

    Article  CAS  PubMed  Google Scholar 

  11. Das S, Rao BN, Rao BSS (2011) Mangiferin attenuates methylmercury induced cytotoxicity against IMR-32, human neuroblastoma cells by the inhibition of oxidative stress and free radical scavenging potential. Chem Biol Interact 193(2):129–140

    Article  CAS  PubMed  Google Scholar 

  12. Kasbe P, Jangra A, Lahkar M (2015) Mangiferin ameliorates aluminium chloride-induced cognitive dysfunction via alleviation of hippocampal oxido-nitrosative stress, proinflammatory cytokines and acetylcholinesterase level. J Trace Elem Med Biol 31:107–112

    Article  CAS  PubMed  Google Scholar 

  13. Feng G, Zhang Z, Bao Q, Zhang Z, Zhou L, Jiang J, Li S (2014) Protective effect of chinonin in MPTP-induced C57BL/6 mouse model of Parkinson’s disease. Biol Pharm Bull 37(8):1301–1307

    Article  CAS  PubMed  Google Scholar 

  14. Kavitha M, Nataraj J, Essa MM, Memon MA, Manivasagam T (2013) Mangiferin attenuates MPTP induced dopaminergic neurodegeneration and improves motor impairment, redox balance and Bcl-2/Bax expression in experimental Parkinson’s disease mice. Chem Biol Interact 206(2):239–247

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh M, Das J, Sil PC (2012) D(+) galactosamine induced oxidative and nitrosative stress-mediated renal damage in rats via NF-kappa B and inducible nitric oxide synthase (iNOS) pathways is ameliorated by a polyphenol xanthone, Mangiferin. Free Radic Res 46(2):116–132

    Article  CAS  PubMed  Google Scholar 

  16. Alkholifi FK, Alam A, Foudah AI, Yusufoglu HS (2023) Phospholipid-based topical nano-hydrogel of Mangiferin: enhanced topical delivery and improved dermatokinetics. Gels 9(3):178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahmad N, Al-Ghamdi MJA, Alnajjad HSM, Al Omar BBA, Khan MF, Al Malki ZS, Al Bassam AA, Ullah Z, Khalid MS, Ashraf K (2022) A comparative brain toxico-pharmacokinetics study of a developed tannic acid nanoparticles in the treatment of epilepsy. J Drug Deliv Sci Technol 76:103772

    Article  CAS  Google Scholar 

  18. Selles AJN, Daglia M, Rastrelli L (2016) The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptopic, and gene regulatory effects. Biofactors 42:475–491

    Article  Google Scholar 

  19. Liu M, Liu Y, Ge Y, Zhong Z, Wang Z, Wu T, Zhao X, Zu Y (2020) Solubility, antioxidation, and oral bioavailability improvement of Mangiferin microparticles prepared using the supercritical antisolvent method. Pharmaceutics 12(2):90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harsha P, Thotakura N, Kumar M, Sharma S, Mittal A, Khurana RK, Singh B, Negi P, Raza K (2019) A novel PEGylated carbon nanotube conjugated mangiferin: an explorative nanomedicine for brain cancer cells. J Drug Deliv Sci Technol 53:101186

    Article  CAS  Google Scholar 

  21. Mao X, Cheng R, Zhang H, Bae J, Cheng L, Zhang L, Deng L, Cui W, Zhang Y, Santos HA, Sun X (2018) Self-healing and injectable hydrogel for matching skin flap regeneration. Adv Sci 6(3):1801555

    Article  Google Scholar 

  22. Khurana RK, Gaspar BL, Welsby G, Katare OP, Singh KK, Singh B (2018) Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems. Drug Deliv Transl Res 8(3):617–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Santonocito D, Vivero-Lopez M, Lauro MR, Torrisi C, Castelli F, Sarpietro MG, Puglia C (2022) Design of Nanotechnological carriers for ocular delivery of Mangiferin: preformulation study. Molecules 27(4):1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pires A, Fortuna A, Alves G, Falc˜ao A (2009) Intranasal drug delivery: how, why and what for? J Pharm Pharmaceut Sci 12(3):288–311

    CAS  Google Scholar 

  25. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang CX, Huang LS, Hou LB, Jiang L, Yan ZT, Wang YL, Chen ZL (2009) Antitumor effects of polysorbate-80 coated gemcitabine polybutylcyanoacrylate nanoparticles in vitro and its pharmacodynamics in vivo on C6 glioma cells of a brain tumor model. Brain Res 1261:91–99

    Article  CAS  PubMed  Google Scholar 

  27. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18

    Article  CAS  PubMed  Google Scholar 

  28. Sempf K, Arrey T, Gelperina S, Schorge T, Meyer B, Karas M, Kreuter J (2013) Adsorption of plasma proteins on uncoated PLGA nanoparticles. Eur J Pharm Biopharm 85(1):53–60

    Article  CAS  PubMed  Google Scholar 

  29. Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, Alyautdin R (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 10(4):317–325

    Article  CAS  PubMed  Google Scholar 

  30. Pardridge WM (2006) Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol 6:494–500

    Article  CAS  PubMed  Google Scholar 

  31. Khan AR, Liu M, Khan MW, Zhai G (2017) Progress in brain targeting drug delivery system by nasal route. J Control Release 268:364–389

    Article  CAS  PubMed  Google Scholar 

  32. Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J (1999) Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16(10):1564–1569

    Article  CAS  PubMed  Google Scholar 

  33. Wilson B, Samanta MK, Santhi K, Kumar KPS, Paramakrishnan N, Suresh B (2008) Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 70(1):75–84

    Article  CAS  PubMed  Google Scholar 

  34. Wohlfart S, Khalansky AS, Gelperina S, Begley D, Kreuter J (2011) Kinetics of transport of doxorubicin bound to nanoparticles across the blood-brain barrier. J Control Release 154(1):103–107

    Article  CAS  PubMed  Google Scholar 

  35. Yuan ZY, Hu YL, Gao JQ (2015) Brain localization and neurotoxicity evaluation of polysorbate 80-modified chitosan nanoparticles in rats. PLoS ONE 10(8):e0134722

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yusuf M, Khan M, Alrobaian MM, Alghamdi SA, Warsi MH, Sultana S, Khan RA (2021) Brain targeted polysorbate-80 coated PLGA thymoquinone nanoparticles for the treatment of Alzheimer’s disease, with biomechanistic insights. J Drug Deliv Sci Technol 61:102214

    Article  CAS  Google Scholar 

  37. Lindner GR, Santos DB, Colle D, Moreira ELG, Prediger RD, Farina M, Khalil NM, Mainardes RM (2015) Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine (Lond) 10(7):1127–1138

    Article  CAS  Google Scholar 

  38. Ruan Y, Yao L, Zhang B, Zhang S, Guo J (2011) Antinociceptive properties of nasal delivery of neurotoxin-loaded nanoparticles coated with polysorbate-80. Peptides 32(7):1526–1529

    Article  CAS  PubMed  Google Scholar 

  39. Ruan Y, Yao L, Zhang B, Zhang S, Guo J (2012) Nanoparticle-mediated delivery of neurotoxin-II to the brain with intranasal administration: an effective strategy to improve antinociceptive activity of neurotoxin. Drug Dev Ind Pharm 38(1):123–128

    Article  CAS  PubMed  Google Scholar 

  40. Kaliappan I, Kammalla AK, Ramasamy MK, Aruna A, Dubey GP (2014) LC-MS quantification of Mangiferin inhydroalcoholic extract of Salacia oblonga, Salacia roxburghii and polyherbal formulation. Int J Phytopharm 4(1):11–15

    CAS  Google Scholar 

  41. Jong TT, Lee MR, Chiang YC, Chiang ST (2006) Using LC/MS/MS to determine matrine, oxymatrine, ferulic acid, mangiferin, and glycyrrhizin in the Chinese medicinal preparations Shiau-feng-saan and Dang-guei-nian-tong-tang. J Pharm Biomed Anal 40(2):472–477

    Article  CAS  PubMed  Google Scholar 

  42. Amir M, Ahmad N, Alqarni FSM, Sarafroz M (2020) A new UPLC method for the analysis of Mangiferin in Mangifera indica, Swertia chirayita and Canscora decussate by using fractional factorial design and its DPPH scavenging activity. Biosci Res 17(4):2614–2626

    Google Scholar 

  43. Imran M, Butt MS, Akhtar S, Riaz M, Iqbal MJ, Suleria HAR (2015) Quantification of Mangiferin by high pressure liquid chromatography; physicochemical and sensory evaluation of functional Mangiferin drink. J Food Process Preserv 40(4):760–769

    Article  Google Scholar 

  44. Cai F, Sun L, Gao S, Zhan Q, Wang W, Chen W (2014) An improved LC-MS/MS method for the determination of mangiferin in rat plasma and its application in nonlinear pharmacokinetics. Pharmazie 69:168–172

    CAS  PubMed  Google Scholar 

  45. Kammalla AK, Ramasamy MK, Inampudi J, Dubey GP, Agrawal A, Kaliappan I (2015) Comparative pharmacokinetic study of Mangiferin after oral administration of pure Mangiferin and US patented polyherbal formulation to rats. AAPS PharmSciTech 16(2):250–258

    Article  CAS  PubMed  Google Scholar 

  46. Guo H, Chen M, Li M, Hu M, Chen B, Zhou C (2019) Pharmacokinetic comparisons of Mangiferin and Mangiferin monosodium salt in rat plasma by UPLC-MS/MS. J Chem 2019:1–12

    Article  Google Scholar 

  47. Qiu X, Zhao JL, Hao C, Yuan C, Tian N, Xu ZS, Zou RM (2016) Simultaneous determination of mangiferin and neomangiferin in rat plasma by UPLC-MS/MS and its application for pharmacokinetic study. J Pharm Biomed Anal 124:138–142

    Article  CAS  PubMed  Google Scholar 

  48. Sun D, Xue A, Zhang B, Lou H, Shi H, Zhang X (2015) Polysorbate 80-coated PLGA nanoparticles improve the permeability of acetyl puerarin and enhance its brain-protective effects in rats. J Pharm Pharmacol 67(12):1650–1662

    Article  CAS  PubMed  Google Scholar 

  49. McCall RL, Sirianni RW (2013) PLGA nanoparticles formed by single-or double emulsion with vitamin E-TPGS. JoVE J Vis Exp 82:e51015. https://doi.org/10.3791/51015

    Article  CAS  Google Scholar 

  50. Ahmad N, Khalid MS, Khan MF, Ullah Z (2023) Beneficial effects of topical 6-gingerol loaded nanoemulsion gel for wound and inflammation management with their comparative dermatokinetic. J Drug Deliv Sci Technol 80:104094

    Article  CAS  Google Scholar 

  51. US FDA (2001) Guidance for industry bioanalytical method validation. Available online: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf. Accessed 24 May 2018

  52. Ahmad N, Khalid MS, Al Ramadhan AM, Alaradi MZ, Al Hammad MR, Ansari K, Alqurashi YD, Khan MF, Albassam AA, Ansari MJ, Akhtar S, Dilshad M (2023) Preparation of melatonin novel-mucoadhesive nanoemulsion used in the treatment of depression. Polym Bull 80:8093–8132

    Article  CAS  Google Scholar 

  53. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91

    Article  CAS  PubMed  Google Scholar 

  54. Kelly MA, Rubinstein M, Phillips TJ, Lessov CN, Burkhart-Kasch S, Zhang G, Bunzow JR, Fang Y, Gerhardt GA, Grandy DK, Low MJ (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci 18(9):3470–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ahmad N, Ahmad R, Amir M, Alam MA, Ali A, Ahmad A, Kamran A (2021) Ischemic brain treated with 6-gingerol loaded mucoadhesive nanoemulsion via intranasal delivery and their comparative pharmacokinetic effect in brain. J Drug Deliv Sci Technol 61:102130

    Article  CAS  Google Scholar 

  56. Vaibhav K, Shrivastava P, Javed H, Khan A, Ahmed ME, Tabassum R, Khan MM, Khuwaja G, Islam F, Siddiqui MS, Safhi MM, Islam F (2012) Piperine suppresses cerebral ischemia-reperfusion-induced inflammation through the repression of COX-2, NOS-2, and NF-κB in middle cerebral artery occlusion rat model. Mol Cell Biochem 367(1–2):73–84

    Article  CAS  PubMed  Google Scholar 

  57. Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ (1984) Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem Pharmacol 33:1801–1807

    Article  CAS  PubMed  Google Scholar 

  58. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  59. Youns M, Hoheisel JD, Efferth T (2011) Therapeutic and diagnostic applications of nanoparticles. Curr Drug Targets 12(3):357–365

    Article  CAS  PubMed  Google Scholar 

  60. Shmool TA, Zeitler JA (2019) Insights into the structural dynamics of poly lactic-coglycolic acid at terahertz frequencies. Polym Chem 10:351–361

    Article  CAS  Google Scholar 

  61. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116(4):2602–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm 415(1–2):34–52

    Article  CAS  PubMed  Google Scholar 

  63. Mehanny M, Hathout RM, Geneidi AS, Mansour S (2017) Studying the effect of physically-adsorbed coating polymers on the cytotoxic activity of optimized bisdemethoxycurcumin loaded-PLGA nanoparticles. J Biomed Mater Res 105(5):1433–1445

    Article  CAS  Google Scholar 

  64. Zhang Z, Feng SS (2006) In vitro investigation on poly (lactide)–tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy. Biomacromolecules 7(4):1139–1146

    Article  CAS  PubMed  Google Scholar 

  65. Fahmy HM, Khadrawy YA, Daim TMAE, Elfeky AS, Rabo AAA, Mustafa AB, Mostafa IT (2020) Thymoquinone-encapsulated chitosan nanoparticles coated with polysorbate 80 as a novel treatment agent in a reserpine-induced depression animal model. Physiol Behav 222:112934

    Article  CAS  PubMed  Google Scholar 

  66. Watrous-Peltier N, Uhl J, Steel V, Brophy L, Merisko-Liversidge E (1992) Direct suppression of phagocytosis by amphipathic polymeric surfactants. Pharm Res 9(9):1177–1183

    Article  CAS  PubMed  Google Scholar 

  67. Pamunuwa G, Karunaratne V, Karunaratne D (2016) Effect of lipid composition on in vitro release and skin deposition of curcumin encapsulated liposomes. J Nanomater 2016(35):4535790

    Google Scholar 

  68. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan–polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63(1):125–132

    Article  CAS  Google Scholar 

  69. Gao M, Mei D, Huo Y, Mao S (2019) Effect of polysorbate 80 on the intranasal absorption and brain distribution of tetramethylpyrazine phosphate in rats. Drug Deliv Transl Res 9(1):311–318

    Article  CAS  PubMed  Google Scholar 

  70. Som I, Bhatia K, Yasir M (2012) Status of surfactants as penetration enhancers in transdermal drug delivery. J Pharm Bioall Sci 4(1):2–9

    Article  Google Scholar 

  71. Kaur G, Mehta SK (2017) Developments of polysorbate (Tween) based microemulsions: preclinical drug delivery, toxicity and antimicrobial applications. Int J Pharm 529(1–2):134–160

    Article  CAS  PubMed  Google Scholar 

  72. Buyukozturk F, Benneyan JC, Carrier RL (2010) Impact of emulsion-based drug delivery systems on intestinal permeability and drug release kinetics. J Control Release 142(1):22–30

    Article  CAS  PubMed  Google Scholar 

  73. Levy G, Miller KE, Reuning RH (1966) Effect of complex formation on drug absorption III: concentration- and drug-dependent effect of a nonionic surfactant. J Pharm Sci 55(4):394–398

    Article  CAS  PubMed  Google Scholar 

  74. Ahmad N, Umar S, Ashafaq M (2013) A comparative study of PNIPAM nanoparticles of curcumin, demethoxycurcumin, and bisdemethoxycurcumin and their effects on oxidative stress markers in experimental stroke. Protoplasma 250(6):1327–1338

    Article  CAS  PubMed  Google Scholar 

  75. Bolay H, Dalkara T (1998) Mechanisms of motor dysfunction after transient MCA occlusion: persistent transmission failure in cortical synapses is a major determinant. Stroke 29(9):1988–1993

    Article  CAS  PubMed  Google Scholar 

  76. Fukui K, Omoi NO, Hayasaka T, Shinnkai T, Suzuki S, Abe K, Urano S (2002) Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann N Y Acad Sci 959:275–284

    Article  CAS  PubMed  Google Scholar 

  77. Hunter AJ, Mackay KB, Rogers DC (1998) To what extent have functional studies of ischaemia in animals been useful in the assessment of potential neuroprotective agents? Trends Pharmacol Sci 19(2):59–66

    Article  CAS  PubMed  Google Scholar 

  78. Zhan C, Yang J (2006) Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Pharmacol Res 53(3):303–309

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia have supported financially to conduct this study (PSAU/2023/R/1444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niyaz Ahmad.

Ethics declarations

Conflict interest

No conflict of the authors exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, N., Khan, M.F., Ullah, Z. et al. Development and evaluation of polysorbate-80 coated Mangiferin PLGA nanoparticles used in the treatment of cerebral ischemia. Polym. Bull. 81, 7035–7069 (2024). https://doi.org/10.1007/s00289-023-05030-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05030-x

Keywords

Navigation