Skip to main content
Log in

Interface construction and properties of polyester fibers reinforced acrylonitrile-butadiene rubber coordination composites

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyester (PET) fibers are widely used in tire skeleton materials, conveyor belt and other fields for theirs high strength, good elasticity and other advantages. In this work, PET fibers were firstly modified to introduce phenolic hydroxyl and epoxy ligand groups by polydopamine deposition and ethylene glycol diglycidyl ether (EGDE) grafting. Then the modified PET fibers were filled into acrylonitrile-butadiene rubber (NBR)/Fe2(SO4)3 coordination composites to further reinforce the performance of the composites. The focus was to construct the interface between fibers and NBR by forming the –CN–Fe3+-phenolic hydroxyl/epoxy coordination bond and improve the properties of the composites significantly. FTIR, TG and SEM were used to confirm the successful modification of PET fibers by polydopamine deposition and EGDE grafting. The results of DMA, SEM and EDS showed that the modified fibers had good interfacial combination with the rubber matrix through the interfacial coordination chemical bond. The tensile test results showed that the modified fiber reinforced rubber coordination composites have good modulus, tensile strength and elongation at break. Compared with NBR/Fe2(SO4)3 composites, the tensile strength, 100% and 300% fixed elongation modulus of NBR/Fe2(SO4)3 composites reinforced with PET fibers modified by poly(dopamine) deposition were increased by 32.8%, 85.5% and 71.4%, and the tensile strength and elongation at break of NBR/Fe2(SO4)3 composites reinforced with PET fibers modified by EGDE grafting were significantly increased by 35.8% and 31.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings are available at authors and can be shared upon request.

References

  1. Zhu SS, Zhang WX, Zhang J (2018) High dielectric acrylonitrile-butadiene rubber with excellent mechanical properties by filling with surface-modified barium/strontium inorganic functional powders. J Mater Sci Mater Electron 29(8):6519–6529

    Article  CAS  Google Scholar 

  2. Wang YR, Wang SR, Leng FR et al (2015) Separation and characterization of pyrolytic lignins from the heavy fraction of bio-oil by molecular distillation. Sep Purif Technol 152:123–132

    Article  CAS  Google Scholar 

  3. Crie A, Baritaud C, Valette R et al (2015) Rheological behavior of uncured styrene–butadiene rubber at low temperatures, pure and filled with carbon black. Polym Eng Sci 55(9):2156–2162

    Article  CAS  Google Scholar 

  4. Colucci G, Ostrovskaya O, Frache A et al (2015) The effect of mechanical recycling on the microstructure and properties of PA66 composites reinforced with carbon fibers. J Appl Polym Sci 132(29):42275–42283

    Article  Google Scholar 

  5. Chapartegui M, Markaide N, Florez S et al (2010) Specific rheological and electrical features of carbon nanotube dispersions in an epoxy matrix. Compos Sci Technol 70(5):879–884

    Article  CAS  Google Scholar 

  6. Sandler JKW, Kirk JE, Kinloch IA et al (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899

    Article  CAS  Google Scholar 

  7. Inuwa IM, Hassan A, Samsudin SA et al (2014) Characterization and mechanical properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites. J Appl Polym Sci 131(15):2029–2035

    Article  Google Scholar 

  8. Bandla S, Hanan JC (2012) Microstructure and elastic tensile behavior of polyethylene terephthalate–exfoliated graphene nanocomposites. J Mater Sci 47(2):876–882

    Article  ADS  CAS  Google Scholar 

  9. Kashani MR (2009) Aramid-short-fiber reinforced rubber as a tire tread composite. J Appl Polym Sci 113(2):1355–1363

    Article  CAS  Google Scholar 

  10. Mathew L, Narayanankutty SK (2009) Nanosilica as dry bonding system component and as reinforcement in short nylon-6 fiber/natural rubber composite. J Appl Polym Sci 112(4):2203–2212

    Article  CAS  Google Scholar 

  11. Zhang B, Yu XM, Gu BQ (2018) Modeling and experimental validation of interfacial fatigue damage in fiber-reinforced rubber composites. Polym Eng Sci 58(6):920–927

    Article  CAS  Google Scholar 

  12. Xue XD, Jiang K, Yin Q et al (2019) Tailoring the structure of Kevlar nanofiber and its effects on the mechanical property and thermal stability of carboxylated acrylonitrile butadiene rubber. J Appl Polym Sci 136(26):47698

    Article  Google Scholar 

  13. Li YZ, Li Z, Wan JJ et al (2019) Mechanical and tribological performance of chopped basalt fiber/acrylonitrile-butadiene rubber composites. Polym Compos 40(2):630–637

    Article  CAS  Google Scholar 

  14. Cataldo F, Ursini O, Lilla E et al (2009) A comparative study on the reinforcing effect of aramide and PET short fibers in a natural rubber-based composite. J Macromol Sci Part B-Phys 48(6):1241–1251

    Article  ADS  CAS  Google Scholar 

  15. Zhang B, Chen SX, Wang WC et al (2020) Polyester (PET) fabrics coated with environmentally friendly adhesive and its interface structure and adhesive properties with rubber. Compos Sci Technol 195:108171

    Article  CAS  Google Scholar 

  16. Wang L, Shi YX, Sa RN et al (2016) Surface modification of aramid fibers by catechol/polyamine codeposition followed by silane grafting for enhanced interfacial adhesion to rubber matrix. Ind Eng Chem Res 55(49):12547–12556

    Article  CAS  Google Scholar 

  17. Sa RN, Wei ZH, Yan Y et al (2015) Catechol and epoxy functionalized ultrahigh molecular weight polyethylene (UHMWPE) fibers with improved surface activity and interfacial adhesion. Compos Sci Technol 113:54–62

    Article  CAS  Google Scholar 

  18. Wang L, Shi YX, Chen SX et al (2017) Highly efficient mussel-like inspired modification of aramid fibers by UV-accelerated catechol/polyamine deposition followed chemical grafting for high-performance polymer composites. Chem Eng J 314:583–593

    Article  CAS  Google Scholar 

  19. Huang J, Tang ZH, Yang ZJ et al (2016) Bioinspired interface engineering in elastomer/graphene composites by constructing sacrificial metal–ligand bonds. Macromol Rapid Commun 37(13):1040–1045

    Article  CAS  PubMed  Google Scholar 

  20. Wei Q, Zhang FL, Li J et al (2010) Oxidant-induced dopamine polymerization for multifunctional coatings. Polym Chem 1(9):1430–1433

    Article  CAS  Google Scholar 

  21. Sa RN, Yan Y, Wei ZH et al (2014) Surface modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting. ACS Appl Mater Interfaces 6(23):21730–21738

    Article  CAS  PubMed  Google Scholar 

  22. Shen F, Li H, Wu CF (2006) Crosslinking induced by in-situ coordination in acrylonitrile butadiene rubber/poly(vinyl chloride) alloy, filled with anhydrous copper sulfate particles. J Polym Sci Part B Polym Phys 44(2):378–386

    Article  ADS  CAS  Google Scholar 

  23. Yuan XF, Shen F, Wu GZ et al (2007) Novel in situ coordination copper sulfate/acrylonitrile-butadiene rubber composite. J Polym Sci Part B-Polym Phys 45(5):571–576

    Article  ADS  CAS  Google Scholar 

  24. Mou HY, Shen F, Shi QF et al (2012) A novel nitrile butadiene rubber/zinc chloride composite: coordination reaction and miscibility. Eur Polym J 48(4):857–865

    Article  CAS  Google Scholar 

  25. Shang P, Shao CL, Li QQ et al (2018) Preparation and characterization of high performance NBR/cobalt (II) chloride coordination composites. Mater Res Express 5(2):025308

    Article  ADS  Google Scholar 

  26. Shao CL, Wang Q, Mao YP et al (2019) Influence of carbon nanotubes content on the properties of acrylonitrile-butadiene rubber/cobalt chloride composites. Mater Res Express 6(7):075323

    Article  ADS  CAS  Google Scholar 

  27. Wang Q, Li QY, Wu CF (2020) Construction of dual coordination networks in epoxidized butadiene-acrylonitrile rubber/CuSO4 composites and mechanical behaviors. Polymer 207:122865

    Article  CAS  Google Scholar 

  28. Wang Q, Wang WC, Li QY et al (2021) Mechanically robust and recyclable styrene–butadiene rubber cross-linked via Cu2+-nitrogen coordination bond after a tetrazine click reaction. Ind Eng Chem Res 60(5):2163–2177

    Article  CAS  Google Scholar 

  29. Wang Q, Shi Y, Li QY et al (2021) Toughening, recyclable and healable nitrile rubber based on multi-coordination crosslink networks after “tetrazine click” reaction. Eur Polym J 150:110415

    Article  CAS  Google Scholar 

  30. Wang Q, He Y, Li QY et al (2021) SBS thermoplastic elastomer based on dynamic metal–ligand bond: structure, mechanical properties, and shape memory behavior. Macromol Mater Eng 306(5):2000737

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51973059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiuying Li or Chifei Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Li, X., Zhao, J. et al. Interface construction and properties of polyester fibers reinforced acrylonitrile-butadiene rubber coordination composites. Polym. Bull. 81, 4677–4693 (2024). https://doi.org/10.1007/s00289-023-04908-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04908-0

Keywords

Navigation