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Abstract
A green sustainable strategy for biosynthesis of ZnONPs and chitosan nanoparti-
cles (ZnONPs: 20–25 nm and CSNPs: 70–90 nm) has been developed, their poten-
tial applications in multifunctional finishing of cotton and viscose fabrics to impart 
anti-crease, anti-UV and antibacterial functions using citric acid/Na-hypophosphite 
CA (15  g/L)/SHP (15  g/L), as  CH2O-free ester-crosslinking system and the pad-
dry-cure method. The obtained results signify that the extent of improvement in the 
imparted functional properties is governed by type of cellulosic substrate, kind and 
concentration of nano-additive as well as type of bio-functional additive, namely, 
L-ascorbic acid or vanillin (20  g/L each). Moreover, the best results show that 
using CSNPs (2.5 g/L)/ZnONPs (15 g/L), as an eco-friendly two component mix-
ture, brought about an enhancement in both chemical and functional properties of 
treated substrates which can be ranked as follows: nitrogen content (N%): viscose 
(1.818) > cotton (1.592); metal content (%): viscose (1.35) > cotton (1.24); WRA°: 
cotton (196) > viscose (165); anti-UV (UPF): cotton (47) > viscose (40); anti-S. 
aureus (R%): viscose (97) > cotton (94) and anti-E. coli (R%): viscose (92) > cotton 
(89), keeping other parameters constant. Major characteristics of the so-prepared 
nanoparticles as well as developed cellulosic fabrics were analyzed by FTIR, TEM, 
SEM and EDX techniques, as well as %N and %Zn content analysis. Durability to 
wash was evaluated and fabrics modification/functionalization, mechanism was also 
proposed.

Keywords Cellulosic fabrics · Green synthesis · Chitosan and ZnO nanoparticles · 
Multifunctional finish · Sustainable protective textiles

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00289-023-04887-2&domain=pdf
http://orcid.org/0000-0001-9259-777X


3622 Polymer Bulletin (2024) 81:3621–3640

1 3

Introduction

Eco-friendly surface modification and multifunctionalization of cellulosic fabrics 
using various emerging and sustainable technologies [12, 15, 28, 57] as well as 
environmentally sound textile chemicals and auxiliaries are the most recent trends 
in textile finishing processes [16, 17, 28, 35] for imparting highly demanded, 
novel and outstanding functional properties such as antibacterial [2, 14, 44, 47], 
UV protection, self-cleaning [36, 46, 47, 49, 52], wrinkle recovery [9, 27, 38, 51], 
enhanced fragrance [17, 20, 25], etc., with high values added, taken into account 
the ever-growing consumer demands for high product and ecology quality, along 
with economical social concerns [48].

Chitosan (CS) and CS derivatives are currently used in textiles modification, 
coloration and/or functionalization for their cationic active sites,  N+H2 groups, 
especially at acidic conditions [23, 42, 57, 62]. Antimicrobial activity of CS is 
attributed to the interaction between its positively charged active sites and the 
negatively charged sites on the microbial surface [30, 37, 43], which, in turn, 
results in disruption of the harmful microbial cells, changes in their metabolism 
and leads to cell death [37, 61].

On the other hand, ionic gelation method is widely used for obtaining CS nano-
composites via interaction of positively charged Na-tripolyphosphate (TPP) under 
appropriate conditions, thereby forming coacervates as a direct consequence of 
electrostatic interaction between the two aqueous phases along with ionic gela-
tion via transition from liquid to gel phase [5]. The experimental results showed 
that the antibacterial activity against both Gram-positive and Gram-negative bac-
teria of CS-TPP NPs suspension was better than that of the CS solution [5].

Recently, various techniques of ZnONPs such as chemical reduction [29, 40], plant 
extract [1, 3, 45], fungus [55], electrochemical method [8], microwave [58] as well as 
in situ preparation [4] and their potential textile applications to impart multifunctional 
properties such as antibacterial, self-cleaning, flame retardant and UV protection, tak-
ing in consideration both the environmental concerns and the ever-growing consumer 
demands have been developed and successfully carried out [6, 7, 10, 39, 47, 50, 56]. 
ZnONPs have been widely utilized in textile functionalization due to its desirable 
physical and chemical properties, biocompatibility compared with other metal oxides 
and its low production cost. ZnONPs finished fabrics showed excellent antibacterial 
activity due to the ability of ZnONPs to destroy the growth of the microbe [41]. More-
over, ZnONPs exhibit significant activity even at neutral condition, in the absence of 
light as well as excellent stability under high temperature and UV. ZnONPs, as an 
n-type semiconductor, show photocatalytic activity which, in turn, distinguish ZnO 
with unique multifunctional properties [31, 32, 53, 59].

Additionally, a green biosynthesis/cost-effective routes for fabrication of metal 
(M) and metal-oxide (MO) nanoparticles (NPs) using Miswak-rich active phe-
nolic constituents for promoting, reduction, formation and stabilization of the 
demanded MNPs or MONPs as well as their potential applications have been 
developed and implemented recently [33, 54]. It was observed that the antibacte-
rial activity of the biosynthesized nanoparticles using an eco-friendly aqueous 
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solution of Miswak root extract was better than that prepared by non-eco-friendly 
conventional chemical methods [54].

To date, there are few studies focused on the positive role of eco-friendly multi-
functionalization of cellulosic substrates using, (i) citric acid/NaH2PO2 (CA/SHP) as 
zero-CH2O ester-crosslinking system along with biosynthesized ZnONPs using Mis-
wak extracts as bio-reductant and ii) CA/SHP CSNPs alone and in combination with 
L-ascorbic or vanillin as green bioactive functional additives. Herein, we reported 
biosynthesis and characterization of ZnONPs and CSNPs along with their potential 
applications in functional finishing of cotton and viscose substrates using a pad-dry-
cure process. The effect of finishing bath constituents on the imparted multifunc-
tional properties such as anti-crease, UV protection and antibacterial activity against 
both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria was analyzed. 
Furthermore, the mode of interaction among the finishing bath constituents and the 
cellulosic substrates was suggested, and extent of fixation was investigated.

Materials and methods

Materials

Mill scoured and bleached cotton (140  g/m2) and viscose (130  g/m2) woven fab-
rics were used in this study. Miswak (Salvadora persica root) was purchased from 
the local market. Chitosan (CS, Mol. Wt. 2.4 ×  104  Da and 89.2% deacetaylated), 
Na-tripolyphosphate monohydrate (TPP) and L-ascorbic acid are purchased from 
Sigma-Aldrich. Citric acid, glacial acetic acid, Na-hypophosphite monohydrate 
(SHP,  NaH2PO2.H2O), vanillin, zinc acetate, (Zn(CH3COO)2) 0.2H2O and sodium 
hydroxide were of laboratory reagent grade.

Methods

Preparation of Miswak extract

Freshly obtained roots were cut into small pieces, then grounded. Subsequently, 10 g 
of the powder were immersed in 100 ml of distilled water and refluxed for 5 h. The 
obtained extract was filtered by using Whatman No. 1 filter paper, then stored in a 
refrigerator at 4 °C for biosynthesis of ZnONPs.

Biosynthesis of ZnONPs

ZnONPs were fabricated by adding of 4  ml of freshly prepared Miswak aqueous 
extract to 100 ml of Zn-acetate aqueous solution (0.225 M), stirred for 12 h, and 
pH was maintained at 12 by adding 0.02  M NaOH solution and mixing for 1  h, 
after which it was centrifuged at 6000 rpm for 30 min. The obtained precipitate was 
washed several times with bi-distilled water to get pH 7 dried at 90 °C for 8 h.
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Preparation of CS/TPP NPs suspension

Preparation of CS/TPP NPs was carried out successfully according to the method 
given by Bangun et  al. [5] with some modifications. Briefly, 3 g of CS were dis-
solved in 600  ml of 1% acetic acid and stirred continuously for 30  min. Subse-
quently, an aqueous solution of TPP (1.4  g/600  ml) was then slowly added and 
stirred for 2 h at room temperature and sonicated for 1 h.

Functional finishing of cellulosic fabrics

Cotton and viscose fabric samples were padded twice in various functional finishing 
formulations containing:

 (i) Citric acid (30 g/L), as ester-cross linker, and SHP (15 g/L), as a catalyst, 
CS-TPP NP (2.5 g/L), as a polycationic agent, and ZnONPs (0–15 g/L), as a 
multifunctional agent, or

 (ii) CA/SHP (30  g/L/15  g/L), CS-TPP NPs (2.5  g/L) and L-ascorbic acid 
(0–20 g/L) or vanillin (0–20 g/L), as environmentally sound functional addi-
tive, to give wet pick-up of 85%, followed by drying at 100 °C/3 min and 
curing at 150 °C/3 min, thoroughly washed to remove unfixed/non-reacted 
constituents and finally dried and conditioned before evaluation.

Testing and analysis

Fourier transform infrared (FTIR) spectroscopy

Fourier transform infrared (FTIR) spectroscopy was carried out using a Nicolet 380 
spectrophotometer (Thermo Scientific), and the IR spectra were scanned 32 times 
over the wavenumber range of 4000–400   cm−1. The sample (0.002  g) was mixed 
with KBr to reach (0.2 g) to form around disk suitable for measurements.

Transmission electron microscopy (TEM)

TEM images of the samples were obtained using a JEOL (JEM-1400 TEM, Japan), 
with an accelerating voltage of 100 kV. The CSNPs and ZnONPs suspension sample 
was ultrasonically dispersed in deionized water. Then, a small droplet of the diluted 
CSNPs and ZnONPs suspension was deposited on a 300-mesh copper grid coated 
with holey carbon film.

Particle size analysis

The average size and size distribution of the CSNPs and ZnONPs were estimated 
by dynamic light scattering (DLS) using a Malvern Zetasizer Nano ZS (Malvern 
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Instruments Ltd., UK) equipped with a He–Ne laser (0.4 m W; 633 nm) and a temper-
ature-controlled cell holder. The mean intensity weighted diameter was recorded as the 
average of three measurements.

Scanning electron microscopy (SEM)

SEM images for surface morphology of the samples were taken using SEM Model 
Quanta 250 FEG (Field Emission Gun) attached with EDX Unit (Energy-Dispersive 
X-ray Analyses), with accelerating voltage 30 KV, magnification 14 × up to 1,000,000 
and resolution for Gun.1n. The surfaces of all the samples were coated with a gold thin 
layer under vacuum before SEM studies.

Textile testing

The amount of metal content in the post-treated fabric samples was determined by a 
flame atomic absorption spectrophotometer (GBC-Avanta, Australia).

Nitrogen content of fixed finished fabric was estimated as per a standard Kjeldahl 
method [60] using instrument model DNP-3000 (Raypa-SPAIN) using standard refer-
ence materials [60].

UPF was determined according to the Australian/New Zealand Standard (AS/NZS 
4399-1996). Fabric can be rated as providing good, very good and excellent protection 
if their UPF values range 15–24, 25–39 and above 40, respectively.

The antimicrobial activity assessment against Gram-positive, Staphylococcus aureus 
(S. aureus) and Gram-negative, Escherichia coli (E. coli) bacteria was determined 
quantitatively according to AATCC 100 test method. The reduction of colonies was 
calculated using the following equation: R = 100 (B−A)/B, where R: % reduction, A: the 
number of bacterial colonies survived after contacting with treated sample and B: the 
number of colonies present in untreated control sample (blank).

Dry wrinkle recovery was determined according to AATCC Test Method 66-2008 
using iron recovery apparatus type FF-07 (Metrimpex).

Results and discussion

Synthesis of CS‑TPP, TEM morphology and DLS analysis

Incorporation of CS–NH2, acetic acid and Na-TPP in aqueous solution under appropri-
ate conditions would be expected to enable the following interactions [5]. On the other 
hand, TEM and DLS analysis (Fig. 1a and b) of the fabricated CS-TPP NPs demon-
strated that the obtained NPs have uniform, well disperse and capped structure with 
particle size in the range of 70–90 nm.
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Green biosynthesis and characterization of ZnONPs using Miswak extract

The suggested mechanism of interaction among (Zn(CH3COO)2)0.2H2O, as a pre-
cursor and phenolic constituents of Miswak extract under appropriate pH and stir-
ring conditions are given in Scheme 1. On the other hand, Fig. 2a and b shows the 
TEM image and DLS analysis of biosynthesized ZnONPs using the phenolic con-
stituents of Miswak root extract to promote both the reduction process and stabi-
lization of the fabricated ZnONPs under the given conditions. Both Fig. 2a and b 
demonstrate well-distributed NPs within a range of 20–25 nm.

FTIR spectra of (a) Miswak extract and produced ZnONPs are shown in Fig. 3. 
Figure 3a shows broadband corresponding to the –OH functional group and N–H 
stretch at 3545   cm−1. The band at 2919.17   cm−1 is attributed to C–C stretch of 
alkynes triple bond. Moreover, a strong peak at 1720.32   cm−1 is related to C=O 
stretching along with two bands at 1640.24  cm−1, 1413.24  cm−1 and 1124.34  cm−1 
attributed to C–C, C–N and C–O stretching, respectively [5]. Additionally, the for-
mation of NPs is a direct consequence of the presence of different reducing func-
tional groups such as oxygen and nitrogen-containing groups, as shown in Fig. 3a, 
which facilitate reduction of metal to the nanosized scale.

Furthermore, FTIR spectrum of biosynthesized ZnONPs (Fig. 3b) also indicates 
that all the aforementioned peaks which correspond to Miswak extract constituents 
(Fig. 3a) are presented with a slight shift in a few peaks. Also, FTIR data of green 
fabricated ZnONPs confirm the presence of new bands near the region of 500  cm−1, 
which assigned to Zn–O stretching [11]. On the other hand, the peak detected around 
500   cm−1 confirmed the presence of metal-oxide bond, Zn–O, which confirms the 
biosynthesis of ZnONPs using Miswak.

(1)

Fig. 1  TEM morphology of chitosan nanoparticles (CNPs) (a) and particle size analyzer from DLS (b)
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Multifunctionalization of cotton and viscose cellulosic fabrics using 
the bio‑fabricated ZnONPs

Effect of inclusion of the biosynthesized ZnONPs (0–15  g/L) into the finish-
ing formulation along CA/SHP (30/15  g/L) and CS-TPP (2.5  g/L) on the N%, 
Zn% content, WRA, UPF and antibacterial activity, expressed as (%R), of 

Scheme 1  Schematic diagram for fabrication of ZnONPs

Fig. 2  TEM morphology of zinc oxide nanoparticles (ZnONPs) (a) and particle size analyzer from DLS 
(b)
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ester-crosslinked cellulosic substrates is presented in Table  1. The experimen-
tal results in Table 1 demonstrate that: (i) increasing ZnONPs concentration up 
to 15  g/L results in an increase in the %N, %Zn content, a reasonable increase 
in WRA, a significant improve in UV protection efficiency and a remarkable 
increase in the imparted antibacterial activity against the harmful S. aureus and 
E. coli bacteria, regardless of the treated substrate.

Fig. 3  FTIR analysis of a Miswak root extract and b ZnONPs

Table 1  Effect of inclusion of ZnONPs into the finishing formulation on some performance and func-
tional properties of treated substrates

Finishing formulation: citric acid 30 g/L;  NaH2PO2 15 g/L; CSNPs 2.5 g/L; ZnONPs (0–15) g/L; wet 
pick-up (80%); drying at 100 °C/3 min and curing at 150 °C/2 min
N nitrogen content, WRA  wrinkle recovery angle (warp + weft), UPF UV protection factor and R% reduc-
tion in percentage of bacterial colonies S. aureus and E. coli
Properties of untreated cotton: %N = 0.00, metal content % = 0.00, WRA = 110, UPF = 6 and antibacterial 
activity against S. aureus and E. coli bacteria = 0%
Properties of untreated viscose: %N = 0.00, metal content % = 0.00, WRA = 97, UPF = 3 and antibacterial 
activity against S. aureus and E. coli bacteria = 0%

ZnONPs (g/L) Substrate N (%) Metal con-
tent (%)

WRA (W + F)° UPF Antimicrobial activ-
ity R (%)

S. aureus E. coli

0.0 Cotton 0.577 0.00 162 15 50 47
Viscose 0.809 0.00 130 11 60 58

10 Cotton 0.804 0.94 179 38 77 74
Viscose 1.020 1.33 146 32 85 81

15 Cotton 1.592 1.24 196 47 94 89
Viscose 1.818 1.35 165 40 97 92



3629

1 3

Polymer Bulletin (2024) 81:3621–3640 

The increase in %N is a direct consequence of enhancing the extent of CS-TPP 
fixation onto/within the cellulose structure [23]. The increase in %Zn content is 
a direct consequence fixation of  Zn+2 onto/within the ester-crosslinked structure 
via its –COOH groups [23] and –NH2 active sites of loaded CS-TPP NPs.

The reasonable improve in WRA of finished substrates reflects the positive 
role of ZnONPs in enhancing the extent of ester-crosslinking along with the posi-
tive role of NPs in minimizing the slipping of cellulosic chains, i.e., high anti-
crease property [27].

The remarkable increase in UV protection functionality, expressed as UPF 
value, of ZnO immobilized onto/within the ester-crosslinked cellulose structure is 
attributed to its ability to block and shield the harmful UV-B radiation and hinder 
its transmittance through the modified cellulose structure to the textile consumer 
skin [19, 47].

The data in Table  1 also signify that incorporation of the biosynthesized 
ZnONPs up to 15  g/L along with CS-TPP NPs in the finishing formulation is 
accompanied by a remarkable increase in the imparted antibacterial activity 
against both the S. aureus and E. coli bacteria regardless of the used substrate. 
The higher the ZnONPs concentration, the more efficient the imparted antibacte-
rial functionality is [34, 49].

Moreover, the remarkable enhancement in the imparted antibacterial activity 
by increasing ZnONPs concentration up to 15 g/L along with the presence of CS-
TPP NPs as bioactive agent could be discussed in terms of: (i) the synergistic 
antibacterial effect of the loaded ZnONPs via destruction of bacterial cell integ-
rity/liberation of  Zn2+ ions/generation of reactive oxygen species (·OH,·O2−,·HO2 
and  H2O2) that capable to penetrate through the cell thereby inhibiting or killing 
the pathogenic microorganisms [23], (ii) the polycationic nature, –NH2 groups, of 
chitosan and its ability to inhibit the growth of harmful bacteria via: interaction 
with negatively charged moieties at its surface [37] and (iii) the phytochemical 
constituents of Miswak bark extract [18].

Additionally, the improvement in the imparted antibacterial activity against S. 
aureus bacterium is better than E. coli bacterium, as a direct consequence of vari-
ation in cell constitution and physiology as well as the metabolism [13, 22].

The data in Table 1 also demonstrate that the variation in the imparted func-
tional properties, i.e., easy care, anti-UV and antibacterial functionalities, as well 
as both the %N and %Zn content are governed by type of the finished substrate 
and reflected the differences between the viscose and cotton substrates in: fab-
ric weight, structure, amorphous/crystalline ratio, availability and accessibility 
of –OH active sites, location and extent of distribution of bio- and nano-active 
agents onto and/or within finished cellulose structure, as well as degree of fixa-
tion and immobilization of the used nano-active ingredients [21, 24].

Inclusion of CS-TPP NPs into ester-crosslinking formulation along with bio-
synthesized ZnONPs as functional nano-additive, followed by padding, drying 
and curing at appropriate fixation conditions would be expected to facilitate mul-
tifunctionalization of the viscose and cotton cellulosic substrates simultaneously 
in one step as shown in Scheme 2 [21, 23] as follows:
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Multifunctionalization of cotton and viscose cellulosic fabrics using CSNPs 
along with L‑ascorbic acid or vanillin additives

As far as the change in %N, WRA, UPF and antibacterial activity of treated cel-
lulosic substrates as a function of type and concentration of function of type 
and concentration of functional additive, the data in Table 2 clearly demonstrate 
that inclusion of L-ascorbic or vanillin (0–20  g/L) additive along with CSNPs 
(2.5 g/L) and CA/SHP ester-crosslinking system (30/15 g/L) in the finishing for-
mulation followed by padding and curing is accompanied by an increase in %N, 
WRA and UPF values as well as in the imparted antibacterial activity against 
both the S. aureus and E. coli pathogenic bacteria, irrespective of the treated 
substrate. The higher the functional additive concentration, the better are the 
imparted functionalities, i.e., fabric resiliency, anti-UV capability and antibacte-
rial efficacy [26].

The enhancement in the imparted functional properties reflects the positive role 
of functional properties reflects the positive role of functional additive in: increasing 
the extent of CSNPs fixation, expressed as % N, enhancing the UV shielding and 
blocking capability, expressed as UPF value, along with supporting the imparted 
antibacterial activity to the treated substrates, expressed as % R, against the tested 
pathogens. On the other hand, the positive changes in the aforementioned proper-
ties are governed by type of functional additive and follows, the decreasing order: 
L-ascorbic acid < vanillin, as well as kind of cellulosic substrate as discussed earlier, 
keeping other parameters constant [20, 25, 26].

The imparted anti-UV and antibacterial effects of L-ascorbic could be dis-
cussed in terms of: the presence of antioxidant and flavonoids constituents, its 
ability to lower the pH, its anti-quorum sensing activity, its oxygen absorp-
tion characteristics thereby acting as a barrier for oxygen availability for tested 

Scheme  2  Simplified reaction scheme for multifunctionalization of cellulosic substrates using CS and 
ZnONPs
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microorganisms, as well as due to the significant synergistic antibacterial effects 
of CSNPs, L-ascorbic acid at low pH against the tested S. aureus and E. coli bac-
teria [26].

On the other hand, the significant improvement in antibacterial functionality 
against both S. aureus and E. coli harmful bacteria by fixation and immobili-
zation of vanillin, as a safe and effective anti-UV and antibacterial agent onto/
within the ester-crosslinked substrates most probably is due to its ability as phe-
nolic aldehyde to damage and disrupt the bacterial cell which, in turn, adversely 
affects its growth and survival, along with its ability to absorb the harmful UV-B 
radiation [20].

The variation in the imparted antibacterial functionality is governed by chemi-
cal composition, molecular size, bioactive constituents, extent of loading and 
release, mode of action, as well as, the synergistic effect of the functional addi-
tives and other finishing bath constituents [20]. Moreover, simplified reaction 
Scheme  3 for fixation and immobilization of the functional additives onto and 
for within the ester-crosslinked cellulose structure during the thermofixation step 
could be suggested as follows [20].

Table 2  Effect of combined phenolic compound and chitosan nanoparticles with citric acid on some per-
formance and functional properties of cellulose fabrics

Finishing formulation: citric acid 30 g/L;  NaH2PO2 15 g/L; CSNPs 2.5 g/L; phenolic compound (0–20) 
g/L; wet pick-up (80%); drying at 100 °C/3 min and curing at 150 °C/2 min
N nitrogen content, WRA  wrinkle recovery angle (warp + weft), UPF UV protection factor and R% reduc-
tion in percentage of bacterial colonies, G + ve S. aureus and G − ve E. coli
Properties of untreated cotton are: %N = 0.00, metal content % = 0.00, WRA = 110, UPF = 6 and antibac-
terial activity against S. aureus and E. coli bacteria = 0%
Properties of untreated viscose are: %N = 0.00, metal content % = 0.00, WRA = 97, UPF = 3 and antibac-
terial activity against S. aureus and E. coli bacteria = 0%

Additives Additives 
conc. (g/L)

Substrate N (%) WRA (W + F)° UPF Antibacterial activity 
R %

S. aureus E. coli

L-ascorbic 0 Cotton 0.577 162 15 50 47
Viscose 0.809 130 11 60 58

10 Cotton 0.832 179 40 75 67
Viscose 1.322 157 35 85 76

20 Cotton 0.864 200 54 82 77
Viscose 1.337 183 48 91 86

Vanillin 0 Cotton 0.577 162 15 50 47
Viscose 0.809 130 11 60 55

10 Cotton 0.844 173 30 69 60
Viscose 0.949 145 25 78 71

20 Cotton 0.869 192 40 80 73
Viscose 0.998 160 36 90 80
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SEM and EDX analysis

Figure 4 demonstrates the changes in surface morphology and elemental composi-
tion of selected untreated cotton (a, b) and viscose (e, f) samples as well as treated 
cotton (c, d) and viscose (g, h) fabric samples using CA/SHP (30/15 g/L), CSNPs 
(2.5 g/L) and ZnONPs (15 g/L) finishing formulation. SEM of the selected fabrics 
samples clearly shows that ester-crosslinking of the cellulosic substrates in the pres-
ence of CSNPs and ZnONPs forms surface deposits as a direct consequence of load-
ing the functional additives onto the ester-crosslinked cotton (Fig. 4c) and viscose 
(Fig. 4g) compared with the untreated ones (Fig. 4a and e), respectively. The change 
in surface morphology reflects the differences between cotton and viscose substrates 
in fabric surface, extent of modification as well as post-coating and deposition of the 
thermofixed ingredients onto the fabric during the thermofixation step.

Additionally, EDX spectra of multifunctionalized cotton (Fig.  4d) and viscose 
(Fig.  4h) demonstrated new peaks of N, P and Zn elements in their pattern con-
firming the fixation and immobilization of CSNPs, SHP and ZnONPs onto the 
ester-crosslinked substrates in comparison with the untreated ones (Fig. 4b and f), 
respectively. The extent of ester-crosslinking and simultaneous fixation of the used 
functional additives is determined by type of cellulose, kind of functional additive as 
well as degree of fixation and immobilization during the curing step.

Fixation and immobilization of ZnONPs onto the modified cellulose struc-
ture could be discussed in terms of the availability of both –NH2 groups and free 
–COOH groups in the crosslinked cellulose structure which can help in coordination 
and immobilization of ZnONPs [23].

Scheme  3  Simplified reaction scheme for multimodification of the treated cellulosic substrates using 
L-ascorbic acid or vanillin as additive
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Durability to wash

The washing durability of multifunctionalized cellulosic substrates was also 
evaluated, and the experimental results are given in Table 3. The data in Table 3 
demonstrate that increasing the washing cycles up to 10 results in a reasonable 
decrease in both the chemical and functional properties of the developed fabrics. 
The extent of decrease in the aforementioned properties is governed by type of 
cellulosic substrate and functional additives. The reasonable decrease in the eval-
uated properties is a direct consequence of the partial removal of unreacted and 

Fig. 4  SEM image and EDX spectra of untreated cotton a, b, treated cotton with ZnONPs, CSNPs, CA 
and SHP c, d, untreated viscose e, f, treated viscose with ZnONPs, Cs, CA and SHP and g, h fabrics
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non-fixed active ingredients and confirms the high degree of fixation of the finish-
ing formulation constituents during the thermofixation step.

FTIR features of finished substrates

Figures  5 and 6 show the results of FTIR analysis of untreated and finished of 
some selected samples.

Untreated cotton (Fig. 5a) showed the following peaks: nearly 3339.42   cm−1, 
around 2897.32  cm−1 and 1600  cm−1 attributed to O–H stretching, C–H stretch-
ing and due to the adsorbed water molecule, respectively. While the IR spectra 
of finished cotton fabric sample with CA/SHP, CSNPs and ZnONPs (Fig.  5b) 
showed an additional peak at 1730  cm−1 corresponded to C=O stretching for ester 
linked cellulose with citric acid and a new peak at 500  cm−1 attributed to the bio-
prepared ZnONPs.

Regarding finished cotton fabric samples with L-ascorbic acid and vanillin, 
respectively, Fig.  6b and c, the C=C stretching in the L-ascorbic and vanillin 
overlaps with the OH bending in untreated fabric samples at 1600.42  cm−1. More-
over, additional new peaks were observed at 1313.35  cm−1 and 1311.42  cm−1 for 
the C–O stretching bands in L-ascorbic and vanillin, respectively.

Fig. 5  FTIR of the untreated and finished cotton fabric samples with ZnONPs, CS, CA and SHP a 
untreated fabrics and b finished fabrics
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Conclusion

The main task of the present research work is to a develop a single-stage mul-
tifunctional treatment of cotton and viscose cellulosic substrates to impart anti-
crease, UV blocking and antibacterial functions using environmentally sound and 
sustainable finishing formulations. Green synthesis of ZnONPs and CSNPs and 
their positive role in the development of multifunctionalized cotton and viscose 
fabrics using CA/SHP as ester-crosslinking system and pad-dry-cure thermofixa-
tion method are reported. Inclusion of ZnONPs (15 g/L) or a synergistic constitu-
tions of CSNPs (2.5  g/L)/L-ascorbic acid (20  g/L) or CSNPs (2.5  g/L)/vanillin 
(20 g/L) in the ester-crosslinking formulations resulted in a remarkable improve-
ment in the imparted anti-crease, UV protection and antibacterial efficacy of the 
finished fabrics, irrespective of the treated substrate.

The extent of improvement in the imparted functional properties is determined 
by the kind of cellulosic substrate as well as type of finishing formulation con-
stituents. Moreover, FTIR, SEM and EDX analysis confirm surface modification 
and functionalization of the treated fabric samples. The results obtained further 
signify that increasing washing cycles up to 10 cycles resulted in a slight decrease 
in the imparted functional properties. Thus, it can be concluded that developing 
of durable multifunctionalized textile products using an eco-friendly, and facile 
single-step finishing regime greatly supports the possibility of a wide range of 
potential and practical applications.

Funding Open access funding provided by The Science, Technology & Innovation Funding Authority 
(STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Fig. 6  FTIR of the untreated and finished cotton and viscose fabrics a untreated fabric, b L-ascorbic fin-
ished fabric and c vanillin finished fabric
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