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Abstract
Multifunctional fiber mats are explored as potential bioactive matrices for the devel-
opment of the next generation of guided bone regeneration membranes with tunable 
microstructure, strength and therapeutic activity. In the present study, polycaprol-
actone (PCL) nanofibers with different concentrations of ascorbic acid derivatives 
(ascorbyl palmitate) and strontium polyphosphate nanoparticles (Sr-polyP NPs) 
were fabricated. The obtained PCL mats scaffolds were assessed not only for micro-
structure structure features, including morphological observation, hydrophilicity 
and tensile strength, but also in vitro water uptake, biodegradation (under enzy-
matic and hydrolytic conditions), bioactivity using SBF, as well as ascorbic acid 
release study. The observed results showed that the mean fiber diameter of the 
PCL fibers (388 ± 340 nm) increased with the increase in the concentration of the 
ASP and Sr-polyP NPs. The addition of ascorbyl palmitate caused an increase in 
viscosity from 40.6 ± 2.5 to 66.6 ± 2.0  cP in the case of 20% AsP/PCL; however, 
it caused a decrease in conductivity from 7.3 ± 0.4 to 6.38 µs, while there was an 
obvious increase in the viscosity and conductivity by Sr-polyP Nps addition from 
40.6 ± 2.5 cP in the case of PCL only to 88.3 ± 2.5 cP in the case of PA1/SP15. The 
contact angle decreases from 125.9 ± 2.5° in the case of PCL only to 112 ± 4 and 
102 ± 2.4° in the case of 20% loaded ascorbyl palmitate-PCL mats and 15% Sr/PCL, 
respectively. Moreover, the assessment of the antioxidant activity of PCL fiber mats 
containing 10% and 20% ascorbyl palmitate demonstrated that the 20% ascorbyl pal-
mitate-PCL fiber mats have a higher antioxidant effectiveness compared to the 10% 
mats. This could be attributed to the controlled release of ascorbic acid from PCL, 
which occurs after 7 days. However, the highest tensile strength was observed for 
5% Sr-polyP NPs-loaded PCL/AsP mats at 1.52 ± 0.51 MPa. Further increase of Sr-
polyP NPs content resulted in a clear decrease of tensile strength to 1.13 ± 0.13and 
0.93 ± 0.71 for 10% and 20% ascorbyl palmitate-PCL mats, respectively. Impor-
tantly, the fabricated AsP and Sr-polyP NPs-loaded PCL fiber mats showed induc-
tion of calcium phosphate deposition in SBF and the ability to sustain release of 
ascorbic acid over a time period of 28  d, in addition to the enhancement in cell 
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proliferation compared to PCL only suggesting their application as a favorable syn-
thetic matrix to amplify guided bone regeneration process.

Graphical abstract
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Introduction

Guided bone regeneration (GBR) has been boosted as a tremendous option in mod-
ern dentistry and orthopedic surgeries. The basic concept of GBR involves the use 
of a barrier membrane to simply direct the osseous regeneration by preventing the 
ingrowth of soft tissues into the defect area and thus, providing appropriate sur-
rounds for the osteogenesis process [1, 2]. Indeed, GBR is clinically used to enhance 
the augmentation of alveolar ridge defects, improve the biological outcomes of 
bone graft materials, and even minimize the risk of dental/bone implant complica-
tions [3]. Current GBR membranes are typical of two types, non-resorbable mem-
branes (such as expanded polytetrafluoroethylene (e-PTEF), high-density-PTFE 
membranes and titanium mesh) or resorbable membranes as collagen and synthetic 
polyesters (i.e. polyglycolides (PGAs), polylactides (PLAs), or their copolymers). 
Compared to non-resorbable membranes, resorbable membranes provide an ideal 
solution to avoid the second operation which is associated with non-resorbable ones 
[3, 4]. However, there are some drawbacks in the current GBR membranes including 
lack of tissue integration, low mechanical properties, proper degradation rate and 
poor ability to induce bone depositions [5]. The ideal GBR membrane should have a 
proper degradation rate in which it stays in its place with adequate mechanical prop-
erties for about 4–6 weeks to avoid connective tissues from growing into alveolar 
bone defects [6, 7].
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Polymeric membranes/mats of the fibrous structure have been introduced as a 
functional structure to resemble the extracellular matrix and to facilitate cell adhe-
sion, migration and proliferation [8]. Fibrous mats can be produced by different 
techniques including the phase separation technique [9], self-assembly [10] and tem-
plate synthesis [11]. As a simple and alternative approach, electrospinning has been 
recalled to fabricate ultrafine polymer fibers of unique arrays and tunable physico-
chemical features. The ability to handle a diverse array of products has been made 
possible by utilizing various electrospinning techniques such as basic solution elec-
trospinning, blended electrospinning, coaxial electrospinning, emulsion electrospin-
ning, melt electrospinning and gas jet electrospinning based on the specific require-
ments [12, 13].

Various polymerization methods have been used to produce eco-friendly, biocom-
patible, and biodegradable polyesters such as poly (hydroxyalkanoate) (PHA), poly 
(lactic acid) (PLA) and poly (caprolactone) (PCL) from petroleum-based feedstocks 
[14]. PCL is a FDA-approved synthetic polymer that has garnered significant atten-
tion for the development of green materials and biomaterials due to its favorable 
characteristics such as good processability, electrospinnability, biodegradability and 
miscibility [14]. As a result, PCL-based biomaterials have a wide range of applica-
tions in the biomedical field. However, the potential application of PCL material in 
bone tissue regeneration is limited and generally requires the incorporation of bioac-
tive materials to promote bone regeneration and healing processes [15].

Polyphosphate (polyP) is the inorganic polymer of orthophosphate (Pi) that acts 
as a phosphate source in bone mineralization and as a metabolic energy generator 
in the extracellular space [16, 17]. The polyP is enzymatically hydrolyzed by the 
alkaline phosphatase enzyme (ALP), which breaks the phosphoanhydride bonds 
between phosphate groups [18]. Amorphous Calcium/polyP nanoparticles meet the 
fundamentals of being fully biocompatible beside facilitating tissue regeneration 
[16]. Strontium (Sr) has attracted interest due to its potential to promote the pro-
liferation and differentiation of bone-forming cells and its inhibition of the resorb-
ing activity of osteoclasts [19, 20]. In addition, it cannot only significantly increases 
the bioactivity of grafts and hasten the regeneration in the defect area, but can also 
improve angiogenesis in vitro and in vivo by increasing the proangiogenic factors 
[21, 22]. As previously reported by our group [23], Sr-polyP particles reveal excel-
lent biological features for superior bone regeneration based on the obvious increase 
of mineral deposition and expression of ALP and BMP-2 in SaOS cells in vitro, as 
well as tissue healing in vivo.

Among many antioxidants used in medicine, L-ascorbic acid (Vitamin C) is one 
of the well-known powerful naturally occurring antioxidant that is able to block 
some of the damage caused by free radicals and serves as a co-factor in several met-
abolic activities, including the hydroxylation of proline and lysine residues in col-
lagen, folding of pro-collagen and deposition as mature collagen [24, 25]. Neverthe-
less, ascorbic acid is not physiologically stable but is known to work more efficiently 
in aqueous media than in hydrophobic conditions [26]. The structure of ascorbic 
acid is made of a ring with several hydroxyl groups at positions 2, 3, 5 (secondary 
alcoholic residue) and 6 (primary alcoholic residue). The chemical modification of 
its hydroxyl groups would improve not only its stabilization as an antioxidant but 
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also would provide new derivatives with multiple physiological function properties 
for new biomedical applications. Ascorbyl palmitate (AsP) is an amphipathic deriv-
ative of ascorbic acid that has an antioxidant effect almost equal to ascorbic acid 
[27]. It showed more stability than ascorbic acid due to the presence of hydrophobic 
palmitate chains that can penetrate the cell more easily and have better capability to 
protect lipids and further cell components from free radical peroxidation [27, 28]. 
The current study aims to prepare and characterize nanofibrous PCL membranes 
with different concentrations of AsP and also different concentrations of Sr-polyP 
NPs and evaluate their optimum concentrations as well as their biocompatibility.

Material and methods

Materials

Sodium polyphosphate (Na-polyP) with an average chain length of 40 phosphate 
units was purchased from Chemische Fabrik Budenheim (Germany), 2,2 diphenyl 2 
picryl hydrazyl hydrate (DPPH), and poly (ε-caprolactone) purchased from Sigma-
Aldrich (USA), Strontium chloride  (SrCl2.6H2O), and Ascorpyl palmitate (6-O-pal-
mitoyl-L-ascorbic acid) were purchased from Sigma-Aldrich (Germany).

Preparation of Sr‑polyP NPs

Sr-polyP NPs were fabricated using an analogous procedure as described by Mül-
ler et al. [23]. The preparation started with dissolving 1 g of sodium polyphosphate 
powder in 25 mL of distilled water. On the other side, 5.16 g of  SrCl2.6H2O salt was 
dissolved in 25 mL of distilled water. The strontium solution was then added drop-
wise to the polyP solution, keeping the pH at 10. The suspension formed was left 
overnight under stirring. The particles were collected by decantation, washed three 
times with ethanol and dried at 60 °C.

Electrospinning of PCL/AsP and PCL/AsP/Sr‑polyP fiber mats

A polymeric solution of 10% PCL in the solvent system (50:50 chloroform–metha-
nol) was prepared as listed in Table 1 according to the method described by Eldurini 
et al. [29]. For ascorbic acid containing mats, ascorbyl palmitate was added at two 
different ratios to PCL until complete dissolution and then, the PCL was added. 
The Sr-polyP NPs at different concentrations of 5, 10 and 15% (wt/wt) of PCL were 
added to the solvent only and then, subjected to sonication for 1 h for complete dis-
persion. Then, the calculated amount of PCL was added to form a final concentra-
tion of 10% (wt/v). The prepared solutions were loaded into a syringe with a 21G 
needle with a tip to collector distance of 12 cm under 20 kV applied voltage using a 
Glassman High Voltage Series [30]. The solutions were electrospun at room temper-
ature (about 25 °C) and relative humidity (RH) of 50 ± 2%. The fibers were collected 
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in the form of a net fibrous mat (up to 3 mm in thickness). For solvent removal, the 
electrospun mats were vacuum dried at 40 °C for 3 h.

Physiochemical characterization

Viscosity measurements were studied for all samples after a constant using Brook-
field viscometer (Model DV-III Ultra). Each sample was put in the built-in stainless 
steel container attached to a temperature controller at 25 °C using a S21 spindle at 
50 RPM [31]. The effect of adding different concentrations of AsP and Sr-polyP 
NPs on the conductivity of PCL solution was measured by using a conductivity 
meter (HC3010, Trans instruments) at 25 °C [32]. The morphology and fiber diam-
eter were examined using a field emission Scanning Electron Microscope SEM (Jeol 
JXA 840, Japan). The mean fiber diameter of the samples was determined by meas-
uring about 50 individual fibers using the image analysis software (Image J 1.42q 
software, NIH, Bethesda, Maryland, USA) [33]. Fourier-transform infrared (FTIR) 
spectroscopy was performed with an attenuated total reflectance-FTIR spectroscope/
Varian IR spectrometer (Agilent, Santa Clara; CA). Surface hydrophilicity was esti-
mated by determining the contact angle using a Compact video microscope (CVM), 
manufactured by SDL-UK, contact angle measured by a horizontal plate camera 
perpendicular to the liquid droplet plane. Thermal analysis (DSC/TGA) of the sam-
ple was tested using an SDTQ600 analyzer with a rate of 10 °C  min−1 under argon. 
The tensile strength of the electrospinning nanofibrous membranes was measured 
using Universal Testing Machine (Lloyd Instruments Ltd LR10 K, Hampshire, UK) 
at a stroke rate of 10 mm per minute. The samples were of dimensions of 10 mm 
width and 80 mm length with a gap length of 2 cm. The thickness of the mats was 
assessed using a digital Vernier Caliper. Each mat was repeated five times, and the 
results were averaged.

In vitro study

Antioxidant assay

The antioxidant activity was determined using the radical scavenging activity of 
PCL mats loaded with AsP against 2,2 diphenyl 2 picryl hydrazyl hydrate (DPPH), 

Table 1  Electrospun PCL fiber 
mats composition and their 
formulation

Formulation AsP content (wt%) Sr-polyP 
content 
(wt%)

P 0 0
PA1 10 0
PA2 20 0
PA1/SP5 10 5
PA1/SP10 10 10
PA1/SP15 10 15
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as described by Plank et al. [34]. The change in color of DPPH (from deep violet to 
light yellow) was measured at 517 nm on a UV–visible light spectrophotometer. The 
samples were kept in the absence of light for 15 min at room temperature, and the 
decrease in absorbance was measured. Each mat was repeated thrice. Radical scav-
enging activity was calculated by the following formula.

where AB = absorption of the blank sample (t = 0 min) AA = absorption of test extract 
solution (t = 15 min).

The IC50 was calculated from the scavenging activities (%) versus concentrations 
of the respective sample curve.

Degradation and water uptake

Degradation and water uptake assessments are done according to the method 
described by Deyab et  al. [35]. The electrospun mats were cut and weighed into 
2 × 1   cm2 samples and was termed as initial weight (Wi). Afterward, the samples 
were soaked into 15 ml of Phosphate Buffer Solution (PBS) and incubated at 37 °C 
for 1, 3, 7, 14, 30 days. After each prescribed day, the mats were taken out and dried 
with a filter paper to absorb all the surface solution; then, the samples were then 
weighed, denoted wet weight (Ww). The samples were weighed again after drying 
for 24 h at room temperature and this is termed the dry weight (Wd). The percentage 
weight loss and the water uptake percentage were calculated according to the fol-
lowing relations (Kandil et al. [36]):

A degradation test was also performed in the presence of a lipase enzyme. The 
degradation medium was prepared by dissolving lipase enzyme at a final concen-
tration of 2  mg   mL−1 and 0.02% (wt/v) sodium azide as a bacteriostatic agent in 
a 0.05  M Tris–HCl buffer, pH 7.4. Three square samples were placed in sealed 
vials containing 3 ml of the degradation medium. The samples were incubated for 
different time intervals 3, 6 and 12 and 24  days. The lipase degradation medium 
was changed every three days. At each incubation period, the samples were slowly 
removed and dried at 40 °C to determine dry weight after lipase degradation.

Ascorbic acid content and release

The ascorbic acid release from the prepared PCL mats was estimated by UV-spec-
trophotometer as described by Avizheh et al. [37]. In brief, AsP-loaded PCL samples 
were incubated into Tris–HCl buffer in the presence and absence of lipase enzyme 

% Inhibition =
[(

AB−AA

)

∕AB

]

× 100

(1)Weight loss (%) =
Wi −Wd

Wi

× 100

(2)Water uptake (%) =
Ww −Wi

Wi

× 100
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(as mentioned in Sect.  "Degradation and water uptake"). The released ascorbic acid 
was measured at a wavelength of 265 nm. The concentration of ascorbic acid in the 
investigated samples was calculated via calibration plot as the quantity in µg/ml. The 
release profiles were determined by calculating the concentrations of ascorbic acid in 
the Tris–HCl buffer over different time intervals.

Bioactivity

Mats were cut into rectangular shapes with a dimension of 2 × 1  cm2 and placed in a 
15 ml centrifuge tube containing SBF solution and incubated for 28 days at 37 °C to 
examine their ability for hydroxyapatite layer formation [38]. The hydroxyapatite layer 
formation is assessed by SEM [39].

Cultivation of SaOS‑2 cells

The human osteogenic sarcoma cells (SaOS-2) cells (Sigma #89050205) were cultured 
in McCoy’s medium (Biochrom Seromed, Berlin, Germany) provided with 5% heat-
inactivated fetal calf serum (FCS), 2  mM L-glutamine and gentamicin (50  μg/mL) 
in six-well plates (Sigma-Greiner) as described by Wiens et al. [40]. The cells were 
seeded at a density of 2 ×  104 cells per 3 ml well and cultivated for 3 d in medium/FCS.

Cell proliferation/cell viability assay

The mats were sterilized with 70% (v/v) ethanol aqueous solution for 20  min, then 
washed by PBS thrice, followed by exposure to ultraviolet radiation (280–315  nm 
UVB; 20 mJ/cm2) for 1 h before cell culture experiments. The cytotoxicity was assessed 
by the colorimetric method, based on the oxidation of the tetrazolium salt. SaOS-2 cells 
were seeded into the 48-well plates and cultured for 3 d in McCoy’s medium/15% FCS. 
Two parallel series of experiments were carried out. The cells were cultured either in 
the absence or in the presence of the mats. Then, after a 3 d incubation period, the cyto-
toxicity of the cells was assessed with 3-[4,5-dimethyl thiazole-2-yl]-2,5-diphenyl tetra-
zolium (MTT; #M2128, Sigma). Ten parallel experiments were performed as described 
by Müller et al. [30].

Statistical analysis

The values reported are the average ± standard deviations. Statistical analysis was per-
formed with the one-way ANOVA test, attached by Excel software Values of p < 0.05 
were considered statistically significant.
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Results

Fiber morphology

As shown in Table 2, there is an increase in the fiber diameter due to the increase 
of the solution viscosity with the addition of AsP and Sr-polyP NPs nanoparti-
cles. On the other side, the conductivity measurements show a slight decrease 
with the addition of AsP and a remarkable increase with Sr-polyP NPs nanopar-
ticles which could be attributed to the excess of free charges caused by the nano-
particles’ addition. The morphology of the electrospun PCL fibers after the addi-
tion of AsP is shown in Fig. 1. The SEM observations reveal an increase in fiber 
diameter with increasing AsP content and a clear deformation of fiber morphol-
ogy with increasing Sr-polyP NPs nanoparticles content. By increasing the Sr-
polyP NPs nanoparticles content, the fibers begin to appear in a flattened shape 
due to the increase in viscosity and carrying ability of the polymeric fibers.

Table 2  Change in viscosity, 
conductivity and fiber diameter 
of PCL samples

Sample name Viscosity (cP) Conductivity (µs) Mean Fiber 
Diameter (nm)

P 40.66 ± 2.51 7.30 ± 0.46 388 ± 34
PA1 62.33 ± 1.52 6.51 ± 0.71 418 ± 24
PA2 66.66 ± 2.08 6.38 ± 0.55 433 ± 25
PA1/SP5 83.3 ± 2.51 6.79 ± 0.12 677 ± 35
PA1/SP10 86.6 ± 1.52 10.80 ± 0.74 891 ± 62
PA1/SP15 88.3 ± 2.51 12.64 ± 0.37 630 ± 97

Fig. 1  SEM micrographs of PCL fiber mats and their fibers diameter distribution. A P, B PA1, C PA2, D 
PA1/SP5, E PA1/SP10and F PA1/SP15



3363

1 3

Polymer Bulletin (2024) 81:3355–3374 

Fourier transformed infrared

FTIR spectra for electrospun mats containing ascorbyl palmitate were shown in 
Fig. 2. The ascorbyl palmitate shows bands at 2919  cm−1 and 2850  cm−1 that are 
related to the C–H stretches and the carbonyl stretching band of lactones ring 
of ascorbic acid at 1754   cm–1 and 1728   cm–1. The two bands at 1667   cm−1 and 
1628  cm−1 are due to the C=C stretching vibrations. The spectrum of neat PCL 
electrospun fiber has shown two bands at 2940   cm−  1  and 2868   cm−  1  which 
are typical for the symmetric and asymmetric C–H stretching. The sharp band 
at 1723   cm−  1  belongs to the stretching vibrations of the ester-carbonyl groups 
(C=O). However, the bands for PCL were not shifted, and the intensity of the 
carbonyl group was changed with the addition of ascorbyl palmitate (AsP); this is 
also reported by Du and his coworkers in their investigation of this blend by XPS, 
and they showed that the peak at 288.8 eV suggested an increase in the atomic 
percentages of the carbon atoms participating in C–O–C/C–OH of the ascorbic 
structure and also an increase in the peak area of the O-atoms, participating in 
C–O–C/C–OH bonds [41]. The FTIR spectra of the samples after Sr-polyP NPs 
addition are very close to the pure PCL spectrum and show only small new bands 
and some shifts. They all exhibit two bands at 2940 cm −1 and 2868  cm− 1 which 
are typical for the symmetric and asymmetric C–H stretching of PCL. The sharp 
band at 1723   cm−  1  belongs to the stretching vibrations of the ester-carbonyl 
groups (C=O). By the addition of Sr-polyP NPs, a small new band related to Sr-
polyP ascribed to a symmetric stretching of P–O–P at 876   cm−1 and also small 

Fig. 2  FTIR spectra for the ascorbyl palmitate and the electrospun mats
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new bands at 995/986   cm−1 for the asymmetric and symmetric stretching of 
P–O–P. Moreover, the broad bands near 3428   cm−1 are attributed to stretching 
vibrations of hydroxyl groups.

Contact angle

The surface wettability of the samples is shown in Table 3. As the amount of AsP 
increases, the contact angle decreases due to the amphipathic nature of the AsP. 
The addition of Sr-polyP NPs caused a slight decrease in the hydrophobicity of 
PCL from 125° to 104° in the case of 15% Sr-polyP NPs due to the increase in 
surface charge. The results agree with the results obtained by Bayrak and his cow-
orkers in their study of the addition of hydroxyapatite to PCL due to the increase 
of surface energy [42].

Table 3  Contact angles of the 
different electrospun mats

Sample Contact angle (°) Image

P 125.9 ± 2.57

 
PA1 121 ± 1.81

 
PA2 112 ± 5.14

 
PA1/SP5 121.45 ± 1.01

 
PA1/SP10 120.13 ± 1.76

 
PA1/SP15 104.02 ± 2.68
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Water uptake and degradation

Water uptake indicates the diffusion of nutrients and blood supply across the mem-
brane. Analysis for water uptake measurements of the fabricated mats after 24  h 
indicates that both AsP and Sr-polyP NPs have significant effects on PCL’s water 
absorption behavior. The water uptake percentage of all the samples is shown in 
Fig. 2. As can be seen, the highest water uptake values were observed for PCL mats 
loaded with AsP followed by the PCL mats loaded with Sr-polyp compared to pure 
PCL mats. In addition, it is clearly seen that as the Sr-polyp NPs content increases, 
the amount of water uptake decreases. This can be related to the change in samples 
porosity due to the changes in fiber diameters and the agglomerations of Sr-polyp 
NPs, as indicated by SEM observation.

The degradation behavior of the different electrospun mats is also shown in 
Fig. 3. In general, the degradation of the PCL ester linkages in PBS occurs due to 
hydrolytic degradation [38]. However, the PCL mat demonstrated very high stability 
and low degradability. Considering the PCL/AsP samples a slight increase in deg-
radation rate is detected which could be due to the release of ascorbic acid into the 
PBS. The increase of Sr-polyP NPs content increased the degradation rate of the 
electrospun PCL. The results agree with the results of Díaz and his coworkers in 
their study of the effect of nano-hydroxyapatite addition in the in-vitro degradation 
of PCL scaffolds [43].

Fig. 3  a The water uptake index of the electrospun mats, b the hydrolytic degradation percentage of the 
electrospun mats through 28 days and c the enzymatic degradation percentage of the electrospun mats 
through 28 days
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Enzymatic degradation of PCL loaded with AsP and Sr-polyP was carried out 
at 37 °C in PBS solution containing lipase for 12 and 14 days, as shown in Fig. 4. 
The weight loss was increased with increasing AsP which indicates that lipase 
accelerates the AsP degradation. The results also demonstrate that the PCL mats 
loaded with Sr-polyP NPs show a lower weight loss which could be attributed to the 
decrease in water uptake, as previously mentioned.

Effect of incubation time on ascorbic acid release

However, it was clearly observed that ascorbic acid was released under both con-
ditions. The release of ascorbic acid was significantly increased in the presence of 
lipase. Under hydrolytic conditions, the PA1 sample releases about 25% and 58% 
of the total ascorbic acid content after I d and 28 d, while approximately 47.3% and 
91% of the total ascorbic acid was released in the presence of lipase enzyme at the 
said time intervals. On the other hand, the PA1/SP mats showed a lower ascorbic 
acid release, in which an obvious difference was observed among the three sam-
ples with various Sr-polyP NPs content. For instance, one day AA release of PA1/
SP mats under hydrolytic conditions was in the following order: 22.8% for PA1/SP5 
sample, 12.2% for PA1/SP10 sample and 10.1 for PA1/SP15 sample. The same was 
also observed in the presence of lipase enzyme (44.6%, 37.4% and 31.3% for PA1/
SP5, PA1/SP10 and PA1/SP15 samples, respectively).

Antioxidant assay

The antioxidant activity of palmitoyl ascorbic acid and PCL mats loaded with 
palmitoyl ascorbic acid were measured by the DPPH (2,2-diphenyl-1-picrylhy-
drazyl) assay. The results showed that the Ic50 of palmitoyl-L-ascorbic acid was 
(32 ± 4 nM). The  IC50 value reveals the antioxidant activity of mats. It is calcu-
lated as the concentration of antioxidants needed to decrease the initial DPPH 

Fig. 4  Effect of incubation time on releasing of ascorbic acid from AsP-loaded PCL fiber mats under a 
Hydrolytic condition and b Enzymatic conditions
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concentration by 50% [44, 45]. Thus, the lower the  IC50 value the higher the anti-
oxidant activity.

The antioxidant activity of 10 and 20% ascorbyl palmitate–PCLfiber mats was 
measured by DPPH assay after 0.25, 3, 7, 10, 14 and 21 d, as shown in Fig. 5. 
The results indicate that the 20% is more efficient antioxidant than 10% ascorbyl 
palmitate–PCL fiber mats. The samples exhibit a stable antioxidant capability 
after 7 d in which the DPPH scavenging % was not slightly changed after 10, 14 
and 21 d. This may be attributed to the controlled release of ascorbic acid from 
PCL that occurs after 7 d.

Mechanical properties

The mechanical behavior of the samples is shown in Fig.  6. Incorporation of 
palmitoyl ascorbic showed an increase in the mechanical properties, but with 
increasing the concentration to 20% there is a decrease in the tensile strength. 
Ascorbyl palmitate addition causes the fiber to be smoother and hence lowers its 
mechanical properties. As a result, the mechanical properties of 10% As-PCL 
were shown to be better and hence, it was chosen for further studies. As shown in 
Table 4, the addition of Sr-polyP NPs slightly decreased the tensile strength from 
1.21 MPa for neat PCL to 0.93 MPa for PA1/SP15and also decreased the elonga-
tion at break, but there is a slight increase in Young’s modulus due to the hard-
ness occurred due to the loading of the Sr-polyP NPs.
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Bioactivity

The in  vitro hydroxyapatite formation was investigated by SEM and EDAX as 
shown in Fig.  7 in which PCL only fibers showed no formation of any layer. By 
the addition of Sr-polyP NPs, there is an obvious change in the bioactivity and the 
hydroxyapatite layer was confirmed by the percentage of calcium to phosphorous 
ratio, and it is nearly 1.67 as shown in Table 5. This is due to the bioactivity of Sr-
polyP NPs which are proven to be bioactive in forming bone in vivo [23].

Cytotoxicity

As shown in Fig. 8, the in vitro cytotoxicity assay has shown that the addition of SrPP 
nanoparticles has enhanced the biocompatibility of the electrospun PCL nanofibers. 

Fig. 6  Mechanical properties of the electrospun mats

Table 4  Mechanical properties of the electrospun mats

Sample name Young’s modulus Tensile strength (MPa) Elongation at break (%)

P 2.28 ± 2.3 1.21 ± 0.38 158.47 ± 16.88
PA1 5.17 ± 0.99 1.46 ± 0.29 175.15 ± 34.61
PA2 2.77 ± 0.32 1.34 ± 0.46 129.88 ± 8.38
PA1/SP5 4.38 ± 0.15 1.52 ± 0.51 104.4 ± 8.60
PA1/SP10 1.65 ± 0.34 1.13 ± 0.13 103.4 ± 2.79
PA1/SP15 3.77 ± .72 0.93 ± 0.17 40.8 ± 3.05
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PA1/SP10 has shown a significant difference compared to neat PCL; however, by 
increasing the Sr-polyP NPs concentration, the cytotoxicity may be due to the change 
in fiber morphology to be converted into a more flattened shape as shown in the SEM. 
The results agreed with the results obtained by Luo and his coworkers; they found that 
strontium addition to hydroxyapatite increased the cell viability and also the alkaline 
phosphatase activity [46]. Studies showed that materials containing strontium showed 
high angiogenesis by releasing cytokines and increased expression of physiologi-
cally active signaling molecules [47–49]. Moreover, the presence of ascorbic acid was 
reported to increase bone healing and has osteogenic activity as reported by Hashemi 
et al. [50] in their study on PLA/PCL/gelatin/ascorbic acid composite.

Fig. 7  SEM of A P, B 5 PA1/SP5, C PA1/SP10 and D PA1/SP15

Table 5  Calcium and 
phosphorous ion ratios from 
EDAX

Sample Ca P Ca/P

P – – –
PA1/SP5 1.13 0.89 1.27
PA1/SP10 4.38 2.63 1.75
PA1/SP15 5.91 2.88 2.05
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Conclusions

The study deals with the electrospinning of novel antioxidant electrospun PCL/
ascorbyl palmitate and the incorporation of strontium polyphosphate nanoparti-
cles. The additives enhanced the surface wettability of PCL mats revealed lead-
ing to a high-water uptake percentage, which is of great importance for cellu-
lar attachment and proliferation. In addition, it has been proven that ascorbic 
acid could be released in a sustained release manner from electrospun PCL fib-
ers under hydrolytic and enzymatic conditions. The modified electrospun mats 
showed higher bioactivity, mechanical properties and higher biocompatibility 
than pure PCL. This gives the advantage of the modified composition over the 
previously reported PCL mats used in bone regeneration. Therefore, obtaining 
such electrospun matrices loaded with  multiple  active  compartments (i.e., AsP 
and Sr-polyP NPs) encourage future in vivo studies for the development of bioac-
tive nanofibrous mats to be used in guided bone regeneration applications.
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