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Abstract
Cancer is one of the main causes of death worldwide, being pancreatic cancer the 
second deadliest cancer in Western countries. Surgery, chemotherapy and radiother-
apy form the basis of pancreatic cancer’s current treatment. However, these tech-
niques have several disadvantages, such as surgery complications, chemotherapy 
systemic side effects and cancer recurrence. Drug delivery systems can reduce side 
effects, increasing the effectivity of the treatment by a controlled release at the tar-
geted tumor cells. In this context, coaxial electrospun fibers can increase the con-
trol on the release profile of the drug. The aim of this study was to encapsulate and 
release different anticancer drugs (5-Fluorouracil and Methotrexate) from a poly-
meric fiber mat. Different flows and ratios were used to test their effect on fiber mor-
phology, FTIR spectrum, drug encapsulation and release. Good integration of the 
anticancer drugs was observed and the use of a desiccator for 24 h showed to be a 
key step to remove solvent remanence. Moreover, the results of this study demon-
strated that the polymeric solution could be used to encapsulate and release different 
drugs to treat cancers. This makes coaxial electrospinning a promising alternative 
to deliver complex chemotherapies that involve more than one drug, such as FOL-
FIRINOX, used in pancreatic cancer treatment.
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Introduction

Cancer is one of the deadliest diseases worldwide. One of the worst prognoses 
of this disease is for the pancreatic cancer, as only the 4% of the patients survive 
after 5 years of the diagnosis date[1, 2]. It is also the second most deadly can-
cer-related cause in Western countries[3]. Surgery, chemotherapy such as FOL-
FIRINOX or Gemcitabine, and radiotherapy are the most common treatments 
used to treat this illness [1, 4–6]. However, they have strong disadvantages such 
as chemotherapy systemic side effects, limitations of techniques and recurrence 
due to rests of cancer not removed during the treatment, among others [7, 8]

These disadvantages and limitations can be reduced if drug delivery systems 
(DDSs) are used during the healing process[9]. The main advantage of these tech-
nologies is a focalized and more efficient delivery, which derives on a reduction 
in the side effects and tumor recurrence[10]. Polymers are the main vehicles used 
for DDS because of the wide range of macromolecules that can be used. Each of 
them has a specific biodegradation profile[11], which can provide a controlled 
delivery as the degradation kinetics will describe the drug release profile[12]. 
For example, polycaprolactone (PCL) is a biodegradable polymer widely used as 
DDS, even with encapsulated anticancer drugs [13–16].

DDS can be divided into two groups, depending on the liberation profile they 
have: they can do it systematically (such as the case of nanoparticles) or locally 
(as in the case of electrospun fibers, films or hydrogels)[17]. Systemic delivery 
systems can be injected or introduced orally[18]. The main advantages of these 
systems are their nanometric size, specificity and low invasiveness, as the vehi-
cles can reach smaller vessels and can be engineered to recognize certain recep-
tors and no surgery is required for the treatment [19–21]. On the other hand, 
sometimes these particles are hard to functionalize or can lose their specificity 
due to the lack of molecules that can identify the target and the interactions in the 
delivery process[22].

Local drug delivery systems release the drug in a specific site, loco-regionally, 
by diffusion or degradation mainly[23]. These systems can take several forms, 
such as foams, hydrogels or fibers among others[10, 24, 25]. This technology 
has a strong background, as it has been in the market since 1995 when GLIA-
DEL® wafers were commercialized to treat brain cancers. The main disadvantage 
of hydrogels or foams is that the drug is delivered by diffusion[10], which is a 
fast occurring phenomenon that releases the drug in a short period of time[26]. 
Even more, the target of local DDS is not accessible without surgery. That is why 
these devices are meant to be complementary to conventional surgery, in order to 
ensure that the entire tumor is removed.

Electrospinning is a fabrication process to obtain a local DDS. This method is 
easy to use and versatile, it generates high surface-to-volume ratio meshes, and it 
usually is a low-cost process[27]. The generated scaffolds are formed by fibers, 
which have a mixed delivery profile, as both diffusion and degradation related 
release occur[19, 25]. The shape and size of the fibers play an important role 
in the drug releasing profile. Therefore, there are several parameters that can be 
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altered to modify the size of those electrospun fibers in order to control the drug 
release, such as potential difference, nozzle–collector distance, polymeric solu-
tion flow, polymer concentration and conductivity[28–31]. One limitation of this 
technique is that the fiber has the same properties across its whole structure and a 
burst drug release can occur, as the molecule is totally blended with the fiber[16]. 
This can be solved if two solutions are injected at the same time by coaxial elec-
trospinning, increasing the versatility and the control on the coaxial fiber prop-
erties, composition and drug loading and release[32, 33]. Briefly, coaxial elec-
trospinning is a modification of the conventional electrospinning process, where 
more than one solution is electrospun [34]. The spinnerets containing the differ-
ent solutions share an axis. This allows the injection of one solution into the other 
at the needle tip: the core fluid is drawn within the outer one to produce continu-
ous filled nanofibers.

Actual chemotherapy treatments use various drugs, such as 5-Fluorouracil (5F), 
irinotecan, oxaliplatin and folinic acid at the same time to treat pancreatic cancer 
cells[35–37]. In addition, including other drugs such as painkillers in the treatment 
could improve the patient’s life quality. Therefore, testing PCL to encapsulate drugs 
related to general cancer treatment, such as Methotrexate (MTX), is a required step 
to keep DDS on the same road that chemotherapy is undergoing. For this reason, 
in order to obtain an alternative treatment for pancreatic cancer, PCL was used to 
encapsulate and release different antineoplastic molecules by coaxial electrospin-
ning. PCL-blended nanofibers loaded either with 5F or MTX were investigated in 
this research. Various PCL proportions and fabrication parameters were used to pro-
duce different electrospun nanofibers. The effect of those specifications in nanofiber 
characteristics and drug release was studied in this work.

Methods

Materials

Polycaprolactone (PCL, Mw = 100 000  g/mol), 99% chloroform, 100% methanol, 
98–100% formic acid and 99% acetic acid were purchased from Sigma Life Sci-
ences, USA. 5-Fluorouracil (5F) was purchased from AK Scientific Inc, USA, and 
Methotrexate (MTX) was kindly provided by Dr. A. Aldaz, from the Department of 
Pharmacy of Clínica Universidad de Navarra, Spain.

Electrospinning of PCL nanofibers

Electrospinning solutions were prepared by dissolving 14 wt.% of PCL in formic 
acid/acetic acid/chloroform with a ratio of 47.5: 47.5: 5 (v/v/v), respectively. The 
solution was stirred at room temperature overnight and used within the first 72 h. A 
second solution was prepared for each drug, 5F and MTX, by adding 28 mg/mL or 
8.4 mg/mL, respectively, to the original polymeric solution.
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Once the solutions were ready, coaxial electrospinning was used to electrospun 
the nanofibers (Fig. 1a). The setup consisted of a coaxial nozzle with an inner gauge 
of 26G and an outer gauge of 18G (Ramé-Hart Instrument Co, USA; Fig.  1b), 
two syringe pumps (KD Scientific Inc, USA) and a high-voltage DC power sup-
ply (Heinzinger, Germany). A schematic of the coaxial electrospinning is shown in 
Fig. 1c

Three different configurations were used to fabricate the fibers. The parameters 
used for each configuration tested are shown in Table  1. These parameters were 
based on the study of Iqbal et al. (2017). The scaffolds fabricated only with the poly-
meric solution were used as control and identified with the code CoPP. The drug-
loaded fibers were fabricated using either of the drug-solutions in the inner tube and 
the polymeric solution in the outer one. The fibers loaded with 5F were identified as 
P5F and the ones loaded with MTX as PMTX.

Characterization of nanofibers

Surface morphology

To assess the morphology of the nanofibers, scanning electron microscopy (SEM, 
Phenom G2 Pro, USA) was used. The diameter of the fibers was measured by using 
ImageJ software (National Institute of Health). A total of 4 images per scaffold were 
analyzed by measuring the diameter of 25 fibers per frame. Therefore, the diam-
eter of 100 fibers was measured randomly in each sample and the average diameter 

Fig. 1   a) Coaxial electrospinning set-up; b) coaxial nozzle of Ramé-Hart Instrument Co; c) schematic of 
the coaxial electrospinning process

Table 1   Electrospinning fabrication parameters of the three different configurations, with and without 
drug

Sample code Collector-nozzle dis-
tance (cm)

Power supply 
(kV)

Outer flow 
(mL/h)

Inner 
flow 
(mL/h)

CoPP1/P5F1/PMTX1 13.5 21 0.20 0.05
CoPP2/P5F2/PMTX2 13.5 21 0.15 0.05
CoPP3/P5F3/PMTX3 13.5 21 0.10 0.05
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was reported. Nanofiber mats porosity and pore size were measured also by image 
analysis, using Diameter J, an ImageJ package. The obtained values are expressed as 
mean value ± standard deviation.

Solvent remanence

Fourier transform infrared spectroscopy (FTIR) was undertaken on pure PCL pel-
lets and the three solvents (formic acid, acetic acid and chloroform), as well as on 
all the electrospun mat samples by the FTIR Spectrum 100 with the ATR (Perki-
nElmer, USA). The scanning range tested goes from 650 to 4000 cm−1 with a total 
amount of 8 accumulations. In order to perform the FTIR analysis, solid samples 
were compressed whereas liquid samples were not. Mat samples were analyzed just 
after being fabricated or after 24 h. In the case of the latter, the electrospun mats 
were either stored overnight at room temperature or desiccated in a desiccator for 
the 24 h.

Drug loading efficiency

Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry was used to evaluate the drug integration inside 
the fibers (DSC, 4000 PerkinElmer). Samples with a mass between 5 and 20  mg 
were used for the analyses. PCL pellets were used without any further modification, 
whereas scaffold pieces were cut and weighted in order to normalize the results. 
The analyzed temperature ranged from 20 to 100 °C, with a temperature increase of 
10 °C/min.

FTIR analysis

Drug loading was semiquantitatively assessed by FTIR analysis of the drug-loaded 
scaffolds. A compressed sample of each drug-loaded mat was analyzed once the sol-
vent was fully evaporated from the fibers. The same equipment, range, and num-
ber of accumulations as in solvent perdurability characterization were used in these 
analyses.

In vitro drug release

The drug release of the different mat types was determined by immersing the loaded 
nanofibers in PBS. The procedure was as follows: three samples from each configu-
ration for both 5F and MTX mats were cut into 2.25 cm2 squares and submerged for 
2 h in MiliQ water, in order to remove the materials that could be outside the fibers. 
The mats were then dried and weighted, before being introduced in 15 mL of PBS 
(pH = 7.4) for two weeks at 37 °C on an orbital shaker (Polymax 1040 from Hei-
dolph, Germany). During this period, spectrophotometry was used to characterize 
drug release: 100 µl of the immersing PBS were taken for absorbance reading every 
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24  h. In order to determine the released drug amount, the respective calibration 
curve was obtained for each drug. Beer-Lambert equations were used to calculate 
drug concentration at λ = 270 nm and λ = 350 nm for 5F and MTX respectively. The 
fitted line for calibration of 5F in PBS is according to Eq. 1 and the amount of R2 
is 0.9411. On the other hand, MTX calibration followed Eq. 2, with a R2 of 0.9164.

Statistical analysis

To end up with the statistical analysis, independent Student’s t test was performed 
to compare the effect of drugs and different electrospinning configurations on fiber 
diameter.

The statistical significance criterion was the same for all the analyses. Sta-
tistical difference was determined as not significant (p-value > 0.05), significant 
(0.01 < p-value < 0.05), very significant (0.001 < p-value < 0.01) or extremely sig-
nificant (p-value < 0.001).

RESULTS AND DISCUSSION

Surface morphology

SEM was used to observe the nanofibers morphology and diameter for the differ-
ent configurations tested with and without the drugs. The images obtained by SEM 
(Fig. 2) showed that all configurations produced nanofibers, which had a great sur-
face to volume ratio. No drug crystals or other deformations such as beads were 
observed in any of the images obtained, as all polymeric mats presented homogene-
ous fibers of different diameters. All fibers were in the nanofiber range as the maxi-
mum average diameters were less than 400 microns. The mats with greater diam-
eters were the ones without drug encapsulation (Table 2), as all three samples had 
thicker fibers than any of the mats blended with drug. These differences were prob-
ably caused due to the conductivity differences between PCL and the drugs[38]. In 
addition, the fiber distributions for the scaffolds were overall a Gaussian distribu-
tion positively skewed. However, the histograms of the configurations CoPP2 and 
PMTX1 looked like an inverse ramped distribution rather than a Gaussian.

Significant differences were observed in the fiber diameter when outer flow was 
decreased from 0.20 mL/h to 0.15 mL/h in the case of control scaffolds, as CoPP1 
mats vs CoPP2 ones showed a p-value = 2.40 × 10–20. In addition, reducing the outer 
flow from 0.15 to 0.10  mL/h, significantly reduced the fiber diameter, between 
CoPP2 and CoPP3 (p-value = 8.07 × 10–14). When the polymeric solutions were 
blended with 5F, no significant differences were observed if the outer flow was 
reduced from 0.20 to 0.15 mL/h nor from 0.15 to 0.10 mL/h. On the other hand, 
introducing 5F into the mats significantly reduced the fiber diameter with respect 

(1)Y = 3.5564x
0.0086

(2)Y = 6.9286x + 3.8287
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to the control scaffolds: when the homologous samples were compared, extremely 
significant difference was observed in the three cases with p-values of 6.84 × 10–13, 
4.76 × 10–20 and 4.17 × 10–4 for CoPP1 versus P5F1, CoPP2 versus P5F2 and CoPP3 
versus P5F3, respectively. Similar behaviors were observed in the case of the MTX 
scaffolds, as all the MTX-blended fibers had extremely significant smaller diam-
eter than the pure polymeric ones (p-vales < 0.001). Moreover, as for the control 

Fig. 2   SEM images with their corresponding histogram of the different electrospun configurations: a 
CoPP1; b CoPP2; c CoPP3; d PMTX1; e PMTX2; f PMTX3; g P5F1; h P5F2; i P5F3

Table 2   Results of SEM images analysis on morphology (U = uniform, B = beaded), fiber diameter and 
porosity, according to configuration and blended drug

Code Morphology Diameter (µm) Porosity (%)

Control 5F MTX Control 5F MTX Control 5F MTX

1 U U U 0.26 ± 0.11 0.16 ± 0.06 0.20 ± 0.09 68.87 63.18 50.75
2 U U U 0.37 ± 0.18 0.16 ± 0.05 0.17 ± 0.06 56.25 50.27 60.24
3 U U U 0.20 ± 0.08 0.17 ± 0.04 0.15 ± 0.05 75.33 64.10 56.52
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polymeric scaffolds, a relationship between the total flow rate and the fiber diameter 
was observed in MTX-loaded scaffolds. In this case, reducing the outer flow from 
0.20 to 0.10  mL/h significantly reduced the fiber diameter (p-value = 1.27 × 10–6). 
This effect, which was not observed only in the case of 5F, could be due to solution 
conductivity. MTX is less polar than 5F [39, 40]. Therefore, it was more likely to 
behave as PCL, ending up in a fiber decreasing effect of the polymeric flow.

Porosity was also evaluated, obtaining porosities in the range of 50–75%. The 
drug loaded mats had overall less porous scaffolds, as two of the highest porosi-
ties obtained belonged to the control group (Table 2). This together with the sur-
face-to-volume ratio improved the drug exposition and enhanced the interaction 
with the environment by an easy fluid flow through the scaffold. These results 
together with the fiber uniformity observed in this research matched with the 
results that Iqbal et al.[16] obtained in their study.

Solvent remanence

The non-desiccated mats did not show exactly the same spectrum as the pellet, as 
they showed two peaks at 1509 and 1545 cm−1, which correspond to the carboxyl 
group of the acids present in the solvents (Fig. 3a). This meant that the solvent 
was not completely removed during the fabrication. Therefore, introducing the 
scaffold into a body right after being electrospun could cause several problems, 
as the solvents were not fully evaporated.

Fig. 3   FTIR spectrum of: a) coaxial polymeric mats without drug analyzed right after being electrospun 
(Co 0 h) or let at room conditions for 24 h before performing the FTIR (Co 24 h), acetic acid and formic 
acid; b) the PCL pellet and a coaxial polymeric mat desiccated for 24 h (Co 24 h Desiccated)
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Increasing the waiting time to 24 h reduced notoriously the solvent presence, as 
the depth of the peak was more pronounced in the mat analyzed just after the elec-
trospinning process than in the mat let 24 h under room conditions before perform-
ing the FTIR. Nevertheless, the solvent-related peaks were still noticeable.

However, the solvent presence was completely erased after the mat was desic-
cated for 24 h, as the curve overlapped exactly the same peaks of the curve of the 
pure polymer pellet (Fig.  3b). This is possible because of the low-pressure envi-
ronment generated in the desiccator. Therefore, it was proven that this widely used 
method was completely necessary to get rid of the solvents used in the electrospin-
ning process[16, 41, 42].

Drug loading

The differential scanning calorimetry performed on PCL showed the melting transi-
tion of the polymer. No major differences were observed between a PCL mat against 
a pellet (Fig.  4a), as both samples underwent a solid to liquid transition around 
65  °C. The only observable difference was the melting temperature and the heat 
flow, as the melting temperature was greater for the pellet than the mat: 66.1 °C and 
63.7 °C, respectively. The heat flow for the pellet was overall higher. These values 
concur with the ones observed in the literature[43–45].

On the other hand, both pure MTX and 5F did not show any transition in the 
analyzed range (Fig.  4b and c), as the curves were completely flat. The scaffolds 
blended with these molecules showed a peak that was not present in the DSC per-
formed on PCL, around 5 °C. This peak was more notable in the mats blended with 
MTX. The observed melting point for the mats blended with MTX and 5F was 
between 62.9–66.0 °C and 62.4–64.1, respectively. The observed difference between 
the control and the loaded scaffolds could suggest the presence of the drug in the 
mats.

In addition to the DSC analyses, to further confirm the presence, the infrared 
spectrum was used to observe the drug loading of MTX and 5F in the fibers (Fig. 5), 
as shown in the literature[12]. According to these FTIR results, it was concluded that 
a higher ratio of inner/outer flow in both MTX and 5F-loaded scaffolds was related 
to a greater drug concentration. As the outer solution did not contain the anticancer 
drug, a reduction of the outer flow related to the total solution flow induced a greater 
drug flow, which meant a higher drug encapsulation. This trend was clearer in the 
fibers blended with 5F at 1661 cm−1 and between 3000 and 3300 cm−1, belonging 
that peak to the C = O stretching and the band to the N–H stretching, respectively. In 
the case of MTX-loaded scaffolds, the two ranges in which this drug presence was 
observable were from 1525 to 1617 cm−1 and from 3000 to 3500 cm−1, also due to 
the C = O stretching and the N–H stretching.

Considering that no drug crystals nor deformations on the fibers were observed in 
the SEM images, and the drug presence observed with both the DSC and FTIR anal-
yses, it was depicted that the drug was successfully encapsulated during the coaxial 
electrospinning process performed in this study.
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Fig. 4   Differential scanning calorimetry scans of: a PCL pellets and a PCL scaffolds; b drugless PCL 
scaffolds, pure MTX and MTX-loaded mats; c drugless PCL mats, pure 5F and 5F-blended scaffolds



7773

1 3

Polymer Bulletin (2023) 80:7763–7778	

Drug release

The release profile for MTX suggested that it was mostly released during the first 
24 h, as the released percentage did not increase much since the first day (Fig. 6a). 
In fact, it showed a sustained drug concentration level from the first day until the 9th 
day. This rapid release was due to drug diffusion rather than due to polymer degra-
dation, because the first one is usually a dominant event in the early stages, while 
the latter is dominant in long-term release. The release behavior reported in this 
research was previously observed in several studies[12, 16, 46]. In addition, the per-
centage of the released drug was greater for all the mats with higher external flows.

Fig. 5   Comparison of the FTIR spectrum of the PCL pellet and the pure drug with the drug-loaded scaf-
folds: a PCL pellet and pure MTX; b MTX-loaded scaffolds; c PCL pellet and pure 5F and d 5F-loaded 
scaffolds

Fig. 6   Drug release profile according to the theoretical mat drug load of a MTX-loaded scaffolds and b 
5F-loaded scaffolds



7774	 Polymer Bulletin (2023) 80:7763–7778

1 3

On the other hand, 5F mats have shown a different release profile (Fig.  6b), a 
much lower drug release percentage and a higher relative deviation. The scaffolds 
containing 5F showed a peak on day 2, similar to the release observed in previous 
studies[16]. However, afterwards, no drug presence was detected until day 9, which 
increased slightly during the last five incubation days. The decrease phenomenon 
observed in the drug release from day 3 could be due to the solubility of 5F, which 
sometimes precipitate, leading to a non-representative sample of the real release. 
The P5F2 configuration sample showed a greater release than P5F1 and P5F3. These 
two demonstrated a similar release profile past the 3rd day of incubation.

The measurement of both MTX and 5F release demonstrated that the coaxial 
electrospinning process performed in this study generated fibrous scaffolds that 
could work as a DDS for pancreatic cancer treatment.

Conclusion

In this study, PCL-blended nanofibers containing either MTX or 5F with various 
electrospinning fabrication parameters were investigated. The anticancer drug-
loaded scaffolds were successfully fabricated using the coaxial electrospinning 
method. The surface morphology of nanofibers analyzed by scanning electron 
microscopy showed that all the tested configurations produced nanofibers, which 
had a great surface-to-volume ratio and had no drug crystals remaining on the sur-
face or deformations in the fibers. The addition of the drug into the inner solution 
led nanofiber diameter to decrease. Although the solvents used in the fabrication 
method were not fully removed during the electrospinning process, using a desicca-
tor for 24 h after the scaffold was electrospun erased the presence of those solvents. 
Therefore, this procedure constitutes an essential step to be done before putting the 
scaffolds in contact with any living organism. Both the drug loading efficiency and 
the drug released were demonstrated in vitro, making these scaffolds a promising 
drug delivery system. Both DSC and FTIR analyses confirmed the presence of MTX 
and 5F, apart from the main polymer PCL, in the electrospun nanofibers. Finally, 
spectrophotometry was used to quantify drug release, showing a rapid release in the 
case of MTX from the fibers and a low percentage of release for the 5F-loaded sam-
ples. It was observed that drug release in these nanofibers occurred by diffusion or 
permeation through nanofiber mat matrices, because of very slow degradation of 
nanofiber mats was observed during the release period.

Even though further studies must be done to test the cytotoxicity and effec-
tivity of the scaffold in  vivo, it was concluded that the production of electrospun 
nanofibers is a promising method to encapsulate and release anticancer drugs such 
as 5-Fluorouracil and Methotrexate. The fibers fabricated in this study had a high 
surface-to-volume ratio, which would increase the interaction between the mesh and 
its environment once inserted in the body. Moreover, the versatility of the coaxial 
electrospinning process performed in this study is a great advantage among another 
DDS. In these systems, the amount of drug to deliver can be controlled according 
to the requirements of the patient changing the fabrication parameters, giving a 
greater control on fiber properties and therefore drug release. The reduction of side 
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effects due to a localized release is also a massive advantage to use electrospinning 
to encapsulate anticancer drugs.
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