Skip to main content
Log in

Chitosan/calcium phosphate-nanoflakes-based biomaterial: a potential hemostatic wound dressing material

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present study describes the synthesis of the calcium phosphate nanoflakes (CaP-NFs) dispersed chitosan (CCP) hemostatic dressing materials. The surface morphology of the CCP-based hemostatic dressing materials was rough and porous, which aided advantages in controlling blood loss. The positively charged CCP-based hemostatic dressing materials lead to strong blood cell adhesion. The efficiency of the CCP-based hemostatic dressing materials was ascertained by performing different biochemical tests assay. The dressing materials were also tested against both Gram-negative (Escherichia coli (E. coli)) and Gram-positive (Staphylococcus aureus (S. aureus)) bacterial strains. The CCP-based hemostatic dressing materials are highly biocompatible and undergo immediate blood clotting within 15 s of exposure. Moreover, the prepared CCP-based hemostatic dressing materials effectively kill or inhibit the growth of bacteria. Therefore, CCP-based hemostatic dressing materials have the potential ability to control loss of blood and bacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not Applicable.

References

  1. BenÍTez CY, Ottolino P, Pereira BM, Lima DS, Guemes A, Khan M, Ribeiro Junior MAF (2021) Tourniquet use for civilian extremity hemorrhage: systematic review of the literature. Rev Col Bras Cir. https://doi.org/10.1590/0100-6991e-20202783

    Article  PubMed  Google Scholar 

  2. Richey SL (2007) Tourniquets for the control of traumatic hemorrhage: a review of the literature. World J Emerg Surg WJES 2:28

    Article  PubMed  Google Scholar 

  3. Peng HT (2020) Hemostatic agents for prehospital hemorrhage control: a narrative review. Mil Med Res 7(1):13

    PubMed  PubMed Central  Google Scholar 

  4. Martini WZ (2016) Coagulation complications following trauma. Mil Med Res 3:35

    PubMed  PubMed Central  Google Scholar 

  5. Chapin JC, Hajjar KA (2015) Fibrinolysis and the control of blood coagulation. Blood Rev 29(1):17

    Article  CAS  PubMed  Google Scholar 

  6. Gando S, Otomo Y (2015) Local hemostasis, immunothrombosis, and systemic disseminated intravascular coagulation in trauma and traumatic shock. Crit Car 19(1):72

    Article  Google Scholar 

  7. L. A, O. Id, S. EM and G. K, (2020) Factors affecting the formation and treatment of thrombosis by natural and synthetic compounds. Int J Mol Sci 21(21):7975

    Article  Google Scholar 

  8. Sood A, Granick MS, Tomaselli NL (2014) wound dressings and comparative effectiveness data. Adv Wound Car 3(8):511

    Article  Google Scholar 

  9. Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C Mater Biol Appl 48:651

    Article  CAS  PubMed  Google Scholar 

  10. Ashfaq M, Khan S, Verma N (2014) Synthesis of PVA-CAP-based biomaterial in situ dispersed with Cu nanoparticles and carbon micro-nanofibers for antibiotic drug delivery applications. Biochem Eng J 90:79

    Article  CAS  Google Scholar 

  11. Ashfaq M, Verma N, Khan S (2017) Highly effective Cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi- and extensively drug-resistant strains. Mater Sci Eng C 77:630

    Article  CAS  Google Scholar 

  12. Zhang S, Li J, Chen S, Zhang X, Ma J, He J (2020) Oxidized cellulose-based hemostatic materials. Carbohydr Polym 230:115585

    Article  CAS  PubMed  Google Scholar 

  13. Khoshmohabat H, Paydar S, Makarem A, Karami MY, Dastgheib N, Zahraei SAH, Rezaei R, Mahmoudi Nezhad GS (2019) A review of the application of cellulose hemostatic agent on trauma injuries. Open Access Emerg Med OAEM. 11:171

    Article  PubMed  Google Scholar 

  14. Alven S, Aderibigbe BA (2020) Chitosan and cellulose-based hydrogels for wound management. Int J Mol Sci. https://doi.org/10.3390/ijms21249656

    Article  PubMed  PubMed Central  Google Scholar 

  15. Biranje SS, Madiwale PV, Patankar KC, Chhabra R, Bangde P, Dandekar P, Adivarekar RV (2020) Cytotoxicity and hemostatic activity of chitosan/carrageenan composite wound healing dressing for traumatic hemorrhage. Carbohydr Polym 239:116106

    Article  CAS  PubMed  Google Scholar 

  16. Yin M, Wang Y, Zhang Y, Ren X, Qiu Y, Huang T-S (2020) Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties. Carbohydr Polym 232:115823

    Article  CAS  PubMed  Google Scholar 

  17. Tong Z, Yang J, Lin L, Wang R, Cheng B, Chen Y, Tang L, Chen J, Ma X (2019) In situ synthesis of poly (γ- glutamic acid)/alginate/AgNP composite microspheres with antibacterial and hemostatic properties. Carbohydr Polym 221:21

    Article  CAS  PubMed  Google Scholar 

  18. Rao KM, Suneetha M, Zo S, Duck KH, Han SS (2019) One-pot synthesis of ZnO nanobelt-like structures in hyaluronan hydrogels for wound dressing applications. Carbohydr Polym 223:115124

    Article  CAS  PubMed  Google Scholar 

  19. F. X, L. Y, L. N, W. G, A. MA and T. K, (2020) Rapid hemostatic chitosan/cellulose composite sponge by alkali/urea method for massive haemorrhage. Int J Biol Macromol 164:2769

    Article  Google Scholar 

  20. Singh G, Nayal A, Malhotra S, Koul V (2020) Dual functionalized chitosan based composite hydrogel for haemostatic efficacy and adhesive property. Carbohydr Polym 247:116757

    Article  CAS  PubMed  Google Scholar 

  21. Tamer TM, Hassan MA, Valachová K, Omer AM, El-Shafeey MEA, Mohy Eldin MS, Šoltés L (2020) Enhancement of wound healing by chitosan/hyaluronan polyelectrolyte membrane loaded with glutathione: in vitro and in vivo evaluations. J Biotechnol 310:103

    Article  CAS  PubMed  Google Scholar 

  22. Omer AM, Ziora ZM, Tamer TM, Khalifa RE, Hassan MA, Mohy-Eldin MS, Blaskovich MAT (2021) Formulation of quaternized aminated chitosan nanoparticles for efficient encapsulation and slow release of curcumin. Molecules. https://doi.org/10.3390/molecules26020449

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ashfaq M, Ahmad A (2021) 3 - Chitosan and its derivatives-based dimensional frameworks as carrier for gene delivery. In: Bhawani SA, Karim Z, Jawaid M (eds) Polysaccharide-based nanocomposites for gene delivery and tissue engineering. Woodhead Publishing, Sawston, Cambridge, p 41

    Chapter  Google Scholar 

  24. Dragan ES, Dinu MV (2020) Advances in porous chitosan-based composite hydrogels: synthesis and applications. React Funct Polym 146:104372

    Article  CAS  Google Scholar 

  25. Wang D, Jia F, Wang H, Chen F, Fang Y, Dong W, Zeng G, Li X, Yang Q, Yuan X (2018) Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J Colloid Interface Sci 519:273

    Article  CAS  PubMed  Google Scholar 

  26. Zheng Y, Pan N, Liu Y, Ren X (2021) Novel porous chitosan/N-halamine structure with efficient antibacterial and hemostatic properties. Carbohydr Polym 253:117205

    Article  CAS  PubMed  Google Scholar 

  27. Ashfaq M, Verma N, Khan S (2016) Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: A novel potential antibiotic material. Mater Sci Eng C 59:938

    Article  CAS  Google Scholar 

  28. Coger V, Million N, Rehbock C, Sures B, Nachev M, Barcikowski S, Wistuba N, Strauß S, Vogt PM (2019) Tissue concentrations of zinc, iron, copper, and magnesium during the phases of full thickness wound healing in a rodent model. Biol Trace Elem Res 191(1):167

    Article  CAS  PubMed  Google Scholar 

  29. Vm W, Sean T, Vuk U, Id O (2018) Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: the antibacterial effect. ACS Appl Mater Interface 10(40):34013

    Article  Google Scholar 

  30. Mir M, Mn A, Id O, Ali B, Ayesha G, Munam A, Shizza F, Maliha A (2018) Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 7(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun H, Lv L, Bai Y, Yang H, Zhou H, Li C, Yang L (2018) Nanotechnology-enabled materials for hemostatic and anti-infection treatments in orthopedic surgery. Int J Nanomed 13:8325

    Article  CAS  Google Scholar 

  32. Cabrera D, Walker K, Moise S, Telling ND, Harper AGS (2020) Controlling human platelet activation with calcium-binding nanoparticles. Nano Res 13(10):2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jin Y, Yinghong Z, Fei W, Yin X (2016) Blood clot formed on rough titanium surface induces early cell recruitment. Clin Oral Implant Res 27(8):1031

    Article  Google Scholar 

  34. Park KH, Kim S-J, Lee W-Y, Song H-J, Park Y-J (2017) Hydrothermal fabrication and characterization of calcium phosphate anhydrous/chitosan composites. Ceram Int 43(2):2786

    Article  CAS  Google Scholar 

  35. Banik M, Basu T (2014) Calcium phosphate nanoparticles: a study of their synthesis, characterization and mode of interaction with salmon testis DNA. Dalton Trans 43(8):3244

    Article  CAS  PubMed  Google Scholar 

  36. Lustriane C, Dwivany FM, Suendo V, Reza M (2018) Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits. J Plant Biotechnol 45(1):36

    Article  Google Scholar 

  37. He L, Dong G, Deng C (2016) Effects of strontium substitution on the phase transformation and crystal structure of calcium phosphate derived by chemical precipitation. Ceram Int 42(10):11918

    Article  CAS  Google Scholar 

  38. Sperling C, Maitz MF, Grasso S, Werner C, Kanse SM (2017) A positively charged surface triggers coagulation activation through factor VII activating protease (FSAP). ACS Appl Mater Interface 9(46):40107

    Article  CAS  Google Scholar 

  39. Gedam AH, Dongre RS (2015) Adsorption characterization of Pb(ii) ions onto iodate doped chitosan composite: equilibrium and kinetic studies. RSC Advance 5(67):54188

    Article  CAS  Google Scholar 

  40. Paulino AT, Simionato JI, Garcia JC, Nozaki J (2006) Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr Polym 64(1):98

    Article  CAS  Google Scholar 

  41. Periayah MH, Halim AS, Mat Saad AZ (2017) Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int J Hematol Oncol Stem Cell Res 11(4):319

    PubMed  PubMed Central  Google Scholar 

  42. Guo X, Sun T, Zhong R, Ma L, You C, Tian M, Li H, Wang C (2018) Effects of chitosan oligosaccharides on human blood components. Front Pharmacol 9:1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Palta S, Saroa R, Palta A (2014) Overview of the coagulation system. Indian J Anaesth 58(5):515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bhadauriya P, Mamtani H, Ashfaq M, Raghav A, Teotia AK, Kumar A, Verma N (2018) Synthesis of yeast-immobilized and copper nanoparticle-dispersed carbon nanofiber-based diabetic wound dressing material: simultaneous control of glucose and bacterial infections. ACS Appl Bio Mater 1(2):246

    Article  CAS  PubMed  Google Scholar 

  45. Mustafa S, Khan HM, Shukla I, Shujatullah F, Shahid M, Ashfaq M, Azam A (2011) Effect of ZnO nanoparticles on ESBL producing escherichia coli & klebsiella spp. East J Med 16(4):253

    Google Scholar 

  46. Hassan MA, Omer AM, Abbas E, Baset WMA, Tamer TM (2018) Preparation, physicochemical characterization and antimicrobial activities of novel two phenolic chitosan schiff base derivatives. Sci Rep 8(1):11416

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mustafa FS, Oladipo AA, Gazi M (2021) Antimicrobial activities of synthetic water-soluble ethylenediamine-epichlorohydrin-based oligomers. Polym Bull. https://doi.org/10.1007/s00289-021-03979-1

    Article  Google Scholar 

  48. Mustafa FS, Oladipo AA (2021) Photocatalytic degradation of metronidazole and bacteria disinfection activity of Ag–doped Ni0.5Zn0.5Fe2O4. J Water Process Eng 42:102132

    Article  Google Scholar 

  49. Talreja N, Afreen S, Ashfaq M, Chauhan D, Mera AC, Rodríguez CA, Mangalaraja RV (2021) Bimetal (Fe/Zn) doped BiOI photocatalyst: an effective photodegradation of tetracycline and bacteria. Chemosphere 280:130803

    Article  CAS  PubMed  Google Scholar 

  50. Talreja N, Ashfaq M, Chauhan D, Mera AC, Rodríguez CA, Mangalaraja RV (2021) A Zn-doped BiOI microsponge-based photocatalyst material for complete photodegradation of environmental contaminants. New J Chem 45(39):18412

    Article  CAS  Google Scholar 

  51. Ashfaq M, Talreja N, Chauhan D, Rodríguez CA, Mera AC, Mangalaraja RV (2021) A novel bimetallic (Fe/Bi)-povidone-iodine micro-flowers composite for photocatalytic and antibacterial applications. J Photochem Photobiol B Biol 219:112204

    Article  CAS  Google Scholar 

  52. Sasidharan V, Sachan D, Chauhan D, Talreja N, Ashfaq M (2021) Three-dimensional (3D) polymer—metal–carbon framework for efficient removal of chemical and biological contaminants. Sci Rep 11(1):7708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Raju Kumar Gupta, Department of Chemical Engineering, Indian Institute of Science and Technology Kanpur, Kanpur, India, for providing research support. Authors also thankful to Dr. Noor Aman, Department of Chemistry, BS Abdur Rahman Institute of Science and Technology, Chennai, India, for providing research support.

Funding

The authors did not receive any financial support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

MAM perform experiments, RAO perform some experiments, and MA design and writing manuscript.

Corresponding author

Correspondence to Mohammad Ashfaq.

Ethics declarations

Ethics approval and consent to participate:

Not Applicable.

Conflict of interest

Authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, A.M., Omar, R.A. & Ashfaq, M. Chitosan/calcium phosphate-nanoflakes-based biomaterial: a potential hemostatic wound dressing material. Polym. Bull. 80, 5071–5086 (2023). https://doi.org/10.1007/s00289-022-04300-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04300-4

Keywords

Navigation