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Abstract
Hydrogels had gained considerable importance in drug delivery systems. Polyacrylic 
acid/acrylamide (AAc/AAm) and polyacrylic acid/acrylamide doped with magnetite 
(AAc/AAm)Fe3O4 hydrogels have been prepared by ɣ-radiations and characterized 
by Fourier transform infrared spectra (IR), X-ray diffractions (XRD), scanning elec-
tron microscope (SEM) and transmittance electron microscope (TEM). The mor-
phology and the particle size were determined from TEM images. The average parti-
cle size of  Fe3O4 was found to be 12 nm. The degree of cross-linking of Poly (AAc/
AAm) hydrogel was determined from the gel fraction at different radiation doses 
and compositions. Swelling of the hydrogel was studied at different conditions. The 
magnetism of (AAc/AAm)  Fe3O4 was studied by vibrating sample magnetometer 
and the results indicated super-paramagnetic character of (AAc/AAm)Fe3O4. The 
band gap (Eg) was determined and the values suggested semi-conductivity of the 
hydrogels. Doxorubicin loading and release by (AAc/AAm)Fe3O4 hydrogel was 
studied and indicated that the hydrogel can load 78% of doxorubicin.
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Introduction

Hydrophilic gels are an important category of cross-linked polymers that absorb 
water without dissolution. Hydrogels have interesting properties as softness, smart 
and ability to store water [1].

The polymers that can change their properties by changing the chemical or physi-
cal stimuli, are known as “smart” polymers. Hydrogels are sensitive to the change in 
the surrounding environmental conditions due to the presence of various functional 
groups along the polymer chains. Poly acrylic acid is affected by the change in the 
pH of the medium, so it has wide applications in the drug delivery to the gastroin-
testinal tract [2]. Hydrogels are soft materials that have wide biological applications 
for half a century. They have good biocompatible advantages which come from their 
higher swelling ability. On the contrary, they exhibit some limitations to mechanical 
properties and consequently the applications. The effects of starting materials, fabri-
cation factors as mechanical stress and swelling have been studied [3].

The unique properties of metal oxide nanoparticles are associated with its surface 
area [4–7]. The application of hydrogel in drug delivery, biosensors and tissue engi-
neering was recently reviewed [8]. The role of hydrogel in transdermal drug delivery 
was also reviewed [9]. In addition to that, the rheological behavior was extensively 
studied by Hsissou et al. [10–14]

Delivery of water soluble or insoluble pharmaceutics is a key challenge in nano-
medicine. Polymer hydrogels had gained considerable importance in drug delivery 
systems. Hydrogels have several advantages as they are easily synthesized, elastic, 
soft and environmentally safe materials which make them suitable for nanomedical 
applications [15].

In this manuscript, the synthesis, spectral, swelling, magnetic and drug release 
properties of polyacrylic acid/acrylamide, magnetite hydrogel have been studied to 
shed some light on the potential medical applications of these hydrogels.

Previously, acrylic acid/ acrylamide was prepared by potassium persulfate as an 
initiator and N,N′-methylene bisacryl-amide as a cross-linking agent [16]. The pre-
sent work has some advantages as it used radiation in synthesis and as a cross-link-
ing agent. In addition to that, the obtained composites have higher swelling ability 
and could be applied as a carrier of the well-known anticancer drug Doxorubicin.

Experimental

Acrylic acid, 99%, Acrylamide, 99%,  FeSO4.7H2O, 99% and  FeCl3.6H2O, 99% were 
purchased from Sigma-Aldrich.

Preparation of acrylic acid (AAc)/acrylamide (AAM) by gamma radiations

Stock solutions of AAc and AAm were prepared as follows: 20 mL of acrylic acid in 
100 ml distilled water; 5 mL of acrylamide was dissolved in 100 ml distilled water. 
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From the stocks the following ratios of AAc/AAm (10/90, 30/70, 50/5, 70/30 and 
90/10 were prepared. Nitrogen gas was passed in the mixture for 5  min and then 
subjected to gamma radiation.

The source of radiation is 60Co gamma cell and the dose rate was 5 KGy/h.

Preparation of acrylic acid, acrylamide, magnetite (AAc/AAm)Fe3O4

FeSO4.7H2O and  FeCl3.6H2O were mixed in 1:2 ratio in 100  mL distilled water. 
Let the mixture overnight. To the above mixture AAc/AAM in different ratios were 
added. Then, 1 M ammonium hydroxide was added drop by drop until black color 
appears then irradiated with different doses of gamma radiations with dose rate 
5 KGy/hr.

Swelling study

Swelling of AAc/AAM was carried out as follows: A dry weight of the hydrogel 
(W1) was immersed in distilled  H2O at room temperature for various time intervals. 
Then remove excess of water by a filter paper and reweigh (W2). The % of swelling 
(S) was found from the relation S = (W2 − W1/W1) × 100.

Gel fraction determination

A weighed sample (W1) of the polymer was boiled in  H2O (distilled) for 4 h and dry 
in a vacuum oven at 80 °C, till constant weight (W2). The gel fraction% (F) was cal-
culated: F = (W2/W1) × 100.

Doxorubicin loading

0.1  g of AAM/AAc/Fe3O4 nanocomposite was immersed in 2  mL of 0.5  mM of 
Doxorubicin in distilled water for 24 h. Finally, the polymer was washed by distilled 
water then, dried at 50 °C. The drug loaded was studied at pH 5.0, 7.4 and 8.0 for 
24 h. The loaded amount of the drug was determined using UV–vis spectrophotom-
eter at 470 nm.

Drug release measurements

Doxorubicin release were followed at 37 °C for approximately 24 h. Release experi-
ments were done by placing various nanocomposite samples loaded with drug 
(conc. 0.5 mM) into 30 mL buffer solutions of pH 5, 7.4, 8. A sample was taken and 
measured at 470 nm at different time intervals.
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The amount of drug released from nanocomposite hydrogel was calculated using 
the equation: Drug release (%) =

[

amount of drug released

amount of drug loaded
× 100

]

.

Working procedures

Infrared spectra (FT-IR): The prepared hydrogels were measured using (FT-IR-
4100 type A) at Damietta University. Electronic spectra (UV–Vis) of the isolated 
compounds were recorded on (Hach Model DR-6000) at Egyptian propylene and 
poly propylene company. X-ray powder diffraction patterns were taken on Philips 
X’PERT-PRO diffract meter, with wavelength is 1.5406  Ǻ. Transmission electron 
microscope images of hydrogels were taken on transmission electron microscope 
(JEOL JEM-2100) at Egyptian petroleum research institute (EPRI), Cairo.

Results and discussion

Polyacrylic acid/acrylamide (AAc/AAm) hydrogel was synthesized by gamma 
irradiation in aqueous solution. The cross-linking of poly (AAc/AAm) in aqueous 
media was mediated by radiation. The suggested mechanism of cross-linking is 
as follow: The solvent (HOH) and the monomers (AAc and AAm) absorb gamma 
radiation forming activated compounds  (AAc*,  AAm*  HOH*). Then, the activated 
compounds can undergo fragmentations forming free radicals of  AAc.,  AAm.,  H. 
and .OH. The radicals of the solvents can transfer to AAc and AAm forming more of 
these radicals and increasing the rate of cross-linking [17, 18].

In the termination, step (n) or (m) repeating units combine to form cross-linked 
polymers

Encapsulation of magnetite in P(AAc/AAm) hydrogel matrix

XRD pattern of magnetite doped (Fig. 1) shows the peaks at 2θ = 30.2, 35.7, 43.0, 
57.0 and 63.0° attributed to the planes (220), (311), (400), (422) and (440), respec-
tively. These planes confirm that the sample is  Fe3O4 with face centered cubic struc-
ture (JCPDS) 19-0629. The broadening of the peaks is attributed to the presence of 
the particles in the nanoscale.

AAc + H
⋅

and
⋅

OH → AAc
⋅

AAm + H
⋅

and
⋅

OH → AAm
⋅

(AAc⋅)
n
+ (AAm⋅)m → (AAc)n − (AAm)m
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Debye–Scherer equation D = 0.94b λ/β cosθ [19] (D is the crystallite size, 
λ = 1.5406 Ǻ, β is the width at half maximum) was applied to determine the crystal-
lite size from the peak at 35.7° and it was 12 nm.

One of the most characteristic features of the hydrogel is its high ability to uptake 
water. So, magnetite was doped from aqueous media in the hydrogel matrix by 
in situ procedures.

TEM image of Poly (AAc-co-AAm)  Fe3O4 hydrogel is indicated in Fig. 2A.
The high contrast in TEM images was used to confirm encapsulation of  Fe3O4 

nanoparticles in P(AAc/AAm) hydrogel matrix. As indicated from TEM analy-
sis, the black spheres point to magnetite nanoparticles that encapsulated inside 
the hydrogel core and they are not outside the hydrogel. It is clear (Fig. 2B) that 
some magnetite nanoparticles aggregated to form rods. The particle size distri-
bution curve of magnetite encapsulated in P(AAc/AAm) (Fig. 2C) indicates the 
distribution of the particle in small range from 6 to 13 nm with two maxima at 
7.5 and 11.5 nm.

FT‑IR spectra

IR of Poly(AAc/AAm)  Fe3O4 spectrum (Fig. 3) reveals a band at 568  cm−1 char-
acteristic to ν (Fe–O) in octahedral site of  Fe3O4. The bands at 637 and 609  cm−1 
are characteristic also to Fe–O bonds in magnetite [3].

The stretching vibrations of ν (OH) of acrylic acid appear at 3412  cm−1 [3]. 
The bands at 3337  cm−1 and 3189  cm−1 are due to νas and νs of  NH2 of acryla-
mide [3]. The absence of the bands assigned to  (CH2 = CH–) in both AAc and 
AAm confirms the polymerization of AAc and AAm through this group. In the 
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Fig. 1  XRD pattern of Poly (AAc/AAm)Fe3O4
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Fig. 2  TEM images of (AAc/
AAm)Fe3O4. C Particle size dis-
tribution of  Fe3O4 encapsulated 
in Poly(AAc/AAm)
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spectrum of Poly(AAc/AAm)  Fe3O4, the positions of the bands at 1617 and 
1650  cm−1, which were attributed to protonated (COOH) group [20] and ν5 (CO) 
of acrylamide did not change compared with their positions in the free polymer, 
while there are shifts to lower wavenumber in the bands 1607 and 1402   cm−1 
that were attributed to νas and νs (COOH). These shifts suggest the possibility of 
electrostatic attraction between  Fe3O4 and this group.

Gel fraction

To determine the degree of cross-linking of Poly (AAc/AAm) hydrogel, the gel 
fraction was calculated at different radiation doses and compositions (Fig.  4A). 
The gel fraction was calculated by applying the relation.

Gel (%) = Wd/Wi × 100 (where Wd is the weight of extracted hydrogel and Wi is 
the weight of dry hydrogel).

From the curves, it is clear that the degree of cross-linking increases with 
increase of the radiation dose. At composition ratio AAc:AAm (30:70), the 
hydrogels have approximately the same gel fraction % regardless of the applied 
radiation doses. The hydrogel synthesized at radiation dose 50 KGy exhibits the 
maximum cross-linking at composition ratio 50:50 (AAc:AAm); then, the cross-
linking decreases with increasing composition ratios. The cross-linking of the 
hydrogels synthesized by radiation doses 10 and 30 KGy begins to decrease after 
composition ratios (30:70) AAc:AAm. In the beginning when aqueous solution of 
AAc/AAm was subjected to radiation, free radicals of AAc, AAm and water will 
generate and they can combine randomly forming cross-link of co and homo-pol-
ymer AAc. When two radicals of neighboring polymeric chains combine a cross-
linked macromolecules will be formed. As the concentration and radiation dose 
increase the presence of higher number of the rigid cross-linked polymer with 
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Fig. 3  IR spectrum of Poly (AAc/AAm)  Fe3O4
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low mobility will increase. In the same time, the possibility of formation of more 
cross-linked polymer will decrease [21].

From Fig. 4B, it is clear that the gel fraction percentage increases as the con-
centration of magnetite increases as  Fe2+ and  Fe3+ in magnetite can bind neigh-
bor polymeric chains together through coordination with the active donor sites in 
the polymers.

Swelling

Hydrogels exist in three-dimensional (3D) networks with hydrophilic character. 
They have excellent capacity of water swelling through bonding the water molecules 

Fig. 4  Gel fraction at (A) different radiation dose and composition of AAc/AAm and different concentra-
tion of magnetite at composition 10/90 AAc/AAm and 30 KGy (B) 
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Fig. 5  Effect of Ac composition, radiation dose and pH on swelling of (AAc/AAm) hydrogel
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by the polar hydrophilic groups or by occlusion the water molecules in the gaps 
between the chains [22]. The effect of radiation doses from (10 to 50 KGy) on the 
swelling of (AAc/AAm) showed that the highest swelling value of the hydrogel is 
observed at the lower radiation dose 10 KGy (Fig. 5A). There is a decrease in swell-
ing at higher dose (50 KGy) (Fig. 5B). This behavior can be interpreted on the basis 
of increasing the cross-linking associated with decreasing the swelling [23]. It is 
noticeable that, with increasing cross-linking density, there is a decrease in the sepa-
rating space between the chains leading to rigidity of the formed polymer. The rigid 
copolymer structure will resist expansion and holding large quantities of water [24, 
25].

The swelling increases also, as the concentration of AAc increases. The incre-
ment in swelling values at lower concentration is attributed to the higher hydrophi-
licity of the hydrogel. Then, the decrease in swelling with concentration could be 
resulted from the increased chance of terminating AAc radicals. In addition, the 
viscosity of the reaction increases at higher AAc concentration, which restricts the 
mobility of the monomeric radicals and deactivates grow of the polymeric chains. 
It can be suggested also that there will be an enhancement in homo-polymerization 
reaction over copolymerization [26–28].

With respect to the increase in the swelling, the pH increases (Fig.  5C). It is 
noticeable that at higher pH the alkaline medium will affect on the hydrophilic 
groups as hydroxyl, carboxyle and amide of the reactants leading to increase the 
possibility of hydrogen bonding and consequently, increasing the swelling.

The swelling of hydrogels was studied in the temperature range (30–70 °C). The 
results indicated that, by raising temperature, the swelling % increases until 50 °C, 
then the swelling % decreases by raising temperature. In the first stage raising tem-
perature may increase the mobility of the polymers and activate them to absorb 
water molecules, at higher temperature there will be breaking in hydrogen bond and 
liberation of water molecules.

Magnetic properties

The super-paramagnetism of  Fe3O4 nanoparticles is important for their application 
in therapeutic applications. Super-paramagnetic nanoparticles have magnetism in 
the presence of external magnetic field and lose it in the absence of the field. If there 
is no hysteresis, both the retentivity (Mr) and coercivity (HC) are zero or very close 
to zero, the material is characterized as super-paramagnetic.

The critical size of super-paramagnetic material is ca. 20 nm for soft magnets and 
4 nm for hard ones [29]. Also, there is a direct relation between saturation magneti-
zation of the nanoparticles and the size. By decreasing the particle size, the magneti-
zation will be lowered. When the size of magnetite is reduced to the nanoscale, they 
exhibit super-paramagnetism [30, 31].

The magnetism of (AAc/AAm)  Fe3O4 was studied by vibrating sample mag-
netometer at 25  °C (Fig.  6). The curve shows no hysteresis and the saturation 
magnetization (Ms) is 2.2  emu/g due to the presence of  Fe3O4 in nanoscale and 
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the effect of diamagnetic polymers. Both retentivity (Mr) and coercivity (Hc) are 
48 ×  10−3 emu/g and 7.8 G, respectively, which are close to zero. From these find-
ings it could be concluded that  Fe3O4 (AAc/AAm) is a super-paramagnetic material.

Optical band gap (Eg)

Electronic absorption spectrum of poly (AAc/AAm) shows an absorption band cen-
tered at 280 nm due to n–π* transitions. This band was shifted to 295 nm in case of 
(AAc/AAm)  Fe3O4 as a result of interaction between the metal orbital with that of 
the polymer, forming charge transfer from organic polymer to the metal.

The spectra of hydrogels were used to determine Eg of these compounds by 
applying Tauc’s equation: [32] (α hν)2 = B (hν–Eg)m m is equal to 1/2 for indirect 
transition and 2 for direct transition. The absorption coefficient () is given from the 
relation = A/d where A = absorbance, d is the path length through the sample. The 
parameter (B) represents transition probability. The graphical representation of (α 
hν)2 against hν gives direct transitions when extrapolating the linear portion of the 
curve to (α hν)2 = 0 (Fig. 7). Eg values are 4.47 and 4.36 eV for poly (AAc/AAm) 
and (AAc/AAm)  Fe3O4, respectively. The reduction in Eg value after encapsulation 
 Fe3O4, comes from the interaction between the polymers orbitals with that of the 
metal orbital forming new larger molecular orbitals. The increment in the orbital 
leads to reduction of Eg. The values of Eg indicate that theses hydrogels are semi-
conductors [33, 34].

Release of doxorubicin

Doxorubicin is a well-known anticancer chemotherapy drug. Doxorubicin belongs 
to anthracycline antibiotic.

Fig. 6  VSM of (AAc/AAm) 
 Fe3O4 hydrogel
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Fig. 7  Optical band gap of A 
(AAc/AAm) and B (AAc/AAm) 
 Fe3O4
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The drug-loading % of hydrogel was calculated using the following relation: 

The drug loading percent was found to be 78.0%
The release profile of doxorubicin from (AAc/AAm)Fe3O4 at pH’s 5, 7.4 and 8 

has been studied (Fig. 8). The release is high in the beginning at the three pH, then 
it becomes slow at equilibrium. The release rate increases as pH increases, the slow-
est release is observed in the acid medium, while the release is high in the basic 
medium. This can be explained based on adsorption of Doxorubicin onto AAc/AAm 
magnetite hydrogel either through coordination of doxorubicin hydroxyl groups with 
magnetite or through formation of hydrogen bonds with COOH and amide group of 
AAc/AAm.

At high pH, there is a competition between the hydroxyl group of medium and 
that of Doxorubicin, so, the rate of release increases [35, 36].

Conclusion

Polyacrylic acid/acrylamide (AAc/AAm) and polyacrylic acid/acrylamide magnet-
ite (AAc/AAm)Fe3O4 hydrogels have been synthesized and tested for loading and 
release of the anticancer drug Doxorubicin. Swelling study was carried out to deter-
mine the suitable conditions for swelling the hydrogel. The optical band gap was 
determined for the two polymers and indicated semi-conducting nature of the two 
polymers. (AAc/AAm)Fe3O4 hydrogel can load 78% of Doxorubicin and release 

Loading of drug % = Weight of drug in hydrogel∕

Weight of hydrogel loaded with drug × 100

Fig. 8  Doxorubicin release profile of (AAc/AAm)  Fe3O4
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it in the alkaline medium. (AAc/AAm)Fe3O4 hydrogel is a potential candidate for 
chemotherapy anticancer drugs delivery.
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