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Abstract
Epoxy resins are prone to serious moisture absorption inspite of their inherent 
advantages, which can be mitigated by the incorporation of montmorillonite nano-
clay that provide tortuous path to flow of moisture. Moisture absorption studies of 
epoxy clay nanocomposites is carried out, to analyse the effect of nanoclay content, 
immersion media and immersion temperature. Nanocomposites prepared in 0.5, 1 
and 1.5 wt% using magnetic stirring and ultrasonication and neat epoxy specimen 
were immersed in distilled water and artificial seawater maintained at 28 and 38 °C 
till saturation. Fick’s and Langmuir’s models were applied to calculate the kinetic 
parameters from the water absorption graphs. Atomic force microscopy (AFM), 
X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy 
(FTIR) and scanning electron microscope with energy dispersive X-ray (SEM–EDX) 
characterizations were performed. Diffusivity is least for nanocomposite containing 
0.5 wt% nanoclay at both temperatures in both medium. However, it is least when 
the medium is distilled water. As the temperature of immersion medium increases, 
the diffusivity also increases. Saturation moisture uptake increased with increase in 
nanoclay content, because of the residual hydrophilic nature of nanoclay. AFM and 
XRD analysis revealed better dispersion and exfoliated structure of nanoclay respec-
tively at 0.5 wt% loading. FTIR spectroscopy was applied to identify the chemical 
bonds that helped in proposing the reaction mechanism of the nanocomposite syn-
thesis. Spectra comparison of dry and wet specimens complimented the moisture 
absorption data by showing lower infrared transmittance in wet specimens. With 
Increase in nanoclay content, the transmittance decreased corresponding to increase 
in saturation moisture uptake for distilled water immersed specimens. SEM–EDX 
analysis distinguished between the cations entered from the artificial seawater and 
cations that were still present in the nanoclay.
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Introduction

Corrosion of marine structures is a serious problem since it results in 30% of the 
total equipment failure [1]. Organic polymer coatings can mitigate this problem 
by being a passive barrier between external environment and underlying metal-
lic substrate. Among such class of materials, epoxy resins have been utilized in a 
wide range of applications due to their excellent adhesion strength, thermal sta-
bility, high mechanical properties, chemical resistance, and low shrinkage [2]. 
However, epoxy resins are vulnerable to moisture absorption, due to which deg-
radation of structure can take place. To reduce or delay the moisture absorption 
and hence increase the life of epoxy coatings, incorporation of nano-clay as a 
secondary phase has attracted the attention of many researchers due to the tortur-
ous path it provides to the passage of moisture or any other corrosive species [3]. 
Nanoclay due to its unique shape and high aspect ratio can tremendously improve 
barrier properties [4, 5]. Among nanoclays, montmorillonite is most used due to 
its 2D-structure, high aspect ratio and large surface area [6].

When cured epoxy is exposed to or immersed in water at elevated tempera-
tures, the hygrothermal aging can cut the backbone of epoxy chains and products 
leach out [7]. In coating applications in immersion conditions, water can enter 
and saturate the epoxy film which lead to reduction of adhesion strength [8]. 
Epoxy-amine networks when hydrothermally aged, can fail due to various mech-
anisms such as plasticization, chain scission, thermo-oxidation, residual curing, 
leaching, polymer relaxation, etc. [9].

When montmorillonite was incorporated in epoxy used for aircraft radome appli-
cations, the moisture absorption behaviour of epoxy nanocomposites changed dra-
matically. The addition of surface modified montmorillonite to epoxy resin in 2 wt%, 
enhanced the radome performance and longevity by delaying a 16% in relative per-
mittivity by 760  h [10]. Surface modification of nanoclay using organic modifier 
is important to make it compatible with organic polymer and thereby increase the 
d-spacing. When different organically modified montmorillonite nanoclays at 2 wt% 
was experimented on water barrier performance of epoxy nanocomposite, Nanomer 
1.30E and Cloisite 10A containing epoxy nanocomposites showed 60% reduction in 
diffusivity [11]. When organo-modified montmorillonite nanoclay was added in 1, 
3 and 5 wt% to epoxy, as the amount of added nanoclay increased, maximum water 
uptake decreased. However, diffusion coefficient reduced by 18% for 1 wt% nano-
clay addition, increased by 1.2% when nanoclay was increased from 1 to 3 wt% and 
again reduced by 18.5% when nanoclay content was increased from 3 to 5 wt%. The 
lowest diffusion coefficient value was registered for epoxy nanocomposite contain-
ing 5 wt% nanoclay. There are few studies on water absorption of epoxy clay nano-
composite, however no studies were found on artificial seawater absorption. Also, 
a comprehensive study considering the effect of immersion medium, immersion 
temperature, use of different theoretical diffusion models and application of Fourier 
transform infrared (FTIR) spectroscopy is scarce.

Marine structures coated with epoxy or structures manufactured by nano-
composites are exposed to water for long durations, during which moisture is 
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absorbed to an extent that depends on chemical composition, morphology, and 
degree of curing. Fourier transform infrared (FTIR) spectroscopy is a non-
destructive way of identifying the chemical species and bond types present in a 
material by assigning specific wavenumbers to different peaks. Material when 
exposed to infrared light spectrum vibrate covalent bonds of various molecules 
resulting in specific absorption or transmission of energy. When specific wave-
number results in vibration of a molecule, peaks in the spectra are obtained which 
can be assigned to the corresponding molecules. The technique can be carried out 
on samples in the forms of liquids, solutions, pastes, powders, films, fibers, and 
gases. It is quite rapid, accurate and relatively sensitive [12]. It is also a useful to 
measure the impact of water absorption on the transmittance of infrared light in 
polymer nanocomposites and to identify the chemical bonds thereby helping in 
determining the reaction mechanisms. The main objective of this paper is to study 
the effect of surface modified montmorillonite nanoclay on the distilled water and 
artificial seawater moisture absorption behaviour of epoxy nanocomposite by 
using the absorption or the gravimetric data. To theoretically study the behav-
iour, two different theoretical models are used – Fick’s and Langmuir’s model. 
The specimens were characterized using advanced research instruments such as 
Atomic force microscopy (AFM), X-ray diffraction (XRD), FTIR spectroscopy 
and Scanning Electron Microscope with Energy Dispersive X-ray (SEM–EDX).

Experimental details

Materials and processes

Epoxy resin used in the research is Araldite LY556, which is a clear and pale-yel-
low colour medium viscous unmodified epoxy resin based on bisphenol-A. The 
curing agent used is Aradur HY951, which is a low viscous aliphatic amine. The 
resin and curing agent combination is a solvent-free room temperature curing sys-
tem which are mixed in ratio 10:1 part by weight. The matrix system exhibits good 
mechanical strength, resistance to atmosphere and chemical degradation. Technical 
specifications about the chemicals used is listed in Table  1. The montmorillonite 
nanoclay used was the surface modified one to have a larger d-spacing and better 
compatibility with the organic polymer matrix. The nanoclay was surface modified 
by 0.5–5 wt% aminopropyltriethoxysilane and 15–35 wt% octadecylamine and was 
procured from Merck India pvt. Limited.

Table 1  Technical specification 
of resin and curing agent system

Property Unit Araldite LY556 Aradur HY951

Viscosity at 25 °C mPa.S 10,000–12,000 10–20
Density at 25 °C gm/cc 1.15–1.20 0.97–0.99
Flash point °C  > 200  > 180
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The nanocomposite was synthesized by magnetic stirring and ultrasonication [13, 
14]. Prior to magnetic stirring, to reduce the viscosity of epoxy resin and thereby 
improve the dispersion, the resin was heated to a temperature of 50 °C. Magnetic 
stirring was carried out for 3 h at 850 RPM during which the nanoclay was added 
gradually. The mixture was then ultrasonicated for 30 min at 75% amplitude. Cur-
ing agent was then added, and the mixture was stirred using a hand stirrer in such 
a way that air bubbles do not evolve, followed by pouring it into the mold of size 
20 mm × 20 mm × 2 mm. The nanoclay was added in different concentrations; 0 wt% 
in the case of neat epoxy and 0.5, 1, and 1.5 wt% in the case of nanocomposites.

Methods

Atomic force microscopy (AFM)

The surface morphology and topography of the cured samples (neat epoxy, epoxy 
clay nanocomposites with 0.5 and 1 wt% nanoclay) were determined using Bruker’s 
Innova AFM device in tapping mode. The extent of dispersion of nanoclay in epoxy 
and surface roughness of the cured samples were analysed using the technique. 
Roughness parameters, viz. roughness average (Ra), root mean square (Rq), and max-
imum height of the profile (Rz) of the cured samples were measured and analyzed. 
The equations for these three parameters are explained in literature elsewhere [15]. 
samples of size 1 cm × 1 cm were cut from bigger moulded samples.

X‑ray diffraction (XRD)

X-ray diffraction measurements were carried out using a Malvern pananalytical 
empyrean X-ray diffractometer setup in transmission mode with copper Kα radia-
tion (λ = 1.5406Å), under a voltage of 45 kV and a current of 40 mA. Scans were 
acquired in continuous mode over a 2θ range of 2–10° with a step size of 0.013.

Fourier transform infrared spectroscopy (FTIR)

Fourier transform infrared spectra were recorded using Shimadzu IRspirit spectrom-
eter that comes with single reflection ATR accessory for direct measurements with-
out samples having in pellet form. Measurements were carried out in the range of 
400–4000  cm−1 in transmittance mode.

Immersion testing

The prepared specimen of different composition was immersed in test tubes containing 
artificial seawater and distilled water. Artificial seawater was prepared as per ASTM 
D1141-98 standard. The immersion test was carried out as per ASTM D570 stand-
ard. Specimens in the test tubes were immersed in water bath which was maintained 
at two different temperatures 28 and 38 °C. Specimens were removed from test tubes 
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periodically, wiped off using a soft tissue paper and was weighed using an electronic 
scale of accuracy 0.001 gm. Moisture uptake, Mt at any time during immersion was 
calculated using Eq. (1) as [16].

where Wt is mass at time t and Wo is initial mass of the specimen.
Graph of Mt/M∞ versus √t was plotted, and Fick’s Law (Eq. 2) was numerically 

fit to the experimental data using least squares approach to determine diffusion coef-
ficient ‘D’. Langmuir model (Eq. 3) was also used to numerically fit the experimen-
tal data obtained for all the specimens. The two models are compared with respect to 
their accuracy in fitting the data points or they are used to address the cases where the 
Fick’s law does not fit the experimental data accurate enough due to anomalous behav-
ior. MATLAB curve fitting application was used to numerically fit the models to the 
experimental data. The adjusted R-square values, Sum of Squared Errors (SSE) and 
Root Mean Square Error (RMSE) values obtained after fitting are provided along with 
graphs.

In Eqs. (1)–(3), M∞ is moisture uptake at saturation, n is number of terms, D is diffu-
sion coefficient in  mm2/hr., t is time in hr., 2 l is specimen thickness in mm. In Eq. (3), 
γ is probability of mobile molecules getting bound and α is probability of bound mol-
ecules becoming mobile.

Scanning electron microscope with energy dispersive X‑ray (SEM–EDX)

Scanning electron microscope (EVO MA18) with Oxford EDS(X-act) was used to 
identify the nanoclay present in the epoxy and the salts in the artificial seawater that 
diffused into the specimen. The immersed specimen was cut in required size and were 
gold sputtered before testing. Neat epoxy and epoxy clay nanocomposite with 1.5 wt% 
nanoclay was chosen for the testing. Specifically, nanocomposites with lower nanoclay 
loadings were not chosen, owing to the fact that trace elements and elements low in 
concentrations cannot be accurately detected using EDX analysis.
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Results and discussion

Atomic force microscope analysis

The Figs. 1, 2, 3 show the topography image of neat epoxy and epoxy clay nano-
composites. The surface roughness parameters obtained from AFM scanning are 
tabulated in Table 2. Figure 4 show the phase images of neat epoxy and epoxy clay 
nanocomposites. In topographic images, the brighter areas represent peaks and 
darker areas represent lower heights or troughs. In phase images, the brighter areas 
represent presence of nanoclay and darker areas represent the epoxy polymer.

From topography image i.e., Fig. 1a, it is observed that the surface of neat epoxy 
is smoother and from phase images i.e., Fig. 4a, it is observed that the surface is 
devoid of any nanoclay. The absence of nanoclay is the reason for the smoothness 
[17]. From Fig. 1b, it is observed that even though the surface is smooth, there are 
still some crests and troughs on the surface in nanoscale. The surface roughness 

Fig. 1  Atomic force microscope images showing the a surface and b height profile

Fig. 2  AFM images of epoxy clay nanocomposite with 0.5  wt% nanoclay showing a surface b height 
profile
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values in the form of three different parameters are given in Table 1. Ra is 2.32 and 
Rq is 2.98. Rq is mathematically higher than Ra since the higher Rq value represents 
the standard deviation and are squared. However, the difference between Rq and Ra 
is 0.66 which is small enough to suggest that there is not much undulation in the 
neat epoxy. Therefore, the crests and troughs observed is miniscule and hence the 
surface is uniform and smooth [18].

From Fig.  2a, it is observed that with the addition of 0.5  wt% nanoclay, the 
surface is rougher when compared with the surface of neat epoxy. The roughness 
values are 11.25 (Ra) and 16.4 (Rq). The difference of 5.15 between Ra and Rq is 
approximately 8 times greater than that of neat epoxy. This indicates the presence 
and distribution of nanoclay on the surface. Nanoclay have tendency to migrate 
to the surface, resulting in higher roughness in certain areas when compared with 
area where roughness is that of the matrix or area further away from the nanoclay. 

Fig. 3  AFM images of epoxy clay nanocomposite with 1 wt% nanoclay showing a surface b height pro-
file

Table 2  surface roughness parameters for neat epoxy and epoxy clay nanocomposites

Average surface 
roughness Ra

Root mean square sur-
face roughness Rq

Rq − Ra Maximum sur-
face roughness 
Rmax

Neat epoxy 2.32 2.98 0.66 22.06
Epoxy clay nano-

composite (0.5 
wt% nanoclay)

11.25 16.4 5.15 203.5

Epoxy clay nano-
composite (1 wt% 
nanoclay)

53.25 72.05 18.8 632
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Therefore, the difference between Ra and Rq is greater here [17–19]. From Fig. 4b, 
it is observed that nanoclay is uniformly distributed with small size agglomeration 
here and there.

From Fig. 3a, it is observed that surface is generally rougher in most of the areas 
and in some other areas, the roughness is even higher. When compared with 0.5 wt% 
addition, it is seen that the roughness has generally increased because of higher 
amount of nanoclay. From the phase image in Fig. 4c it is observed that the size of 
agglomerations has also increased since the chances of forming agglomerations are 
higher at higher loading of nanoclay.

X‑ray diffraction analysis

Figure 5 presents XRD spectra of organomodified montmorillonite nanoclay (Nano-
mer 1.31PS) and epoxy clay nanocomposite with nanoclay content 0.5 and 1 wt%. 
A diffraction peak assigned to the [001] lattice spacing of nanoclay at 2θ = 4.006°, 
corresponds to d-spacing of 2.204  nm. Upon incorporation of nanoclay in epoxy 
resin, for nanocomposite containing 0.5  wt% nanoclay, there are not any visible 
peaks observed, which indicates exfoliated structure of nanoclay in epoxy. However, 
at 1 wt% of nanoclay, peak of very low intensity is observed which indicates inter-
calated structure. Since the intensity is very low relative to the baseline, it can be 
concluded that nanoclay is beginning to take up mixture of intercalated and exfoli-
ated structure.

Fourier transform infrared spectroscopy (FTIR) analysis

Figure 6 presents the FTIR spectra of nanoclay, wherein the wavenumber assigned 
to peaks are labelled. Peak at 454 and 515   cm−1 are assigned to Si–O bending 
and Al–O stretching vibrations respectively [20], Peak at 799   cm−1 is assigned to 

Fig. 4  AFM phase images of a neat epoxy b epoxy nanocomposite with 0.5 wt% nanoclay and c epoxy 
nanocomposite with 1 wt% nanoclay
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symmetrical stretching vibrations of Si–O–Al [21], peak at 920   cm−1  s assigned 
to AlAlOH bending vibrations [22], peak at 1008   cm−1 is assigned to in-plane 
Si–O–Si stretching vibrations [23], peak at 1472  cm−1 is assigned to in-plane scis-
soring vibrations of C–H [22]. Peaks at 2854 and 2926  cm−1 are assigned to C–H 

Fig. 5  XRD spectra of nanoclay and epoxy clay nanocomposites

Fig. 6  FTIR spectra of nanoclay
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symmetric and asymmetric stretching of surface modifiers of nanoclay respectively 
[24]. The band at 3636  cm−1 is assigned to asymmetric stretching vibration of struc-
tural hydroxyl groups present in the nanoclay [25].

Figure  7 presents FTIR spectra of epoxy clay nanocomposites before immer-
sion stacked one over the other. Epoxy resin while curing opens the epoxide ring 
to form O–H group. The sharp peak at 550  cm−1 is assigned to out of plane vibra-
tion of O–H and peaks at 760 and 828 are assigned to C–H out of plane vibration 
[26]. The C–O–C bond stretching of ester groups is assigned to 1228   cm−1 [27]. 
The peak at 1034  cm−1 belongs to Si–O–R, assigned to asymmetric Si–O–C stretch-
ing in nanoclay, peaks at 1108, 1182 and 1301  cm−1 are assigned to C–H in plane 
bending and the peak at 1462   cm−1 is assigned to C–H deformation of  CH2 [26]. 
Peak at 1507   cm−1 [28] is assigned to vibration of aromatic ring in DGEBA. The 
peak at 1611  cm−1 [29] is assigned to C=C stretching of aromatic ring. The peak at 
2932  cm−1 is assigned to asymmetrical C–H stretching of  CH2. The peak at 2966 is 
assigned to asymmetrical C–H stretching  CH3 and peak at 2865  cm−1 is assigned to 
aldehyde C–H stretching [26].

Reaction mechanism and scheme of preparation of epoxy clay nanocomposite

The probable reaction mechanism in Fig. 8 shows that the amine group in the hard-
ener Aradur HY951 breaks the epoxy ring of Araldite LY556 and form a crosslinked 
epoxy resin [30]. The surface modifiers of nanoclay Nanomer 1.31PS, long chain 
octadecylamine and (3-aminopropyl)triethoxysilane were able to increase the space 
between the nanoclay layers by dispersing and covalently bonding, respectively 
[31]. When crosslinked epoxy resin is mixed with surface modified nanoclay, there 
is enhancement in the crosslinking in the nanoclay matrix [32]. Furthermore, these 

Fig. 7  FTIR spectra of epoxy clay nanocomposites
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surface modifiers of nanoclay containing amine group links with free epoxy chain 
via breakage of epoxy ring. Hence, surface modifiers help the crosslinked epoxy 
resin to strongly adhere and get dispersed in the nanoclay matrix.

Moisture absorption studies on epoxy and epoxy clay nanocomposites at 28 °C

The moisture absorption behavior of neat epoxy and epoxy clay nanocomposites 
when immersed in distilled water at 28 °C is shown in Fig. 9, wherein the scatter 
plot of Mt/M∞ versus √t is numerically fit by Fick’s law. The diffusion coefficient 
obtained by curve fitting and saturation moisture uptake obtained from experimenta-
tion are given in Table 3. Adjusted R-square, Sum of squares error (SSE) and Root 
mean square error (RMSE) values are given in Table 4. From Fig. 9, it is observed 
that the experimental data approximately follows Fick’s law. The R-square, SSE and 
RMSE values indicate that the model satisfactorily fits the experimental data with 
minimum error.

The diffusion coefficient obtained by curve fitting using least squares approach 
is highest for nanocomposites containing 1.5  wt%, followed by nanocomposite 
containing 1  wt% nanoclay and neat epoxy. Lowest value of diffusion coefficient 
is recorded for epoxy clay nanocomposite containing 0.5 wt% nanoclay. The diffu-
sion coefficient increases when nanoclay is added beyond 0.5 wt% because of nano-
clay agglomeration. The agglomeration can also be called as intercalated structure, 

Fig. 8  Reaction mechanism and scheme of preparation of epoxy clay nanocomposite
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which was evident from AFM and XRD results. Similar trend was observed in some 
of the literatures [33, 34].

The saturation moisture uptake is least for neat epoxy and highest for epoxy clay 
nanocomposite containing 1 wt% nanoclay. The saturation moisture uptake is higher 
for nanocomposites because the nanoclay remain hydrophilic to some degree even 
though its surface is organo-modified. Montmorillonite nanoclay are by themselves 
hydrophilic due to the presence of cations between their surface layers. These cati-
ons are exchanged by surface modifiers such as alkyl ammonium salts [6, 35] and 
aminosilanes [35] to make montmorillontite nanoclay organophilic. This process 
increases the d-spacing in nanoclay and physically swells it and helps in getting 
exfoliated nanostructure in polymers such as epoxy. However, since there is some 
hydrophilicity left behind in the nanoclay, distilled water does not directly enter the 
polymer but into nanoclay, stays and interacts with the cations there and then moves 
into the polymer and so on [36, 37]. Therefore, because of this phenomenon, when 

Fig. 9  Experimental data scatter plot of Mt/M∞ versus √t of samples immersed in distilled water at 
28 °C along with Fick’s law

Table 3  Diffusion coefficient obtained by Fick’s Law curve fitting and saturation moisture uptake 
obtained from experimentation

Diffusion coefficient 
 (mm2/s) ×  107

Saturation moisture uptake

Distilled water Artificial 
seawater

Distilled water Artificial 
seawater

Neat epoxy 0.65 0.86 1.27 2.02
Epoxy clay nanocomposite (0.5 wt% nanoclay) 0.46 0.72 1.45 0.97
Epoxy clay nanocomposite (1 wt% nanoclay) 0.81 1.16 1.80 1.29
Epoxy clay nanocomposite (1.5 wt% nanoclay) 0.85 0.77 1.60 1.73
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nanoclay increases from 0.5 to 1 wt %, diffusion coefficient increases. However, at 
1.5 wt%, nanoclay agglomeration limits any further increase in surface area, causing 
a decrease in saturation moisture content.

The moisture absorption behavior of epoxy and epoxy clay nanocomposites when 
immersed in artificial seawater at 28  °C is shown in Fig.  10, wherein the scatter 
plot of Mt/M∞ versus √t is fit by Fick’s law. The diffusion coefficient obtained by 
curve fitting and saturation moisture uptake obtained from experimentation is given 
in Table 3. Adjusted R-square, SSE and RMSE values are given in Table 4.

In case of artificial seawater immersion, the same trend as distilled water immer-
sion is observed as far as effect of amount of nanoclay on diffusion coefficient is 
concerned. However, the values are higher for artificial seawater diffusion. This is 
because, when distilled water enters, it first interacts with the cations in the nano-
clay and then move on to polymer. But in the case of artificial seawater, there is 
no such interaction and the seawater directly moves into the polymer. Hence, diffu-
sion coefficient is observed to be higher in the case of artificial seawater [37]. The 
phenomenon of artificial sea water not interacting with cations in the surface of 
nanoclay, makes the diffusion only dependent on dispersion of nanoclay or nano-
clay structure. Since there is better dispersion of nanoclay, the saturation moisture 
uptake reduces with increase in amount of nanoclay. However, because of greater 
degree of agglomeration at higher nanoclay loadings, the saturation moisture uptake 
has increased when nanoclay was increased from 1 to 1.5 wt%. The agglomeration 
behavior is observed for 1 wt% in AFM images and XRD spectra and hence much 
bigger agglomeration is expected for 1.5 wt% nanoclay loadings.

The variation of diffusion coefficients in distilled water and artificial seawater 
at 28  °C for different nanoclay content with their standard deviation showing the 
repeatability of the results are shown in Fig. 11.

The experimental data was curve fit using two models-Fick’s and Langmuir. 
The diffusion coefficient obtained using Langmuir model was observed to be 
highest as it was observed elsewhere [38, 39]. The adjusted R-square values when 
Langmuir model was fit was higher than Fick’s model. Therefore, it can be ascer-
tained that Langmuir model accounts for the non-linearity in the experimental 
data and hence approximates the data better than Fick’s law [40, 41]. The scatter 

Table 4  Adjusted R square, SSE and RMSE values obtained after Fick’s Law curve fitting

Adjusted R-square SSE RMSE

Distilled 
water

Artificial 
seawater

Distilled 
water

Artificial 
seawater

Distilled 
water

Artificial 
seawater

Neat epoxy 0.83 0.82 0.47 0.52 0.17 0.18
Epoxy clay nanocomposite 

(0.5 wt% nanoclay)
0.89 0.94 0.22 0.12 0.12 0.09

Epoxy clay nanocomposite 
(1 wt% nanoclay)

0.89 0.90 0.24 0.17 0.12 0.11

Epoxy clay nanocomposite 
(1.5 wt% nanoclay)

0.82 0.96 0.40 0.06 0.16 0.07
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plot along with curve fit representing Langmuir model is shown in Figs. 12 and 
13 for distilled water and artificial seawater respectively. The adjusted R-square, 
SSE and RMSE obtained by fitting Langmuir model is given in Table 5. The dif-
fusion coefficient, γ (probability of mobile molecules getting bound) and α (prob-
ability of bound molecules becoming mobile) are given in Table 6.

Moisture absorption studies on neat epoxy and epoxy clay nanocomposites 
at 38 °C

It was intended to compare the change in diffusion coefficient when temperature is 
increased. Therefore, only one medium i.e., artificial seawater was chosen and nan-
oclay was varied only till 1  wt%. The experimental scatter plots were fit by only 
Fick’s Law is shown in Fig. 14. The comparison of diffusion coefficients is given in 
Table 7. It is observed from the Table 7 that due to higher temperatures, the diffu-
sion coefficient is higher. At higher temperatures rate of moisture diffusion, hydroly-
sis, chemical degradation, blistering, oxidation and leaching of small molecules is 
higher [42].

SEM–EDX analysis of epoxy clay nanocomposite post immersion

The elemental composition of neat epoxy post artificial seawater immersion at 28 °C 
is shown in Fig. 15. It is observed in neat epoxy that, carbon (C) is the major ele-
ment, followed by oxygen (O), sodium (Na), chlorine (Cl) and magnesium (Mg). 

Fig. 10  Experimental data scatter plot of Mt/M∞ versus √t of samples immersed in artificial seawater at 
28 °C along with Fick’s law fit curve
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Carbon and oxygen correspond to the organic epoxy polymer and remaining ele-
ments corresponds to the penetrated salts from the artificial seawater.

In epoxy clay nanocomposite containing 1.5 wt% nanoclay, other than the above 
elements, nitrogen (N), aluminum (Al), silicon (Si), potassium (K), calcium (Ca) 
and iron (Fe) are also present (Fig. 16, 17). Al and Si represent the presence of nan-
oclay layers. N represents the presence of amine in surface modification of nanoclay 
[6]. K, Ca and Fe correspond to the cations still present even after surface modifica-
tion; therefore, some hydrophilicity will still be present in nanoclay. To be assured 
of this, EDX analysis was also carried out for epoxy clay nanocomposite immersed 
in distilled water. As distilled water do not contain ions, the cations detected in the 
sample correspond to the cations of the nanoclay (Fig. 18).
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ar�ficial seawater

Fig. 11  Variation of diffusion coefficient with change in nanoclay content for distilled water and artificial 
seawater (diffusion coefficient (mm2/s) × 107)

Fig. 12  Experimental data scatter plot of Mt/M∞ versus √t of samples immersed in distilled water at 
28 °C along with Langmuir model fit curve. (nanoclay varied from 0 to 1.5 wt% in epoxy)
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FTIR analysis post immersion

The FTIR spectra from Figs.19, 20, 21 presents comparisons between dry and 
wet samples of neat epoxy, epoxy clay nanocomposite containing 0.5 and 1 wt% 
nanoclay. The effect of distilled water immersion on saturation moisture uptake 
was investigated by studying the hydroxyl group (OH) peak at the range of 
3317–3373   cm−1 [34]. The FTIR spectra comparison shows that, the transmit-
tance in the wavenumber region 3317–3373 decreases because the presence of 
water in the specimen hinders the transmittance of infrared light. Further, Fig. 22 
presents comparison of wet samples, epoxy, and epoxy clay nanocomposites, 
wherein effect of nanoclay incorporation on saturation moisture uptake is investi-
gated qualitatively. It can be noted that, the transmittance in the region of interest 
decreases as nanoclay content increases. This goes well with the water absorption 
gravimetric data presented in Table 3, which conveys that as nanoclay increases, 
the saturation moisture uptake also increases.

Conclusions

The moisture absorption behaviour of neat epoxy and epoxy clay nanocomposites 
were studied in distilled and artificial seawater at 28 and 38 °C. Moisture absorption 
experimental data was fit numerically by Fick’s law and Langmuir model and dif-
fusion coefficient was calculated from it. The results indicate that the nanocompos-
ites perform better when nanoclay is 0.5 wt% in distilled water. Addition of 0.5 wt% 
nanoclay decreased the diffusivity or diffusion coefficient. Among the two models, 
Langmuir model fit the experimental data better and give higher diffusion coeffi-
cient because it accounts for presence of bound and mobile diffusing molecules. The 

Fig. 13  Experimental data scatter plot of Mt/M∞ versus √t of samples immersed in artificial seawater at 
28 °C along with Langmuir model fit curve
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increase in temperature raised the diffusion coefficient; rate of moisture diffusion, 
hydrolysis, chemical degradation, blistering, oxidation and leaching of small mol-
ecules is higher at higher temperatures.

AFM analysis revealed the effect of nanoclay on surface roughness. Surface 
roughness increased with increase in nanoclay. The tendency of nanoclay to migrate 
to the surface caused the increase in surface roughness. The topography and phase 
images from AFM analysis also indicate formation of bigger nanoclay agglomera-
tions at nanoclay loading of 1 wt% which is also the reason why diffusion coefficient 
is lower at nanoclay loading of 0.5 wt%. XRD revealed exfoliated structure of nano-
clay at 0.5 wt% and mixture of intercalated and exfoliated structure at 1 wt%. FTIR 
analysis of dry specimens provided information about the presence of various chem-
ical bonds in nanoclay and epoxy clay nanocomposite specimens, which directed in 
determining the reaction mechanism in the formation of epoxy clay nanocomposite. 
FTIR analysis of wet specimens helped in analyzing how transmittance decreased 
relative to dry specimens. The increase in saturation moisture uptake with increase 
in nanoclay content for distilled water immersed specimens at 28 °C, is well sup-
ported by the FTIR spectra of wet specimens. The transmittance in the region of 
wavenumber 3317–3373   cm−1 reveals the presence of absorbed water molecules. 
With increase in nanoclay content, transmittance decreased, because higher the 

Table 5  Adjusted R square, SSE and RMSE values obtained after Langmuir curve fitting

Adjusted R-square SSE RMSE

Distilled 
water

Artificial 
seawater

Distilled 
water

Artificial 
seawater

Distilled 
water

Artificial 
seawater

Neat epoxy 0.96 1.22 0.19 0.29 0.11 0.15
Epoxy clay nanocomposite 

(0.5  wt% nanoclay)
0.94 0.95 0.12 0.06 0.09 0.07

Epoxy clay nanocomposite 
(1 wt% nanoclay)

0.94 1.27 0.14 0.11 0.10 0.09

Epoxy clay nanocomposite 
(1.5 wt% nanoclay)

0.81 0.94 0.36 0.06 0.17 0.07

Table 6  Diffusion coefficient, γ and α obtained by Langmuir curve fitting

Diffusion coefficient 
 (mm2/s) ×  107

γ ×  103 α ×  103

Distilled 
water

Artificial 
seawater

Distilled 
water

Artificial 
seawater

Distilled 
water

Artificial 
seawater

Neat epoxy 0.91 1.22 4.34 4.45 3.175 2.88
Epoxy clay nanocomposite 

(0.5 wt% nanoclay)
0.60 0.83 2.41 2.97 2.16 2.50

Epoxy clay nanocomposite 
(1 wt% nanoclay)

1.04 1.90 4.19 7.25 3.75 5.63

Epoxy clay nanocomposite 
(1.5 wt% nanoclay)

1.23 0.94 4.34 2.78 3.78 3.01
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Fig. 14  Experimental data scatter plot of Mt/M∞ versus √t of samples immersed in artificial seawater at 
38 °C along with Fick’s model fit curve. (nanoclay varied from 0 to 1 wt% in epoxy)

Table 7  Diffusion coefficient 
comparison at different 
temperatures

Diffusion coefficient 
 (mm2/s) ×  107 28 °C

Diffusion coefficient 
 (mm2/s) ×  107 38 °C

Neat epoxy 0.86 2.77
Epoxy clay 

nanocomposite 
(0.5  wt% nano-
clay)

0.64 1.98

Epoxy clay nano-
composite (1 wt% 
nanoclay)

1.84 2.19

Element Weight % Atomic % 

C 60.90 68.70 

O 34.89 29.55 

Na 0.55 0.32 

Mg 0.14 0.08 

Cl 3.53 1.35 

Fig. 15  EDX image of neat epoxy (0 wt% nanoclay) post artificial seawater immersion
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Element Weight % Atomic % 

C 72.89 78.74 

O 25.31 20.53 

Na 0.22 0.12 

Mg 0.10 0.05 

Al 0.25 0.12 

Si 0.22 0.10 

Cl 0.56 0.21 

K 0.22 0.07 

Fe 0.23 0.05 

Fig. 16  EDX image of epoxy clay nanocomposite (1.5 wt% nanoclay) post artificial seawater immersion

Element Weight % Atomic % 

C 65.90 72.63 

N 5.38 5.08

O 26.12 21.61 

Mg 0.09 0.05

K 0.25 0.09

Ca 0.00 0.00

Fe 2.27 0.54

Fig. 17  EDX image of epoxy clay nanocomposite (1.5 wt% nanoclay) post artificial seawater immersion 
at a different location in the sample

Element Weight % Atomic % 

C 81.31 85.43

O 18.24 14.39

Na 0.01 0.01

Mg 0.02 0.01

Al 0.08 0.04

Si 0.08 0.04

Cl 0.19 0.07

K 0.04 0.01

Ca 0.03 0.01

Fig. 18  EDX image of epoxy clay nanocomposite (1.5 wt% nanoclay) post distilled water immersion
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Fig. 19  FTIR spectra comparison of dry and wet neat epoxy

Fig. 20  FTIR spectra comparison of dry and wet epoxy clay nanocomposite containing 0.5 wt% nanoclay
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Fig. 21  FTIR spectra comparison of dry and wet epoxy clay nanocomposite containing 1 wt% nanoclay

Fig. 22  FTIR spectra comparison of wet epoxy and epoxy clay nanocomposites
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saturation moisture uptake, greater is the hindrance to transmission of infrared light. 
The SEM–EDX analysis revealed the presence of penetrated artificial seawater salts 
and helped in proving the hydrophilic nature of nanoclay still present in the organo-
modified nanoclay, which is the reason for higher diffusion coefficient of nanocom-
posites in artificial seawater when compared with distilled water medium.
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