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Abstract
A novel tellurium (IV) hybrid compound with 2-methylimidazole was prepared. The 
crystal was grown by slow evaporation method from aqueous solutions at room tem-
perature giving birth to a new compound with formula  (C4H7N2)2TeBr6. The struc-
ture was determined by single-crystal X-ray diffraction. It crystallizes in the mono-
clinic system, space group C 2/c, with the following parameters: a = 18.577(2)Å, 
b = 9.1497(10)Å, c = 13.5355(17)Å, α = 90°, β = 123.835(5)°, γ = 90° and Z = 8. The 
structure was solved with a final R = 0.044 for 2783 independent reflections. The 
crystal arrangement consists of  [TeBr6]2− anions surrounded by  [C4H7N2]2+ cations. 
The stability of the structure was ensured by hydrogen bonding contacts (N–H…
Br) lengths that are in the range of 3.490–3.682 Å. The infrared spectra (FTIR) were 
recorded in the 4000–550  cm−1, confirming the existence of vibrational modes that 
correspond to the organic and inorganic groups. The crystal packing was stabilized 
mainly by Br…H (73.6%) interactions. Hirshfeld surface calculations were con-
ducted to further investigate intermolecular interactions, associated 2D fingerprint 
plots and enrichment ratio, revealing the quantitatively relative contribution of these 
interactions in the crystal packing.
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Introduction

Hybrid organic–inorganic materials with distinctive properties have a great 
importance from combining both organic and inorganic components into the 
material [1–4]. They are characterized by a large variety of structures framework 
dimensionality build from chains, layers, or three-dimensional connections [5, 
6] as well as a correlation between the structural features and a vast diversity 
of physical properties from their potential applications such as magnetic, opti-
cal, luminescence and electric [7–11]. Hybrid halogen-based materials have 
demonstrated exciting properties from the renewal of zero-dimensional struc-
tures belonging to alums and Tutton’s salts [12–15]. In addition, Tellurium met-
alloid, as a strong Lewis acid, has an extensive coordination chemistry [16–18]. 
A large number of salts containing tellurium halides octahedra anions  [TeX6]2− 
(X = Cl, Br) has been prepared and structurally characterized [19, 20]. Besides, 
hybrids based on tellurium have caught attention as promising materials due not 
only to their interesting structural topologies, but also to their physical proper-
ties such as luminescence, nonlinear optical activity, ferroelectricity and semi-
conductivity [21–23]. The introduction of tellurium in metal–organic frameworks 
as clusters [24, 25] or tellurium-coordination polymers [26] allows a better cor-
relation between structural features and physical characteristics [27–31]. In the 
organic part, the use of amines as template, generally protonated, has provided 
many types of hybrid materials, which could exhibit interesting optical proper-
ties [32, 33]. In almost all of these materials, the amine cations interact with the 
inorganic part, through weak hydrogen bonds, to give supramolecular network. 
However, it seems that the amine group may have an influence on physical prop-
erty. We recently showed that synthesized bromotellurate salt of 4-(ethylammoni-
ummethyl)pyridinium, in its solid state, showed a maximum UV–visible absorp-
tion and photoluminescence emission based on that of the organic part [34]. The 
aim of this study is to introduce the influence of 2-methylimidazole diamine that 
includes delocalization of electrons from aromaticity in this class of materials to 
further explore interesting optical properties. The peculiarity of the used 2-meth-
ylimidazole,  C4H6N2, is that it can be described as heterocyclic amine soluble in 
water characterized by the presence of a methyl group linked to an aromatic five-
heterocycle which contains two nitrogen atoms. In the present study, the crystal 
structure of  (C4H7N2)2TeBr6 is described in detail. An interest for the significant 
effect of the aromatic diamine template is given. We performed Hirshfeld sur-
face analysis to further investigate and explain intermolecular interactions in the 
structure.
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Experimental

Synthesis

The ligand 2-methylimidazole (0.082 g, 2 mmol) was added to an aqueous solu-
tion (10 ml) of Te(OH)6 (0.23 g, 1 mmol) which were dissolved in a concentrated 
hydrobromic acid HBr (3 ml) as shown in the following reaction:

The resulting orange solution was stirred for about 10 min and then left to slowly 
concentrate by solvent evaporation at room temperature for a period of 10  days. 
Well-formed orange parallelepiped crystals of the product appeared and were col-
lected by filtration.

Single‑crystal data collection and structure determination

A tiny single crystal was carefully chosen from the available crystals under a polar-
izing microscope to perform its structural analysis by X-ray diffraction. Diffraction 
data were collected on a Bruker APEX II CCD diffractometer, using graphite-mon-
ochromated MoKa radiation (0.71073 Å) at 296 K. Intensity measurements were 
made between angles, namely 2, 6 and 30°, giving rise to the following miller indi-
ces: − 24 ≤ h ≤ 25; − 12 ≤ k ≤ 12; − 19 ≤ l ≤ 17. The structure was solved by 
direct methods using the SHELXS-2014 program [35]. However, the positions of 
the tellurium atoms were determined through a three-dimensional Patterson synthe-
sis. Bromine, carbon, nitrogen and hydrogen atoms were located by a three-dimen-
sional Fourier function. Structure solution and refinement were carried out using 
SHELX programs [36] and refined by full-matrix least squares methods on F2 with 
all non-hydrogen atoms anisotropic SHELXL-2014 [37]. The non-hydrogen atoms 
were refined anisotropically. The hydrogen atoms were attributed to isotropic ther-
mal factors close to those of the atoms to which they are linked. The hydrogen atoms 
of the CH, NH and  NH2 groups were fixed geometrically by the appropriate instruc-
tions of the program (AFIX 43, AFIX 43 and AFIX 93, respectively). The H-atom 
of the N is located by difference Fourier synthesis. A final refinement on F2 with 
2783 unique intensities and 89 parameters converged at wR(F2) = 0.084 (R(F) = 
0.063) for 1369 observed reflections with I > 2σ (I). Calculations were performed 
using the WinGX crystallographic software package [38]. The crystal data collec-
tion and structure refinement results of the compound are given in Table  1. The 
structural graph was created with Diamond program [39].

X‑ray powder diffraction

X-ray powder diffraction pattern of ground crystals of the compound 
 (C4H7N2)2TeBr6 was recorded with a PANalytical θ/θ Bragg–Brentano Empyrean 
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diffractometer  (CuKα1+2 radiations) equipped with the PIXcel1D detector. Data 
were collected in the [5–100°] 2θ scattering angle range with a 0.013° step and 30 s 
per step for a total acquisition of 15 min.

Hirshfeld surface calculations

To define the space occupied by molecules that come into contact in the crystal, we 
have required the Hirshfeld surface were constructed from CIF file to the analysis 
of the crystal structures generated by the Crystal Explorer [40] program. It allows 
the visualization of the different types of intermolecular contacts in the crystal by 
focusing on close ones between atoms in neighboring molecules. The Hirshfeld 
surface was computed around the asymmetric unit using the normalized contact 
distance surface (dnorm). It can be generated into 2D fingerprint plots, which is a 

Table 1  Crystal data and 
experimental parameters used 
for the intensity data collection 
strategy and final results of the 
structure determination

Chemical formula C8  H14Br6N4Te
Formula weight  (gmol−1) 389.65
Crystal system, space group Monoclinic, C2/c
Temperature 296 K
a (Å) 18.577 (2)
b (Å) 9.1497 (10)
c (Å) 13.5355 (17)
α (°) 90
β (°) 123.835(5)
γ (°) 90
Cell volume (Å3) 1911.1 (4)
Z 8
F(000) 1420
Density(Mg  m−3) 2.709
μ  (mm−1) 14.09
Radiation type, λ ( Å) MoKα, 0.71073
Rint 0.063
Θ range (°) 2.6–30
Indexes range  − 24 ≤ h ≤ 25

 − 12 ≤ k ≤ 12
 − 19 ≤ l ≤ 17

Measured reflections 7599
Independent reflections 2783
Reflection with I > 2σ (I) 1369
R[F2 > 2σ(F2)] 0.044
wR(F2) 0.084
Goof S (F2) 0.9
Δρmax/Δρmin (e Å−3) 0.71/ − 0.84
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two-dimensional summary of intermolecular interactions that we take into account 
in the crystal. The dnorm is given by the following equation:

while di and de are the distances to the nearest atoms inside (di) and outside (de) 
the surface, while ri

dvW and  re
dvW are the van der Waals radii of the appropriate 

atoms internal or external to the surface [41]. The normalized contact distance is 
displayed using a red-white-blue color scheme; the red color is used for highlighting 
shorter contacts, white for contacts around the vdW separation and blue for longer 
contacts [42]. Two additional colored properties (shape index and curvedness) based 
on the local curvature of the surface can also be specified [43]. As shown in this 
paper, the Hirshfeld surfaces are mapped with dnorm, shape-index, curvedness and 
2D fingerprint plots (full and resolved) were performed by the Crystal-Explorer pro-
gram [44].

Spectroscopic measurements

Fourier transform infrared (FT-IR) measurements were performed at room tem-
perature on a Perkin-Elmer FT-IR Paragon 1000 PC spectrometer over the 
4000–400   cm−1 region. Samples were prepared in KBr pellets. As for the Raman 
scattering spectrum, it was recorded using a T-64000 Raman spectrometer (ISA, 
JobinYvon) with standard attachments. The beam sources were argon krypton titan-
sapphire and semi-conductor lasers. The spectrum was recorded in the range of 
50  cm−1 to 4000  cm−1. Infrared and Raman spectra are recorded with the same reso-
lution of 3  cm−1.

Scanning electronic microscopy (SEM)

SEM images of  (C4H7N2)2TeBr6 were obtained using a JEOL microscope (JSM 
6510 LV). Acceleration voltages varied between 20 and 30 kV as a function of the 
analyzed samples. Elementary quantitative microanalyses were performed using an 
energy-dispersive X-ray (EDX) OXFORD detector (Aztec software).

Results and discussion

Preliminary characterizations

Crystals taken from the stock solution, washed with ethanol and dried were 
studied by energy-dispersive X-ray (EDX). The data collected by this technique 
clearly reveal the organic/inorganic nature of the analyzed compound (Fig.  1). 
The deduced composition is only used as a guide to confirm the presence of 
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tellurium, bromine and nitrogen. In addition to the DRX data of the single crys-
tal, we can affirm that it is a hybrid material.

The recording of the X-ray powder diffraction pattern of the compound was 
carried out. The comparison between experimental pattern and theoretical pat-
tern generated from the crystal structure determined by DRX from single crystal 
at room temperature (Fig.  2) shows that the sample of the synthesized hybrid 
compound presents a single phase.

Fig. 1  Analysis of a single crystal of  (C4H7N2)2TeBr6 by EDX and morphology of the analyzed crystal

Fig. 2  X-ray powder diffraction patterns of  (C4H7N2)2TeBr6. Red: simulated from the structure deter-
mined by DRX of the single crystal. black: experimental (color figure online)
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Crystallographic study

The crystal structure of the title compound  (C4H7N2)2TeBr6 has been solved and 
refined in the centrosymmetric monoclinic space group C2/c, with eight formula cell 
unit (Z = 8). The different parameters of the crystallographic unit cell have the val-
ues of: a = 18.577(2)Å, b = 9.1497(10)Å, c = 13.5355 (17)Å, β = 123.835(5)°, and 
V = 1911.1(4)Å3. Further details are reported in Table 1.

The asymmetric part of the unit cell of the title compound consists of one 2-meth-
ylimidazolium  [C4H7N2]2+ cation and one hexabromotellurate (IV) anion  [TeBr6]2− 
(Fig. 3). The Te atom is sixfold coordinated by bromide ions, forming an octahedral 
polyhedron. Thus, to ensure charge equilibrium, the structure associates each hexa-
bromotellurate (IV) anions with one 2-methylimidazole cation.

The atomic arrangement in the structure of the title material (Fig. 1S), accord-
ing to the (a, c) plan, shows an alternation of organic cations and mineral anions 
along the crystallographic [101] direction. Octahedral inorganic  [TeBr6]2− enti-
ties are arranged along the crystallographic c axis and connected with protonated 
amines through N–H…Br hydrogen bonds, while the organic cations  [C4H7N2]2+ 
are interconnected in the same direction by the π stacking between their aromatic 
rings in such a way to neutralize the negative charge of the inorganic part. The 
perspective view of the atomic arrangement of  (C4H7N2)2TeBr6 compound is 
shown in Fig.  4. Actually, the structure is composed of parallel inorganic parts 
alternated by organic chains. The organic cations trapped in the spacing between 
the inorganic parts and connection between all molecules are made by hydrogen 
bonds to from an infinite zero-dimensional network. The supramolecular crys-
tal packing is built by N–H…Br hydrogen bonds varying between 3.490 and 
3.682 Å (Table 2). The anionic polyhedron  [TeBr6]2− exhibits a slightly distorted 

Fig. 3  Asymmetric unit of the  (C4H7N2)2  TeBr6 crystal
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octahedral coordination environment with Te–Br band lengths ranging from 
2.6361 (11) Å to 2.7476 (11) Å and Br−Te−Br bans angles fall in the range of 
88.58°(2) and 180° (Table 1S). The small differences of the Te–Br bond lengths 
are not insignificant considering the standard deviations. There appears to be no 
stereochemical active lone pair of electrons at Te (IV) in the hexahalogeno com-
plex ion [45–49]. 

The examination of the geometric features of the organic molecule exhibits 
a regular spatial configuration with C–C, C–N distances and C–C–N, C–N–C, 
N–C–C and N–C–N angles, quite like those found in other compounds [50, 51]. 
The C–N band lengths vary from 1.305(8) to 1.366(8)Å, and those of C–C band 
vary from 1.323(10) to 1.476(9)Å and C–C–N, C–N–C, N–C–C and N–C–N 
angles are between 106.3°(6) and 127.2°(7) (Table 1S). The distance between two 
aromatic nuclei (centroids) was 3.656 Å < 3.8 Å (Fig. 5) which confirms that the 
π–π interaction is present in this compound [52].

Fig. 4  Hydrogen bonds between chlorine and organic entities in the crystal structure of  (C4H7N2)2  TeBr6 
in projection along the a-axis. (H-bonds are represented by dashed lines)

Table 2  Hydrogen-bonds geometry (Ǻ)

D–H d(D–H) d(H..A)  <DHA> d(D..A) A

C1–H1A 0.960 3.076 147.44 3.920 Br3 [− x + 3/2, − y + 1/2, − z]
C1–H1B 0.960 2.810 156.21 3.708 Br1 [x , y − 1, z]
N1–H1 0.860 3.036 124.01 3.588 Br2
N1–H1 0.860 2.968 128.12 3.564 Br4 [− x + 2, y, − z + 1/2]
N1–H1 0.860 3.015 135.96 3.682 Br4 [x, − y + 1, z− 1/2]
C4–H4 0.930 2.846 154.03 3.704 Br1 [− x + 3/2, − y + 3/2, − z]
C4–H4 0.930 3.078 121.59 3.653 Br2 [− x + 3/2, − y + 1/2, − z]
N2–H2 0.860 2.717 150.15 3.490 Br3 [− x + 3/2, − y + 1/2, − z]
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Molecular Hirshfeld surface analysis

The Hirshfeld surfaces have been made to explore the type of interactions, such as 
(C…H, H…H, C…C etc.) or hydrogen bonds and to study the various intermolec-
ular interactions that play an important role in a molecular crystal. The molecular 
Hirshfeld surface, 3D dnorm, shape index and curvedness for  (C4H7N2)2TeBr6 are 
illustrated in Fig. 6, showing surfaces that have been napped over dnorm ranging 
from − 0.246 to 1.026 Å, shape index ranging from − 1.000 to 1000 Å, and cur-
vedness ranging from − 4.000 to 0.400 Å, respectively. The dnorm mapping indi-
cates that strong hydrogen bond interactions, such as N–H…Br hydrogen bonding 
between amino group and bromide, appear as the main interaction between the 
complexes and are seen as a bright red area in the Hirshfeld surfaces (Fig. 6a). 
The brightest and largest red spots observed in the dnorm refer to the shorted inter-
molecular contacts indicating the existence of hydrogen bonds N–H…Br in the 
crystal packing. The superseding H…Br interactions viewed in Hirshfeld surfaces 
by the bright red are in Fig. 6a, which appear as distinct spike in the 2D finger-
prints plots (Fig. 2S).

Fig. 5  View of the p...p interactions between ring centroids
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We can decompose 2D fingerprints plots to highlight close contacts. This decom-
position enables the separation of each contribution of the different interactions from 
the full fingerprint. Visible complementary regions are visible in the fingerprint plot 

Fig. 6  Hirshfeld surfaces of 
(4-ethylaminomethyl pyridi-
num Telluric chlorid VI): a 3D 
dnorm surface, b surface index, c 
curvedness
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where one molecule acts as a donor (de > di) and the other as an acceptor (de < di). 
The 2D fingerprint plots of the title compound (Fig. 2S) indicate the strong inter-
molecular contacts, which are Br-H, H–H, C–H, Br–Br, N–Br, C–N, C–Br, N–H. 
The H–H…Br/Br…H contacts exhibit the characteristic shape of two “wings” at the 
top left and the bottom right of the fingerprint plots (Fig.  2Sa). In fact, the H…
Br/Br…H constitutes the most important interactions in the crystal and their rela-
tive contribution extends to 73.6% (indicated as red areas) due to the existence of 
N–H…Br hydrogen bonds. In contrast, the H–H contacts are rather homogeneously 
extended over a large range of (di, de) pairs with an average contribution of 12.4% 
(Fig. 2Sb). The C…H/H…C contacts are also broadly distributed with accumulation 
comprising 2.8% (Fig. 2Sc). However, Br…Br and N…Br/Br…N contacts display 
relatively a sharp and acicular distribution with an average of 2.7 and 2.7%, respec-
tively (Fig. 2Sd,e). The intermolecular C…Br/Br…C and C…N/N…C interactions 
appear as short blue-colored patches with the proportion of 1.7 and 1.3%, respec-
tively (Fig. 2Sf,g). In addition, N…H/H…N interactions are negligible and exhibit 
only 1.1% (Fig. 2S,h).

The dnorm values were mapped onto the Hirshfeld surface (Fig. 6a) using red, blue 
and white schemes as follows: red regions representing closer contacts and a nega-
tive dnorm value; blue regions representing longer contacts and a positive dnorm value; 
and white regions representing the contacts distance that is exactly equal to the vdW 
separation with a dnorm value of zero. These normalized contact distances (dnorm) 
disclose the adjacent contacts of hydrogen bond donors and acceptors as well as 
evident other close contacts. Indeed, Fig.  6a shows that the huge circular depres-
sions are indicative of hydrogen bonding contacts and the prevailing interactions are 
Br-H. Nonetheless, other noticeable spots are due to H–H contacts, based on both de 
and di. The shape index is extremely susceptible to very delicate changes in the sur-
face shape. Indeed, shape index (S) is 0D dimensionless surface property described 
in terms of the two major surface curvatures and can be used to differentiate com-
plementary hollows (S− 1.0; concave region; red colored) and bumps (S+ 1.0; con-
vex region; blue colored) where two molecular Hirshfeld surfaces come into contact 
[53–57]. In particular, adjacent red/orange and blue triangle like patches on a shape 
index map (Fig.  6b) provide information about π–π stacking interactions [53, 56, 
57]. However, in this compound, the π–π interactions were present as indicated in 
Fig. 6b; thus, the Hirshfeld surface confirms the presence of the π–π stacking inter-
actions in organic cations. The curvedness is a measure of the shape of the molecule 
surface area. As can be seen in Fig. 6c, while the flat surface areas correspond to 
the curvedness values, the sharp curvature areas correspond to the high curvedness 
values and usually tend to divide the surface into patches, representing interactions 
between neighboring molecules. The big flat region that is described by a blue out-
line refers to the π–π staking interactions.

Infrared and Raman spectroscopy

In order to obtain more information on the crystal structure, we studied the vibra-
tional properties using Raman scattering and infrared absorption. IR and Raman 
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spectroscopy is a proficient method to confirm the functional groups present in the 
crystal and to study the structural consequences such as in-plane or out-of-plane 
vibrations [58]. At this level, we have discussed the vibrational analyses of the com-
pound and tried to give the most precise assignment of the detected bands.

In fact, the Raman bands correspond to the translational, vibrational and external 
modes of the inorganic groups  [TeBr6]2− in the low-frequency range 50–250  cm−1 
(Fig. 7). As for the bands observed between 250 and 4000  cm−1 in the Raman spec-
tra and those in the IR spectra (Fig. 8), they are assigned to the internal modes of the 
cation. The assignment of the internal and lattice modes of the organic cations and 

Fig. 7  Experimental Infrared spectrum of the  (C4H7N2)2  TeBr6

Fig. 8  Exprimental Raman spectrum of the  (C4H7N2)2  TeBr6
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Table 3  Experimental 
frequencies  (cm−1) of the 
 (C4H7N2)2TeBr6 compound

υ: stretching; δ: scissoring, β: in plane bending, γ: out of plane bend-
ing

Observed FT-IR 
 (cm−1)

Frequency Raman 
 (cm−1)

Attributions

3456 υs(N–H)
3436 3430 υas(N–H)
3384 υ(C–H) + υ(N–H)
3203 3196 υ(C–H) + υ(N–H)
3176 υas(CH3)
3126 3130 υs(CH3)
3081 υ(C–H)
2827 υs(C–H)
2722 υ(N–H…Br)
2525 υas(C–H)
1618 1615 υ(C=N) ϕ
1603 υ(C=C) ϕ
1578 δas(N–H)
1563 δas(CH3)
1521 1523 δs(N–H)
1503 δs(CH3)
1485 δs(C–N–H)
1475 δs(C–H)
1456 δas(C–H)
1436 δas(C–N–H)
1408 1404 υ(C–C)
1395 1332 υ(C–N)
1138 1131 δ(C–N)
1120 β(N–H)
1106 1105 β(C–H)
1097 δ(C–H)
1077 1078 δas(C–C–N)
1059 δas(N–C–C)
1048 δas(N–C–N)
1037 1035 δas(C–N–C)
1006 999 β(C–C–H)
943 938 δas(C–N)
854 859 γ(C–C–H)
733 744 δ(C–C)
619 614 β(C–N–C)

344 δ(C–C–N)
335
296
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inorganic anion is based on the comparison with the well-documented spectra of the 
homologous compounds [59–63].

In the following, the IR assignments will be described in detail. The Raman spec-
trum of this crystal confirms also the presence of the majority of vibration mode 
function for the organic molecule (Fig. 7, Table 3). We note that the broadening of 
the band is caused by hydrogen bonding interactions which influence the band fre-
quency as well as the intensity of the peak [64].

The IR spectrum of this compound (Fig. 8 and Table 3) (in Supporting informa-
tion) shows the characteristic absorption peaks of the  [C4H7N2]2

+ cation [65, 66]. 
The peaks at 3456   cm−1 and 3436   cm−1 correspond to the (N–H) stretching sym-
metric and asymmetric vibrations. However, the scissoring asymmetric and sym-
metric vibrations δ(N–H) have been identified as broad and weak bands at 1578 
and 1521  cm−1 in the IR spectrum, respectively. In aromatic compounds, the C–H 
stretching wave numbers appear in the range of 3000–3100   cm−1. Accordingly, in 
the present study, the aromatic =C–H stretching gives bands at 3081   cm−1 in the 
IR spectrum. The symmetric and asymmetric stretching vibrations of (C–H) are 
observed at 2827 and 2525   cm−1. The bands observed at 1475 and 1456   cm−1 in 
FT-IR spectra are attributed to the scissoring symmetric and asymmetric vibrations 
δ(C–H), respectively. Moreover, the N–H and C–H in plane bending in aromatic 
groups are located at the interval 1120–1106  cm−1.

The vibrations modes between 3176 and 3126  cm−1 are due to the  (CH3) asym-
metric and symmetric stretching vibrations. The deformation asymmetric and sym-
metric of  (CH3) bond is observed at 1563 and 1503  cm−1 in IR spectrum. The C=N 
aromatic stretches are predicted at 1618  cm−1 in IR spectra [67]. In the present work, 
the C=C aromatic stretch is observed at 1603  cm−1 in the FT-IR. The aromatic ring 
carbon–nitrogen υ(C–N) stretching vibrations are detected at 1395  cm−1. The strong 
bands identified at 1408  cm−1 in the IR spectrum are assigned to υ(C–C) stretching 
vibrations in the ligand. The bands relating to the deformation mode symmetric and 
asymmetric of the C–N group appear in IR spectrum at 1138 and 943   cm−1. The 
deformation of (C–C) bond is observed at 733  cm−1. Besides, the absorption bonds 
located at 1485 and 1436  cm−1 in IR spectrum are assigned to the (C–N–H) sym-
metric and asymmetric scissoring vibration.

The bands relating to the in-plane deformation modes of the C–C–N, N–C–C, 
N–C–N and C–N–C groups appear in the spectral range between 1077 and 
1037   cm−1. The bands corresponding to the δ(C–C–N) scissoring in-plane mode 
appear at 524   cm−1. The band detected at 619   cm−1 corresponds to the in-plane 
bending of C–N–C. The β(C–C–H) in-plane bending mode is located at 1006  cm−1. 
The peak located in IR spectrum at 854  cm−1 is generated by the out-of-plane bend-
ing mode of γ(C–C–H) groups.

Conclusion

The present research work reported the synthesis and characterization of the new 
centrosymmetric hybrid compound  (C4H7N2)2TeBr6. Thus, single crystals of 
 (C4H7N2)2TeBr6 were collected from an aqueous solution by a slow evaporation 
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technique. The obtained material crystallizes in the space group C2/c with mono-
clinic system. The structure of this compound consists of isolated  [TeBr6]2− octa-
hedral anions and 2-methylimidazole cations. The crystal structure is stabilized 
by N–H…Br hydrogen bonds and � − � stacking interactions. Hirshfeld surface 
allowed us to investigate the stabilization of the crystal packing and quantify the 
propensity of the intermolecular interactions to form the supramolecular assembly. 
The study of the vibration spectroscopy by IR, Raman at room temperatures proved 
the homogeneity and purity of this synthesis.
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