Skip to main content
Log in

Green synthesis, characterisation and antibacterial activity studies of new multifunctional nano polymeric material, which may have multidimensional application in water purification

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel polymeric resin was synthesized by condensing a Schiff base of 6-chloro-2-aminobenzothiazole and salicyldehyde with formaldehyde, which may have multidimensional application. First step of the synthesis of novel polymeric material is synthesis of Schiff base, which is the monomer of the resin. The Schiff base was synthesize by using greener method to reduce hazardous chemical waste and reaction time, so that reduction of environmental pollution and conservation of energy can be achieved. The greener method is compared with the conventional method. The metal polychelates of the polymeric resin with Cu2+ and Fe3+ were synthesized. The Schiff base, resin and its polychelates were converted to nanodimension and its dimension is measured by DLS method. The structure of the Schiff base, resin and polychelates are ascertained by FTIR, 1H NMR spectroscopy. The experimental data are compared with the computational data obtained from Gaussian software to ascertain the synthesis of these materials. These materials have a very wide range of application starting from analytical chemistry to biochemistry. The antibacterial activities of Schiff base, resin and metal polychelates were studied against pathogenic bacteria Escherichia coli by turbidity measurement method. All these materials are found to be effective against the tested bacterial species, whereas the polychelates are shown exceptional results.

Optimization structure of Schiff base

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bagla P, Kaiser J (1996) Epidemiology: India’s spreading health crisis draws global arsenic experts. Science 274:174–175

    CAS  Google Scholar 

  2. Lepkowski W (1998) Arsenic crisis in Bangladesh. C&EN News November 16:27–29

    Google Scholar 

  3. Bearak D (1998) New Bangladesh disaster: wells that pumps poison. The New York Times, November 10

  4. Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S, Kabir S, Quamruzzman Q, Chakraborti D (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108:393–397

    CAS  Google Scholar 

  5. Prociv P (1987) Palm Island Reconsidered. Was it Copper poisoning?  Int Med J 17:3

    Google Scholar 

  6. Fenwich A (2006) Water borne infectious diseases- could they be consigned to history? Science 4:1077–1081

    Google Scholar 

  7. Craun GE (2006) FraunMF, Calderon RL, beach MJ, water borne out breaks reported in the united states. J Water Health 4:19–30

    Google Scholar 

  8. World Health Organization (WHO) Water Quality and Health. Drinking water chlorination – A review of disinfection practices and issues. 2014. http://www.waterandhealth.org/drinkingwater/wp.html. Accessed 28 Apr 2014

  9. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 62(3):407–418

    Google Scholar 

  10. Ueno K, Martell AE (1955) Infrared study of metal chelates of bisacetylacetoneethylenediimine and related compounds. J Phys Chem 59:998

    CAS  Google Scholar 

  11. Ueno K, Martell AE (1956) Infrared studies on synthetic oxygen carriers. J Phys Chem 60:1270

    CAS  Google Scholar 

  12. Che CM, Cheng WK (1986) Manganese(III) amide complexes as a new class of catalyst for efficient alkene epoxidation. J Chem Soc Chem Commun. https://doi.org/10.1039/C39860001443

    Article  Google Scholar 

  13. Johnson DK, Murphy TB, Rose TB, Goodwin WH, Pickart L (1982) Cytotoxic chelators and chelates 1. Inhibition of DNA synthesis in cultured rodent and human cells by aroylhydrazones and by a copper(II) complex of salicylaldehyde benzoyl hydrazine. Inorg Chim Acta 67:159–166. https://doi.org/10.1016/S0020-1693(00)85058-6

    Article  CAS  Google Scholar 

  14. Alzuet G, Ferrer S, Borras J, Supuran CT (1994) Complexes of heterocyclic sulfonamides-a class of dual carbonic anhydrase inhibitors. Roum Chem Quart Rev 2(4):283–300

    CAS  Google Scholar 

  15. Almajan GL, Barbuceanu SF, Innocenti A, Scozzafava A, Supuran CT (2008) Carbonic anhydrase inhibitors. Inhibition of the cytosolic and tumor-associated carbonic anhydrase isozymes I, II and IX with some 1,3,4-oxadiazole- and 1,2,4-triazole-thiols. J Enzym Inhib Med Chem 23:101–107

    CAS  Google Scholar 

  16. Supuran CT (1995) Metal complexes of 1,3,4-thiadiazole-2,5-disulfonamide are strong dual carbonic anhydrase inhibitors, although the ligand possesses very weak such properties. Met Based Drugs 2:331–336. https://doi.org/10.1155/MBD.1995.331

    Article  CAS  Google Scholar 

  17. Supuran CT, Scozzafava A (1997) Novel aromatic/heterocyclic sulfonamides and their metal complexes as inhibitors of carbonic anhydraseisozymes I, II and IV. J Enz Inhib 12(1):37–51

    CAS  Google Scholar 

  18. Alzuet G, Casanova J, Borras J, Garcia-Granda S, Gutierrez-Rodriguez A, Supuran CT (1998) Copper complexes modelling the interaction between benzolamide and Cu-substituted carbonic anhydrase. Crystal structure of Cu(bz)(NH3)4 complex. Inorg Chim Acta 273(1–2):334–338. https://doi.org/10.1016/S0020-1693(97)06020-9

    Article  CAS  Google Scholar 

  19. Chohan ZH, Jaffery MF, Supuran CT (2001) Antibacterial Co(II), Cu(II), Ni(II) and Zn(II) complexes of Thiadiazoles Schiff bases. Met Based Drugs 8(2):95–101. https://doi.org/10.1155/MBD.2001.95

    Article  CAS  Google Scholar 

  20. Komis G (1984) Comprehensive heterocyclic chemistry. Katritzky AR (ed), Pergamon, New York, vol 6, Part 4B

  21. Kornis G (1984) 1,3,4-Thiadiazoles. In: Katritzky AR (ed) Comprehensive heterocyclic chemistry. Pergamon, New York, vol 6, Part 4B, p 545

  22. Chohan ZH, Kausar S (2000) Synthesis, characterization and biological properties of tridentate NNO, NNS and NNN donor thiazole-derived furanyl, thiophenyl and pyrrolyl schiff bases and their Co(II), Cu(II), Ni(II) and Zn(II) metal chelates. Met Based Drugs 7(1):17–22. https://doi.org/10.1155/MBD.2000.17

    Article  CAS  Google Scholar 

  23. Chohan ZH, Pervez H, Rauf A, Scozzafava A, Claudiu T, Supuran CT (2002) Isatin-derived antibacterial and antifungal compounds and their transition metal complexes. J Enzyme Inhib Med Chem 17(2):117–122

    CAS  Google Scholar 

  24. Vukovic N, Sukdolak S, Solujic S, Milosevic T (2008) Synthesis and antimicrobial evaluation of some novel 2-aminothiazole derivatives of 4-hydroxy-chromene-2-one. Arch Pharm Chem Life Sci 341(8):491–496. https://doi.org/10.1002/ardp.200700215

    Article  CAS  Google Scholar 

  25. Chohan ZH, Praveen M (2000) Synthesis, characterization and antibacterial properties of symmetric 1,1′‐ferrocene derived Schiff‐base ligands and their Co(II), Cu(II), Ni(II) and Zn(II) chelates. Appl Organomet Chem 14(6):376–382. https://doi.org/10.1002/1099-0739(200007)14:7%3c376::AID-AOC995%3e3.0.CO;2-5

    Article  CAS  Google Scholar 

  26. Chohan ZH (1999) Ni (II), Cu (II) and Zn (II) metal chelates with some thiazole derived schiff-bases: their synthesis, characterization and bactericidal properties. Met Based Drugs 6(2):75–90. https://doi.org/10.1155/MBD.1999.75

    Article  CAS  Google Scholar 

  27. Mohanty D (2014) Antibacterial studies of the polymeric phenolic schiff bases containing aminothiazole moiety. Int J Res Pharm Nano Sci. 3(3):215–221

    CAS  Google Scholar 

  28. Helfferich FG (1961) Ligand exchange: a novel separation technique. Nature 189:1001–1002

    CAS  Google Scholar 

  29. Helfferich FG (1962) Ion exchange. McGraw-Hill Book Company, London

    Google Scholar 

  30. Bruno Urbano; Bernabé L. Rivas, (2014) Sorption properties of chelating polymer-clay nano-composite resin based on iminodiacetic acid and montmorillonite: Water absorbency, metal ion uptake, selectivity, and kinetics. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.4109

    Article  Google Scholar 

  31. Ricco R, Konstas K, Styles MJ, Richardson JJ, Babarao R, Suzuki K, Scopece P, Falcaro P (2015) Lead(II) uptake by aluminium based magnetic framework composites (MFCs) in water. J. Mater. Chem. A 3:19822–19831

    CAS  Google Scholar 

  32. Yang J, Hou B, Wang J, Tian B, Bi J, Wang N, Li X, Huang X (2019) Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 9:424. https://doi.org/10.3390/nano9030424

    Article  CAS  Google Scholar 

  33. Kuehne ME (1959) The applications of enamines to a new synthesis of b-ketonitriles. J Am Chem Soc 81:5400–5404

    CAS  Google Scholar 

  34. Taguchi K, Westheimer FH (1971) Catalysis by molecular sieves in the preparation of ketimines and enamines. J Org Chem 36:1570–1572

    Google Scholar 

  35. Billman JH, Tai KMJ (1958) Reduction of Schiff bases II: Benzhydrylamines and structurally related compounds. J Org Chem 23:535–539

    CAS  Google Scholar 

  36. White WA, Weingarten H (1967) A versatile new enamine synthesis. J Org Chem 32:213–214

    CAS  Google Scholar 

  37. Texier-Boullet F (1985) A simple, convenient, and mild synthesis of imines on alumina surface without solvent. Synthesis, 679–681.

  38. Naeimi H, Salimi F, Rabiei K (2006) Mild and convenient one-pot synthesis of Schiff bases in the presence of P2O5=Al2O3 as new catalyst under solvent-free conditions. J Mol Cat A: Chem 260:100–104

    CAS  Google Scholar 

  39. Chakraborti AK, Bhagat S, Rudrawar S (2004) Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones. Tetrahedron Lett 45:7641–7644

    CAS  Google Scholar 

  40. Vazquez MA, Landa M, Reyes L, Miranda R, Tamariz J, Delgado F (2004) Infrared irradiation: effective promoter in the formation of N-benzylideneanilines in the absence of solvent. Synth Commun 34:2705–2718

    CAS  Google Scholar 

  41. Touchelte KM (2006) Reductive amination: A remarkable experiment for the organic laboratory. J Chem Educ 83:929–931

    Google Scholar 

  42. Varma RS, Dahiya R, Kumar S (1997) Clay-catalyzed synthesis of imines and enamines under solvent-free conditions using microwave irradiation. Tetrahedron Lett 38:2039–2042

    CAS  Google Scholar 

  43. Gopalakrishnan M, Sureshkumar P, Kanagarajan V, Thanusu J (2007) New environmentally friendly, solvent-free synthesis of imines using calcium oxide under microwave irradiation. J Res Chem Intermed. 33:541–548

    CAS  Google Scholar 

  44. Bennett JS, Charles KL, Miner MR, Heuberger CF, Spina EJ, Bartels MF, Foreman T (2009) Ethyl lactate as a tunable solvent for greener synthesis of arylaldimines. Green Chem 11:166–168

    CAS  Google Scholar 

  45. Silverstein RM, Bassler GC, Morrill TC (1981) Spectrometric identification of organic compounds. Wiley, New York, p 130

    Google Scholar 

  46. Thamizharasi S, Reddy AVR (1992) Polymer 33(11):2421

    CAS  Google Scholar 

  47. Chen H, Cronin JA, Archer RD (1994) Supramolecular polymers. Macromolecules 27:2174

    CAS  Google Scholar 

  48. Antony R, Pillai CKS (1994) Synthesis and thermal characterization of chemically modified phenolic resins. J Appl Polym Sci 54(4):429–438. https://doi.org/10.1002/app.1994.070540403

    Article  CAS  Google Scholar 

  49. Hafi N, Kolli M, Vergnaud JM, Montheard JP (1991) Amines release from Schiff bases polymers and diffusion from dosage forms with eudragit RL in acidic medium. J Appl Polym Sci 43(10):1837–1847. https://doi.org/10.1002/app.1991.070431007

    Article  Google Scholar 

  50. Azarudeen RS, Burkanudeen AR (2012) Synthesis, spectral, morphology, thermal degradation kinetics and antibacterial studies of terpolymer metal complexes. J Inorg Organometa Polym Mater 22:791–806

    CAS  Google Scholar 

  51. He Y, Cai C (2011) Polymer-supported macrocyclic Schiff base palladium complex as an efficient catalyst for the Heck reaction. Appl Organomet Chem. https://doi.org/10.1002/aoc.1839

    Article  Google Scholar 

  52. Tamami B, Ghasemi S (2015) Catalytic activity of Schiff-base transition metal complexes supported on crosslinked polyacrylamides for hydrogen peroxide decomposition. J Organomet Chem 794:311–317. https://doi.org/10.1016/j.jorganchem.2015.05.041

    Article  CAS  Google Scholar 

  53. Elmali A, Kabak M, Elerman Y (1999) Keto–enol tautomerism, conformations and structure of N-(2-hydroxy-5-methylphenyl), 2-hydroxybenzaldehydeimine J Mol Struct 477:151–158

    Google Scholar 

  54. Patel PR, Thaker BT, Zele S (1999) Preparation and characterisation of some lanthanide complexes involving a heterocyclic β – diketone Ind J Chem 38A:563–567

    CAS  Google Scholar 

  55. Misra PK, Mishra BK, Behera GB (1988) Determination of dissociation constants of salicylidene- 2-aminobenzothiazole & p-hydroxybenzylidene-2-aminobenzothiazole in different surfactant systems. Ind J Chem 27A:889–892

    Google Scholar 

  56. Panigrahi S, Misra PK (2016) The effect of solvent on electronic absorption bands of some Benzylideneanilines. J Mol Liq 224:53–61

    CAS  Google Scholar 

  57. Perry BF, Beezer AE, Miles RJ, Smith BW, Miller J, Nascimento MG (1988) Evaluation of microcalorimetry as a drug bioactivity screening procedure, application to a series of novel Schiff base compounds. Microbois 45:181

    Google Scholar 

  58. Cimerman Z, Miljanic S, Galic N (2000) Schiff bases derived from aminopyridines as spectrofluorimetric analytical reagent. Cro Chem Acta 73:81

    CAS  Google Scholar 

  59. Demircioglu Z, Kastas CA, Buyukgungor O (2015) Theoretical analysis (NBO, NPA, Mulliken Population Method) and molecular orbital studies (hardness, chemical potential, electrophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2-methylphenylimino)methyl)-3-methoxyphenol. J Mol Struct 1091:183–195

    CAS  Google Scholar 

  60. Sorrosa AA, Gonzalez JIH, Arellano AR, Toscano RA, Martinez RR, Mendoza JRP, Morales DM (2015) Synthesis, structural characterization and biological activity of fluorinated Schiff-bases of the type [C6H4-1-(OH)-3-(CH NArF)]. J Mol Struct 1085:249–257

    Google Scholar 

  61. Minkin VI, Tsukanov AV, Dubonosov AD, Bren VA (2011) Tautomeric Schiff bases: Iono-, solvato-, thermo- and photochromism. J Mol Struct 998:179–191

    CAS  Google Scholar 

  62. Shepelenko EN, Tsukanov AV, Revinskii YV, Dubonosov AD, Bren VA, Minkin VI (2007) Benzoid-quinoid tautomerism of schiff bases and their structural analogs: LIII. Schiff bases derived from 5-hydroxy- and 5-hydroxy-6-nitro-2,3-diphenyl-1-benzofuran-4-carbaldehydes. Russ J Org Chem 43:559–562

    CAS  Google Scholar 

  63. Hadjoudis E, Rontoyianni A, Ambroziak K, Dziembowska T, Mavridis IM (2004) Photochromism and thermochromism of solid trans-N,N′-bis-(salicylidene)-1,2-cyclohexanediamines and trans-N,N′-bis-(2-hydroxy-naphylidene)-1,2-cyclohexanediamine. J Photochem Photobiol A 162:521–530

    CAS  Google Scholar 

  64. Alaghaz AMA, Zayed ME, Alharbi SA (2015) Synthesis, spectral characterization, molecular modeling, biological activity and potentiometric studies of 4-amino-5-mercapto-3-methyl-S-triazole Schiff’s base complexes. J Mol Struct 1083:430–440

    CAS  Google Scholar 

  65. Hota P, Biswal SP, Panigrahi S, Misra PK (2019) Vibrational and electronic spectral analyses of substituted N-benzylideneanilines for Possible application as material for a functional Dyad: theoretical and experimental explorations. Mater Today: Proc 9:680–688

    CAS  Google Scholar 

  66. Temel E, Albayrak C, Buyukgungor O, Odabasoglu M (2006) Zwitterionic (E)-2-hy¬droxy-6-[(o-tolyl¬iminio)meth¬yl]phenolate 0.07-hydrate. Acta Crystallogr E 62:04484–04486

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge HOD and other faculty of Ravenshaw University, VSSUT for providing their various analytical facilities. The authors especially express their gratitude towards Prof. S. K. Swain of VSSUT and his research scholars for providing technical support to carry out various analytical studies. The Principal, Dhenkanal (Auto) college is highly acknowledged for providing facilities to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Mohanty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, S.R., Mohapatra, P. & Mohanty, D. Green synthesis, characterisation and antibacterial activity studies of new multifunctional nano polymeric material, which may have multidimensional application in water purification. Polym. Bull. 80, 703–723 (2023). https://doi.org/10.1007/s00289-021-04046-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04046-5

Keywords

Navigation