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Abstract
Current trends in scientific studies focus on the development of smartphone-based 
biosensors via green nanoparticle for clinical diagnosis, food, and environmental 
monitoring. In this study, we developed a novel portable smartphone-based biosen-
sor via green dendrimer-coated matcha extract/silver nanoparticles (ME-Ag NPs) 
enriched with polyphenol for detecting hydrogen peroxide  (H2O2). Also, we investi-
gated the biological evaluation of the nanostructure as a safe preservative for use in 
biomedical applications. Ag NPs were prepared using a green sonochemical method 
and were characterized to determine surface and chemical properties by different 
techniques such as scanning electron microscopy—energy-dispersive X-ray, trans-
mission electron microscope, Fourier transform infrared spectroscopy, atomic force 
microscopy, X-ray diffraction, and Brunauer–Emmett–Teller. Furthermore, antimi-
crobial and antifungal properties of ME-Ag NPs were investigated against patho-
genic microorganisms such as Staphylococcus aureus, Pseudomonas aureginosa, 
Escherichia coli, Candida albicans, and Aspergillus brasiliensis. The experimental 
sensor methodology was based on the detection of  H2O2 by analysis of images of 
novel silver nanostructure-coated papers and processing of color histograms with a 
RGB (red–green–blue) analyzer software. Consequently, the smartphone-based bio-
sensor exhibited high sensitivity with detection limits of 0.82 μM response time of 
5 s. The smartphone-based biosensor via ME-Ag NPs provided a rapid and selective 
detection of  H2O2.
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Introduction

The monitoring and detection of  H2O2 have a significant role in biological organ-
isms and a broad range of industrial applications [1].  For the determination of 
 H2O2, different methods such as chromatography, electroanalysis, colorime-
try, and fluorometry have been reported [2, 3]. Instead of bulky and expensive 
methods such as spectrophotometer, which are widely used to detection of target 
biochemical analytes, easy to use, portable, and inexpensive smartphone-based 
methods offer great advantages [4] In this case, it is significant to develop easy-
to-use and low-cost smartphone-based methods to detect  H2O2 with a high sensi-
tivity and rapid detection at low concentration. In the last two decades, scientific 
studies focus on smartphone-based sensor technologies, which have great poten-
tial in studies for different purposes such as high-quality medical services, food 
control, diagnostic technologies, and environmental monitoring [5–7]. In particu-
lar, the use of smartphones as detectors has increased, which makes the detection 
method considerably practical and economical and facilitates its commercializa-
tion and spread in modern sensor technology. The smartphone is used as a detec-
tor, reflecting the colorimetric analysis using an image software-based histogram 
algorithm.  The methodology of smartphone-based sensor is based on a high-
resolution camera and image software using mobile sensing approaches under a 
smartphone’s flashlight or an external light source [3]. The digital image colorim-
etry method on a smartphone is known a fast and low-cost analysis method using 
a RGB analyzer software. A  target analyte is (metal, drug, microorganism,  and 
biomarkers) measured by color analysis of the digital image obtained using the 
built-in camera by the digital image colorimetry method [8–10].

Recently, nanostructures have been widely used in the development of electro-
chemical biosensors to improve the biocompatibility, sensitivity, reproducibility, 
catalytic activity, and signal amplification [11–13]. With the remarkable advances 
and developments in nanotechnology, various nanomaterials such as nanolayers 
[14], quantum dots [15], NPs [16, 17], carbon nanotubes [18], nanofiber [19], and 
nanocomposite [20] have been reported to be used in the development of electro-
chemical biosensors. Our aim was to develop the disposable colorimetric nano-
biosensor paper and evaluate the color change with a smartphone. In this con-
text, we designed a new colorimetric biosensor by integrating the nanostructure 
with a smartphone platform to apply the promising material in  H2O2 determina-
tion.  In this study, we developed a novel smartphone-based biosensor via green 
dendrimer-coated  matcha  extract/silver  nanoparticles (ME-Ag NPs) enriched 
with ployphenol for detecting  H2O2 based on digital RGB spectral responses. The 
smartphone-assisted method was based on nanoprobe-coated filter paper using 
RGB colorimetric approach. Additionally, the strategy of using smartphone-based 
biosensor to detect  H2O2 has not been reported and has unique advantages such as 
green, low-cost, portable, sensitivity, and easy to use.

In addition, biological evaluation of novel ME-Ag NPs was performed in 
this study. As known, current trends in scientific studies focus on the control 
the spreading and to prevent infections of microscopic organisms known as 
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pathogens—such as coronavirus, cholera and plague or parasites [21–23]. One of 
the most promising developments of nanotechnolgy is the evaluation of preserva-
tive efficacy of nanoadditives, which have been gaining attention for preventing 
from pathogenic microbial contamination during the novel fabrication of cosmet-
ics [24–27]. Recently, metal/metal oxide-based nanoformulations are promising 
nanosized protectants against several pathogens in food, cosmetic, agriculture and 
drug with their excellent antimicrobial and antifungal properties [28–32]. Among 
these materials, green synthesized silver-based nanostructures are widely used 
to control bacterial growth in biomedical applications [33]. Ag-based nanostruc-
tures have a significant performance to penetrate cell walls of bacterial, changing 
the chemical structure of cell membrane of bacteria and even resulting in bac-
terial death due to their small size and biocompatibility, and excellent physico-
chemical properties [34, 35]. According to technological development and pre-
vious studies, several novel silver-based nanoformulations have been fabricated 
using different stabilizers such as chitosan [36], alginate [37], poly (methyl meth-
acrylate) (PMMA) [38], polyethylene glycol–polyvinyl alcohol (PEG-PVA) [39], 
PVA/gum acacia [40], polyvinylpyrrolidone (PVP) [41], polylactic acid (PLA) 
[42], clay [43], and plant extract [44]. In particular, several studies have been pro-
posed to explain the physicochemical and biological properties of plant extract-
based Ag NPs in the literature. However, some disadvantages have been studied 
to control the miscibility, dispersion stability, and agglomeration of Ag-based for-
mulation in liquids [45, 46]. With these disadvantages, desired outcomes have 
not been completely achieved. To overcome these problems, Ag NPs have been 
developed due to their large surface area, excellent dispersion due to then nar-
row size distribution, stable dispersion in aqueous solutions, and highly branched 
shaped structures to improve antimicrobial and antifungal properties. Another 
prominent aspect of this study was the use of low-cost, biodegradable matcha, 
which is grown in many countries of the world, as a green stabilizer in the syn-
thesis of silver nanostructures.

For this purpose, we synthesized the hyperbranched unimolecular ME-Ag NPs 
(generation 3, G3) by the green and one-step sonochemical via a self-assembly 
process.

The surface characterization and functional groups of ME-Ag NPs were deter-
mined by different techniques such as SEM–EDX, TEM, FTIR AFM, XRD, and 
BET. Furthermore, we focused on the development of the hyperbranched den-
drimer-coated silver nanoparticles (ME-Ag NPs) to establish a novel preservative 
nanoformulation for antifungal agents against microorganisms and mold-yeast in 
biomedical and cosmetic applications. We determined the preservative efficacy 
of ME-Ag NPs against pathogenic microorganisms such as S. aureus, P. aerugi-
nosa, E. coli, C. albicans, and A. brasilliensis with lSO 11930:2012 guideline for 
the total aerobic mesophilic microorganism, and mold-yeast, respectively. Conse-
quently, the biological results were examined comprehensively, the novel green 
nanostructure exhibited unique antifungal and antibacterial properties. Further-
more, the sensor results showed that the prepared smartphone-based biosensor is 
a promising system for development of the smartphone-based sensors for other 
contaminants.
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Materials and methods

Materials

Matcha powder (Camellia sinensis) purchased from Arifoğlu Company (Turkey). 
Sodium hydroxide, isopropyl alcohol, ethanol, ethyl acetate, and ammonia were pur-
chased from Merck Company. Whatman® qualitative filter paper (diam. 25 mm) and 
silver nitrate (≥ 99.0%) were purchased from Sigma-Aldrich Company (Germany). 
Ascorbic acid (L-Ascorbic acid 99%), dopamine hydrochloride (98%), progesterone 
(4-Pregnene-3,20-dione, ≥ 99%), and glucose (D-(+)-Glucose monohydrate, 99.0%) 
were obtained from Sigma-Aldrich Company Ltd. (St Louis, USA). We used a ster-
ile syringe filter with a 0.22-micron retention and polyvinylidene difluoride (PVDF) 
membrane. Ultrapure water was obtained from Merck Millipore Milli-Q® Integral 
5. All chemicals and reagents were used without further purification.

Preparation of ME

First, ME powder was cleaned with distilled water to remove all impurities and then 
dried to constant weight at 50  °C in a vacuum heater for 2  h to remove residual 
moisture. Second, 10 g of the matcha powder was added to 500 ml of distilled water 
for 7 days at 25 °C in the dark medium at stable position. Finally, the solution was 
filtered using a sterile syringe filter to obtain ME. All samples were stored in sterile 
polypropylene containers until use at 25 °C.

The self‑assembly sonofabrication of the Ag NPs enriched with polyphenol

The self-assembly sonochemical synthesis of ME-Ag NPs consisted of four steps. 
The first step, 0.42 g of  AgNO3 was dissolved in 250 ml of distilled water. Then, 
the solution was stirred for 10 min at 25 °C. 0.2 g of NaOH was dissolved in 125 ml 
of distilled water and stirred for 10  min at 25  °C. The second step, 50  ml of the 
ME and 100 ml of  AgNO3 solution, was sonicated for 5 min (amplitude frequency: 
30%). The third step, 1  ml of NaOH solution was added slowly to the solution. 
We observed the color change of the sample. We assumed that ME had a role as a 
green reducing agent for reducing  Ag+ to  Ago by changing yellow to brown. Finally, 
ME-Ag NPs were filtered using a sterile syringe filter and stored in a sterile con-
tainer until use at 25 °C in vacuum desiccator.

Surface characterization of the nanostructure

We used different advanced techniques such as scanning electron microscopy 
(SEM)—energy-dispersive X-ray (EDX), transmission electron microscope (TEM), 
Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), 
X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) to characterize the 
nanostructure. The SEM–EDX (FEI QUANTA 450) (TedPella, double-coated, 
8 mmW × 20 mL) was used to determine the surface morphology of the ME-Ag NPs 
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with a 6–10 mm working distance, 0–130 Pa pressure, and voltage of 7–10 kV under 
low vacuum medium. Transmission electron microscope (TEM) (Hitachi HighTech 
HT7700) was used to visualize the ME-Ag NPs in a high vacuum mode at 100 kV. 
FTIR (Spectrum Two, Perkin Elmer,) was used to observe the functional groups of 
the samples (KBr powder) in the 4000–400  cm–1 frequency range with a resolution 
of 4   cm–1 and eight scans. The crystal structure and the mean size of crystallites 
of the ME-Ag NPs were determined by the XRD technique with Cu Kα radiation 
at 40  kV and 15  mA. The Brunauer–Emmett–Teller (BET) specific surface area 
of the sample was determined using a Micromeritics ASAP 2020. Absorbances of 
reference (NPs) and sample (NPs + analyte) were measured using a double-beam 
UV–Vis spectrophotometer (T + 80, PG Instrument) with a UVWin 5 Software.

Calculations part

The crystalline size of ME-Ag NPs was calculated using different XRD mathemati-
cal models such as the Scherrer, Williamson–Hall, and modified Scherrer equations, 
respectively (Eqs. 2.1–2.3) [47, 48]. The formulas of all models are given in Table 1.

Storage stability of the nanostructure

In this study, the storage stability of the synthesized ME-Ag NPs was evaluated 
under ultraviolet light. Five milliliters of ME-Ag NPs solution was irradiated at 
365  nm for 2  h. We experimentally examined the effect of ultraviolet irradiation 
on the storage stability of the synthesized ME-Ag NPs by measuring the viscosity. 
Experimental rheological measurements were performed in triplicate.

Antimicrobial and antifungal assays

In this study, the synthesized hyperbranched ME-Ag NPs enriched with polyphenol 
(generation 3, G3) were performed for antimicrobial and antifungal effect against 
different pathogenic microorganisms such as staphylococcus aureus (S. aureus, 
NCTC 10,788/Lot 0,350,520,029), Pseudomonas aureginosa (P. aeruginosa, ATCC 
9027/Lot 3270513), Escherichia coli (E. coli, ATCC 8739/Lot 4835151), Candida 
albicans (C. albicans, NCPF 3179/Lot040920020), and Aspergillus brasilliensis (A. 
brasilliensis, NCPF 2275/Lot 020620065).

Table 1  The formulas of 
Scherrer, Williamson–Hall, and 
modified Scherrer models

Dp average crystallite size, β line broadening in radians, θ Bragg 
angle, λ X-ray wavelength

Formula Model Eq.

Dp =
0.94⋅�

�⋅cos �
Scherrer equation (2.1)

� cos � =
0.94⋅�

Dp

+ 4� sin � Williamson–Hall equation (2.2)

In (1/cos �) = In
0.94⋅�

Dp

+ In� Modified Scherrer equation (2.3)



7368 Polymer Bulletin (2022) 79:7363–7389

1 3

Challenge test

The challenge test was performed using the standard NF EN lSO 11930:2012 guide-
line to evaluate the microbiological safety and level of biological activity of the 
preservative ME-Ag NPs (Table 2). We examined by inoculation of the synthesized 
ME-Ag NPs with pathogenic microorganisms at a concentration range from  105 
and  106 CFU  g−1 corresponded to the colony-forming units per g of the synthesized 
ME-Ag NPs.

Different pathogenic microorganisms were used such as Staphylococcus aureus 
(S. aureus, NCTC 10788/Lot 0350520029), Pseudomonas aureginosa (P. aer-
uginosa, ATCC 9027/Lot 3270513), Escherichia coli (E. coli, ATCC 8739/Lot 
4835151), Candida albicans (C. albicans, NCPF 3179/Lot040920020), and Asper-
gillus brasilliensis (A. brasilliensis, NCPF 2275/Lot 020620065) and analyzed 
for challenging test of the synthesized ME-Ag NPs. All pathogenic microorgan-
isms were issued from official collection of microbial strains of The European 
Union (EU) that ensures the reproducibility of the challenging tests. The inocu-
lated ME—Ag NPs was held at temperature ranges from 20 to 25  °C in the dark 
medium for 28  days. The viability assessment was performed at suitable time 
intervals (T0 = 0  days (immediately after collection); T7 = 7  days; T14 = 14  days; 
and T28 = 28 storage days) with to the number of viable microorganisms. The pre-
servative effectiveness test results were expressed in terms of the criteria A and B 
described in Table 3.

In particular, the microbiological criteria were defined from decrease in loga-
rithmic reduction scale 10 (log scale 10) of microorganism concentration from the 
measured inoculum using challenge test (according to the standard NF EN ISO 
11930) for the evaluation of the antimicrobial protection of a cosmetic product. The 
result of challenge test gives two types of criteria such as a target (the “A” criterion) 
and an acceptable level (the “B” criterion). Finally, “no increase” was defined as not 
much more than 0.5 log10 units higher than the previous value measured.

Preparation of smartphone‑based hydrogen peroxide biosensor

The preparation steps of the biosensor arrays were as follows.

Table 2  Experimental challenge test conditions

Microorganisms Culture medium Experimental incu-
bation temperature 
(°C)

S. aureus, NCTC 10788/Lot 0350520029 Tryptic soy agar 30–35
P. aeruginosa, ATCC 9027/Lot 3270513 Tryptic soy agar 30–35
E. coli, ATCC 8739/Lot 4835151 Tryptic soy agar 30–35
C. albicans, NCPF 3179/Lot040920020 Saboraud 4% dextrose agar 20–25
A. brasilliensis, NCPF 2275/Lot 020620065 Saboraud 4% dextrose agar 20–25
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(1) colorimetric solutions of ME-Ag NPs were dropped in different concentra-
tions on a Whatman® qualitative filter paper using an Eppendorf® Research® plus 
pipette (0.1–2.5 μL), constructing a 2 cm diameter circular area of color-sensitive 
sensor array and (2) the sensor arrays were dried for 10 min and deposited in a ster-
ile polyethylene bag before use. (3)  H2O2 solutions in the range from 0.05 to 20 μM 
were dropped on a ME-Ag NP-coated filter paper. (4) The images all samples were 
taken at room temperature with a smartphone (Casper F20) with a resolution of 
1600 × 1200 pixels. Histograms of images of samples were obtained using a soft-
ware (ImageJ 1.51q software) and analyzed the distribution of RGB values of sam-
ples. All experiments were performed in triplicate (n = 3).

Selectivity analysis

The selectivity of the process was performed by detecting the effects of different 
analytes such as  H2O2, isopropyl alcohol, ethanol, ethyl acetate, ammonia, ascor-
bic acid, dopamine hydrochloride, progesterone, and glucose in the response of the 
nanoprobe as in  “Preparation of smartphone-based hydrogen peroxide biosensor” 
section.

Quantitative recognition assisted using a smartphone via the RGB analysis

In this study, we developed the novel portable smartphone-based biosensor via 
green ME-Ag NPs for detecting of  H2O2. Furthermore, the detection mechanism of 
NPs biosensor was based on the characteristic color change of the nanocoated paper 
sensor, which was responded selective and rapid to target analyte using smartphone 
images of sample. Also, we detected the color change of samples and determined 
the  H2O2 concentration quantitatively using a spectroscopic measurement technique 
due to reaction with the target analyte.

All samples were imaged using a smartphone under sun light. We put the smart-
phone in a plexiglass glass-based box (8 cm × 8 cm and a 3-mm-thick clear acrylic 
sheets with a protective film) to keep it in a stable position. The colorimetric histo-
grams of samples were determined to understand color differences in images using 
the RGB analysis with the software ImageJ. Euclidean distance (ΔE) values were 
calculated to observe the  H2O2 quantitative detection in the range from [0, 0, 0] 
and [255, 255, 255] RGB values (Eq. 2.4) [49]. According to RGB analysis, values 
of color were assigned in the range from 0 to 255 for absolute black and absolute 
white, respectively.

where the subscripts i and 0 denote the RGB value (R: red, G: green, and B: blue) of 
the ME-Ag NPs with and without the analyte, respectively. The correlation between 
ΔE values and  logH2O2 concentration was obtained to determine the equilibrium 
time and colorimetric quantitative recognition. Furthermore, we calculated sensor 

(2.4)ΔE =

√

(Ri − R0)
2 + (Gi − G0)

2 + (Bi − B0)
2
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response data for ME-Ag NPs sensor papers to investigate their performance for 
sensor applications (Eq. 2.5) [50].

where S: response in %, c: concentration, xc: sensor signal (RGB channels), x0: the 
value of x (c = 0) signal, and xref: reference value. According to Eq. 2.6, we investi-
gated the response of NPs paper sensor with the logarithm of the  H2O2 concentra-
tion [50].

where m: constant and n: response at low concentration.
Limit of detection (LOD) was known concentration of a component and calcu-

lated from calibration curve of the sample.

where S is the slope of the calibration curve and σ is the standard deviation of the 
response.

Statistical analysis

All experimental results were obtained in triplicate and are given as the mean for 
each experiment. The analysis of variance (ANOVA) procedure was conducted in 
SPSS (version 16, Chicago) with a significance level of P < 0.05.

Results and discussion

Surface characterization of the nanostructure

In this study, ME was used as a stabilizing agent for hyperbranched unimolecular 
ME—Ag NPs (generation 3, G3). Surface techniques were used to control the size, 
dispersion, and stability of Ag NPs. Surface morphology and particle size of ME 
and ME—Ag NPs (G3-Ag) were investigated by SEM technique. SEM images of (a) 
pure matcha powder, (b) ME-Ag NPs with 40.000 × magnification, (c) ME-Ag NPs 
with 160.000 × magnification, (d) EDX spectra of ME-Ag NPs are given in Fig. 1. 
The SEM result showed that pure matcha powder had an agglomerated and irregu-
lar shaped (Fig. 1a) [51, 52]. Figure 1b shows the SEM images of third generation 
ME-Ag NPs encapsulated with Ag nanoparticles which were uniformly anchored 
spheroidal dispersed within the polyphenolic dendrimer branching network. The 
size of Ag nanoparticles was found the ranges from 10 to 30 nm. According to SEM 
results, we showed the successful encapsulation of Ag nanoparticles within hyper-
branched unimolecular polyphenolic dendrimer. The EDX spectra of ME-Ag NPs 
is shown in Fig. 1c. The characteristic absorption peaks of  Ago in the range of 1–2 

(2.5)S = 100
xc − x0

x0 − xref
[%]

(2.6)S = m log(c) + n [%]

(2.7)LOD = 3, 3 × �∕S
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Fig. 1  SEM images of a pure matcha powder, b ME-Ag NPs with 40.000 × magnification, c ME-Ag NPs 
with 160.000 × magnification, d EDX spectra of ME-Ag NPs
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and 3 keV were observed and the elemental EDX analysis also revealed C, O, and 
Ag [53]. The EDX results of ME-Ag NPs showed percentage relative composition 
of elements such as oxygen (O) 62.68%, carbon (C) 37.05%, and silver (Ag) 0.27%. 
According to BET results, we found that the surface area was 220.43  m2/g.

The FTIR technique of (a) pure matcha powder and (b) ME-Ag NPs was used to 
investigate functional groups of structure in the region between 4000 and 400  cm−1. 
FTIR analysis of pure matcha powder and ME-Ag NPs is shown in Fig. 2. According 
to the FTIR results, the characteristic peaks of pure matcha powder were observed 
at 3278.39   cm−1 (–OH stretching vibration), 2918.73   cm−1 (C–H stretching vibra-
tion), 1623.77  cm−1 (–OH bending and stretching vibrations), 1516.74  cm−1 (C=O), 
1444.42   cm−1 (C=O), 1366.32   cm−1 (C=O), 1232.29   cm−1 (–C–OH bending), 
1143.58   cm−1 (C=O), and 1016.3   cm−1 (C–O–C vibrations). The FTIR result was 
attributed to the (-)-Epigallocatechin-3-Gallate (EGCG) [54]. Furthermore, the 
characteristic peaks of ME-Ag NPs were observed at 3228.25   cm−1 (–OH stretch-
ing vibration), 2927.41   cm−1 (C–H stretching vibration), 1690.3   cm−1 (–OH 
bending and stretching vibrations), 1553.38   cm−1 (C=O), 1352.82   cm−1 (C=O), 

Fig. 2  FTIR spectra’s of a pure matcha powder, and b ME-Ag NPs and TEM images of c ME-Ag NPs 
x3k, d ME-Ag NPs x10k, and e ME-Ag NPs x30k with different magnifications
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1237.11   cm−1 (–C–OH bending), 1142.62   cm−1 (C=O), 1014.37   cm−1 (C–O–C 
vibrations). These small shifts were due to the adsorption on the surface for C=O 
[55]. Consequently, we assumed that EGCG had a significant effect on reduction of 
 Ag+ in NPs. TEM technique was used to characterize the of the surface of ME-Ag 
NPs. Figure 2 shows the TEM images of (c) ME-Ag NPs x3k, (d) ME-Ag NPs x10k, 
and (e) ME-Ag NPs x30k with different magnifications. According to TEM results, 
we found that the NPs had a hyperbranched unimolecular structure due to the contri-
bution of the Ag nanoparticles around the branches of the polyphenolic dendrimer. 
Briefly, we observed that 2D hyperbranched Ag nanoparticles in the lateral size 
range of about 10–20 nm were synthesized via a self-assembly sonication process at 
room temperature for 30 min using of green reducing agent, leading to the fabrica-
tion of dendrimer-branched Ag nanoparticles [56]. Also, Ag nanoparticles were well 
separated in the structure. The results were compatible with our SEM results. We 
assumed that the polyphenolic dendrimer homogenously stabilizes silver nanoparti-
cles by branching the nanostructure.

X-ray diffraction (XRD) analysis of ME-Ag NPs was performed to calculate 
the crystalline size of Ag NPs in the structure. The XRD graph of the synthesized 
ME-Ag NPs is given in Fig. 3. Figure 3 shows that characteristic peaks were formed 
around 2θ = 38.16°, 41.22°, 44.34°, 56.38°, 62.32°, 64.52°, and 64.84° corresponded 
to JCPDS file No.00–004–0783. We calculated the crystalline size of Ag NPs using 
different XRD mathematical models such as the Scherrer, modified Scherrer, and 
Williamson–Hall equations. The plot of (a) modified Scherrer and (b) William-
son–Hall of ME-Ag NPs is shown in Fig. 3. The crystalline sizes of NPs were found 
5.21 nm, 15.98 nm, and 15.74 nm by applying Scherrer, modified Scherrer, and Wil-
liamson–Hall formula, respectively (Fig. 3). These results were well coincide with 
the SEM and TEM results. Also, these results were in good agreement with a related 
study [57].

The synthesized ME-Ag NPs were characterized by AFM for three-dimensional 
morphology, topographical characterization, and agglomeration of Ag nanoparticles. 
The images were 5 µm × 5 µm. In Fig. 4, (a) AFM topographical image, (b) three-
dimensional morphology, and (c) cross section of image of ME-Ag NPs were found 
to be in line with the SEM and TEM, showing the sizes of the synthesized ME-Ag 
NPs as 15 nm. The corresponding cross sections of the image was provided to show 
differences in height distributions between particles. According to AFM results, 
we observed that the ME-Ag NPs had a uniform size distribution and homogenous 
structure due to the polyphenolic network. Our results of AFM about surface topog-
raphy of the synthesized ME-Ag NPs showed similarity to the results reported by 
many researchers concerning the surface characterization of Ag nanoparticles with 
uniform size distribution [58–61].

Storage stability of the nanostructure

Various previous studies have proven the structure, content, and morphological 
properties of nanoparticles effect thermal conductivity, rheological behavior, 
viscosity, and stability [62]. Regarding the morphology-dependent rheological 
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behavior and intrinsic viscosity measurement of nanofluids rich in Ag NPs, the 
lack of data in the literature is noteworthy. For this reason, we focused on the 
optimization of the viscosity of Ag NPs to have a long-term stability. The pho-
tographs of ME-Ag NPs after standing for 20 weeks (Fig. 5) showed that only 
a small amount of Ag NPs was precipitated at the bottom of the glass without 
obvious stratification, indicating their high storage stability. Furthermore, we 
found that Ag NPs had a high stable dispersion with small sizes in low con-
centrations and intrinsic viscosities of nanosystems. The storage stability of the 
hyperbranched unimolecular ME-Ag NPs was evaluated using rheological meas-
urements. In Fig. 5, the intrinsic viscosity/time plot of the ME-Ag NPs, and the 

(a)

(b) (c)

Fig. 3  a XRD result of the synthesized ME-Ag NPs, the plot of b modified Scherrer, and c Williamson–
Hall of ME-Ag NPs
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Fig. 4  a AFM topographical image, b three-dimensional morphology, and c cross-section of image of 
ME-Ag NPs



7377

1 3

Polymer Bulletin (2022) 79:7363–7389 

schematic image of stability of SLE- Ag NPs at different times were given. The 
storage stability of the synthesized ME-Ag NPs was monitored by checking its 
intrinsic viscosity at 25 ± 0.1 °C. Also, the photograph of the ME-Ag NPs was 
taken over time (0–20 Week). Furthermore, the intrinsic viscosity difference of 
the ME-Ag NPs after 20 weeks of storage was found to be 34 ± 1.0 dl/g. These 
stability results exhibited an indication of its excellent storage stability with its 
photographs for the ME-Ag NPs.

(a)

(b)

Fig. 5  a The intrinsic viscosity/time plot of the ME-Ag NPs, and b schematic image of stability of 
ME-Ag NPs
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Challenge test of the nanostructure

Recently, Coronavirus (COVID-19) is a significant issue and related to nanosized 
virus so we should improve the antimicrobial activity of novel materials and to 
prevent the spread of these pathogenic problems using nanotechnological solu-
tions. With this viewpoint, we developed the novel ME-Ag NPs and investigated 
the biological activity of the NPs to evaluate the preservative efficacy of ME-Ag 
NPs against pathogenic microorganisms such as Staphylococcus aureus (S. aureus), 
Pseudomonas aureginosa (P. aeruginosa), Escherichia coli (E. coli), Candida albi-
cans (C. albicans), and Aspergillus brasilliensis (A. brasilliensis), which cause 
infectious disease. These microorganisms are known major problems and cause 
infections to people or animals in direct or indirect routes [63, 64]. We used the 
total aerobic mesophilic microorganism (lSO 21149) and mold—yeast (lSO 16212) 
(cosmetics-microbiology-evaluation of the antimicrobial protection of a cosmetic 
product) guidelines for the antimicrobial and antifungal activity of the synthesized 
ME-Ag NPs. The preservative efficacy of ME-Ag NPs against pathogenic microor-
ganisms of ME-Ag NPs were given in Fig. 6. Concerning S. aureus, P. aeruginosa, 
E.  coli, C. albicans, and A. brasilliensis, criterion A was satisfied for the synthe-
sized ME-Ag NPs. To our knowledge, this report is the first study on preservative 
efficacy of the synthesized ME-Ag NPs against the S. aureus, P. aeruginosa, E. coli, 
C. albicans, and A. Brasilliensis for use in cosmetic preparations.

In previous studies, various reports were showed that plant extract-based nano-
formulations had excellent biological activity against pathogenic microorganisms. In 
this study, our aim was to fabricate the biodegradable ME-Ag NPs without using any 
toxic reducing agents. The results showed that the synthesized Ag NPs had excellent 
antimicrobial and antifungal properties, and these results were appreciable from the 
comparison with the results of previous studies in the literature (Table 4).

Colorimetric image sensing behavior of the nanostructure

The smartphone-based ME-Ag NPs biosensor was developed for analysis of  H2O2, 
isopropyl alcohol, ethanol, ethyl acetate, ammonia, ascorbic acid, dopamine hydro-
chloride, progesterone, and glucose. The analyte was deposited on the color region 
of ME-Ag NP-coated paper substrate and kept for 1 min to reach equilibrium. For 
color histogram analysis, the signal color intensity of ME-Ag NP-coated paper was 
calculated using the RGB color detector application in smartphone after addition 
of the target analyte. Furthermore, the limit of detection (LOD) was calculated 
using standard calibration curve with the response (S) (y)-axis and the Log  H2O2 
concentrations on the horizontal (x)-axis. The selectivity detection of ME-Ag NPs 
toward various analytes, including  H2O2, isopropyl alcohol, ethanol, ethyl acetate, 
ammonia, ascorbic acid, dopamine hydrochloride, progesterone, and glucose was 
conducted in the nanostructure-coated paper image with a smartphone and naked 
eye. Our experimental methodology was based on the fine adjustment of the color 
change with amount of the target analyte through pipetting attempts on the ME-Ag 
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NP (10 μL NPs paste/cm2)-coated paper. All images (uncoated and coated paper) 
were captured from the top of the box using an autofocus mode in fixed viewing 
position between the detection smartphone camera and the biosensor (optimum dis-
tance: 8 cm) [71].
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Fig. 6  The preservatives efficacy of the synthesized ME-Ag NPs against pathogenic microorganisms (a 
S. aureus, b P. aeruginosa, c E. coli, d C. albicans, and e A. brasilliensis)
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The analytical sensor performance of the smartphone-assisted biosensor for  H2O2 
detection was experimentally done under the optimal condition such as room tem-
perature, sun light, and Casper VIA F20 model smartphone. The smartphone has 
48 + 5 + 2 + 2 MP quad rear camera, and the images of the samples were recorded in 
the continuum light source. With the camera supported by artificial intelligence, the 
samples were analyzed, and the best frames were captured [72].

In Fig. 7, the colorimetric analysis of smartphone camera-captured images of (a) 
ME-Ag NPs, and (b) ME-Ag NPs in the presence of  H2O2, (c) ME-Ag NP-coated 
paper, (b) detection of  H2O2 using the ME-Ag NP-coated paper biosensor were pre-
sented. In the smartphone-supported sensor study, we observed that the mean value 
of RGB increased due to the presence of  H2O2, but there was no significant change 
in the presence of other analytes (isopropyl alcohol, ethanol, ethyl acetate, ammonia, 
ascorbic acid, dopamine hydrochloride, progesterone, and glucose was conducted in 
the nanostructure-coated paper image with a smartphone and naked eye.), according 
to RGB analysis. In the RGB method, the digital images of the NPs sensor collected 
by a smartphone camera were divided into three channels: red (R), green (G), and 
blue (B) due to the color histogram results obtained using ImageJ software and the 
corresponding chromatic values [7].

The small B value of NPs sensor showed the most remarkable response to  H2O2. 
The B values were measured be 169, 96, 167, 147, 153, 145, 121, 98, 99, 97, and 
100 for blank paper, ME-Ag NPs, ME-Ag NPs/H2O2, ME-Ag NPs /isopropyl alco-
hol, ME-Ag NPs/ethanol, ME-Ag NPs/ethyl acetate, ME-Ag NPs/ammonia, ME-Ag 
NPs/ascorbic acid, ME-Ag NPs/dopamine hydrochloride, ME-Ag NPs/progesterone, 
and ME-Ag NPs/glucose, respectively.

In this study, we investigated the logarithmic correlation between the  H2O2 con-
centration, and the response of the biosensor were determined from the calibration 
curve. The response (S) of sensor against logarithm of  H2O2 concentration in the 
range from 0.05 to 20 μM showed a linear relationship with a high correlation coef-
ficient (R2) of 0.9957. Based on experimental results of ME-Ag NP-coated paper 
biosensor, LOD was calculated using to the calibration curve and to be 0.82  μM 
with a signal-to-noise ratio (S/N = 3) in the linear dynamic range of 0.05–20  μM 
 H2O2. We concluded that the developed smartphone-assisted method was success-
fully demonstrated for quantitative determination of  H2O2.

The selectivity is known a significant characteristic of the sensor and the selec-
tivity of sensor can be described using Euclidean distance (ΔE) values. The math-
ematical correlation between the calculated ΔE and analyte was shown in Fig. 7e, 
f. According to colorimetric image results, we observed that there was a significant 
change of intensity upon the addition of  H2O2, while the presence of other analyte 
exhibited negligible variation in the color intensity. To investigate the effect of ana-
lyte on sensing performance, ΔE values were calculated to be 93.70, 75.74, 37.28, 
62.51, and 66.79 for  H2O2, isopropyl alcohol, ethanol, ethyl acetate, and ammonia, 
respectively. Also, we observed that the addition of  H2O2 increased remarkable ΔE 
values of sensor and a color change was observed with the naked eye. Furthermore, 
the color changes for all isopropyl alcohol, ethanol, ethyl acetate, and ammonia 
analytes were negligible. The concentration of NPs is a major factor in the sensi-
tive detection of the target analyte with low concentrations which determine the 
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economics sensor process. For this purpose, we analyzed the performance of the 
prepared ME-Ag NP-based sensor in different concentrations for detecting  H2O2. 
Furthermore, we investigated the effect of concentrations of ME-Ag NPs in range 
of 0.5–10 μM on the colorimetric detection of hydrogen peroxide and colorimetric 
measurement results using colorimetric Euclidean distance (ΔE) values of smart-
phone camera-captured images. We found that the ME-Ag NP-based sensor exhib-
ited an extremely high sensitivity to  H2O2 with a low concentration due to the strong 
interaction of  H2O2 in the sensitive nanoprobe-coated filter paper. Additionaly, 
the minimum Ag NPs concentration was determined as 2.3  μM for color change 
(Fig. 7i). According to our experimental results, the estimated detection mechanism 
of  H2O2 is given in Eqs. 3.1–3.2.

A comparison of ME-Ag NP-based colorimetric  H2O2 sensor with other previous 
results were given in Table 5. Our experimental results showed that the sensitive and 
low-cost ME-Ag NP-based sensor is suitable for colorimetric detection of  H2O2.

Consequently, the ME-Ag NP-coated paper biosensor exhibited high selec-
tivity for  H2O2 and acted as a  H2O2-selective nanoprobe-coated filter paper using 
the smartphone-assisted method with the RGB colorimetric approach. It was clear 
that the fabricated  H2O2 sensing platform has a comparable LOD value than pre-
vious studies [2, 86, 87]. Using the smartphone-assisted color histogram analysis 
of image of ME-Ag NP-coated paper biosensor is a promising technique in sensor 
applications.

Conclusion

In this study, novel preservative nanostructure containing ME-Ag NPs enriched 
with polyphenol were prepared using a green and one-step sonochemical method 
via a self-assembly process. The antimicrobial and antifungal properties of the 
novel nanostructure was investigated against pathogenic microorganisms such as 
S. aureus, P. aeruginosa, E. coli, C. albicans, and A. brasilliensis. Characterization 
results showed that the synthesized ME-Ag NPs had a hyperbranched unimolecular, 
narrow size distribution (10  nm to 30  nm), and large surface area (220.43  m2/g). 
Furthermore, naked eye and colorimetric measurements confirmed the significant 
color change for the sensing  H2O2 using the smartphone-based ME-Ag NPs biosen-
sors with the LOD of 0.82 μM, thereby it was found to be a low-cost, portable, and 
selective sensor for the determination of  H2O2 using the color histogram analysis. 

(3.1)2ME-AgNPs + H2O2 ↔ 2ME-AgNPs…OHad

(3.2)ME-AgNPs…OHad + e− + H+
↔ ME-AgNPs + H2O

Fig. 7  The colorimetric analysis of smartphone camera-captured images of a ME-Ag NPs, and b ME-Ag 
NPs in the presence of  H2O2, c ME-Ag NP-coated paper, d detection of  H2O2 using the ME-Ag NP-
coated paper biosensor, e selectivity analysis of biosensor, f ΔE-log  CH2O2 graph, g standard calibration 
of curve h Uv–Vis measurements of ME-Ag NPs/H2O2, i the effect of concentration of ME-Ag NPs

▸
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We concluded that the challenge test proved that it had an excellent antibacterial and 
antifungal activity with criteria A data in cosmetic applications.
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