Skip to main content
Log in

Additivation of the ethylene–vinyl acetate copolymer (EVA) with maleic anhydride (MA) and dicumyl peroxide (DCP): the impact of styrene monomer on cross-linking and functionalization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The functionalization of the ethylene–vinyl acetate copolymer (EVA) was carried out in an internal mixer, using maleic anhydride (MA), dicumyl peroxide (DCP) and styrene monomer (St) as additives. Torque rheometry, Fourier transform infrared spectroscopy (FTIR), titration, gel content, thermogravimetry (TG) and differential scanning calorimetry (DSC) were evaluated. The EVA/MA/DCP and EVA/MA/DCP/St torque curves showed a significant increase, indicating the cross-linking process. FTIR confirmed the appearance of a new band in the EVA chain, at 1780 cm−1, attributed to the carbonyl group of maleic anhydride. However, maleic anhydride grafting to the EVA/MA/DCP system only occurred for the 5% MA/0.3% DCP ratio. When the EVA/MA/DCP system is additivation with the styrene monomer (St), all compositions grafted maleic anhydride into the EVA chain, suggesting that styrene increases the effectiveness of the degree of grafting. In addition, FTIR indicated the emergence of a band at 702 cm−1, due to the vibration of the aromatic core of styrene and, therefore, forming a multiphase copolymer (EVA-g-(St-co-MA)). The thermal stability was practically not altered when functionalizing the EVA with maleic anhydride, as verified by TG. The crystalline melting temperature, the crystallization temperature, the enthalpy of crystalline melting and the degree of crystallinity decreased with the EVA functionalization process. In general, a high degree of grafting of maleic anhydride in the EVA chain is difficult, due to the competitive effect with the cross-linking process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Azevedo JB, Chávez MA, Júnior RAC, Oliveira RGP, Rabello MS (2009) Propriedades físicas e mecânicas de espumas de EVA/EPDM. Rev Eletrôn Mater Proc 4:38–44

    Google Scholar 

  2. Zattera AJ, Bianchin O, Zeni M, Ferreira CA (2005) Caracterização de resíduos de copolímeros de etileno-acetato de vinila—EVA. Polímeros 15:73–78

    Article  CAS  Google Scholar 

  3. Fauzi AAA, Osman AF, Abdullah MAA, Mandal S, Ananthakrishan R (2019) Ethylene vinyl acetate nanocomposites with hybrid silicate nanofillers of destabilized natural and commercial bentonites and organomontmorillonites. J Vinyl Addit Technol 25:396–411

    Article  Google Scholar 

  4. Yamaki SB, Prado EA, Atvars TDZ (2002) Phase transitions and relaxation processes in ethylene-vinyl acetate copolymers probed by fluorescence spectroscopy. Eur Polym J 38:1811–1826

    Article  CAS  Google Scholar 

  5. Muller CL (2006) Modificação química do EVA com óxido de limoneno para utilização com agente interfacial na adesão de filmes de nylon com poli(etileno-co-acetato de vinila). Doctoral thesis, Federal University of Rio Grande do Sul, Chemistry Institute, Rio Grande do Sul

  6. Koopmans RJ, Linden RV, Vansant EF (1982) Quantitative determination of the vinylacetate content in ethylene vinyl-acetate copolymers—a critical review. Polym Eng Sci 22:878–882

    Article  CAS  Google Scholar 

  7. Wang K, Deng Q (2019) The Thermal and mechanical properties of poly(ethylene-co-vinyl acetate) random copolymers (PEVA) and its covalently crosslinked analogues (cPEVA). Polymers 11:1055

    Article  PubMed Central  Google Scholar 

  8. Wang S, Zhang Y, Zhang Y, Zhang C, Li E (2004) Crosslinking of polyvinyl chloride by electron beam irradiation in the presence of ethylene–vinyl acetate copolymer. J Appl Polym Sci 91:1571–1575

    Article  CAS  Google Scholar 

  9. Laakso R (2008) Chapter 8—compounding with chlorinated polyethylene. In: Klingender RC (ed) Handbook of specialty elastomers. CRC Press, Taylor & Francis, pp 289–300

    Google Scholar 

  10. Lopes D, Ferreira MJ, Russo R, Dias JM (2015) Natural and synthetic rubber/waste—ethylene-vinyl acetate composites for sustainable application in the footwear industry. J Clean Prod 92:230–236

    Article  CAS  Google Scholar 

  11. Copuroglu M, Sen MA (2004) Comparative study of thermal ageing characteristics of poly(ethylene-co-vinyl acetate) and poly(ethylene-co-vinyl acetate)/carbon black mixture. Polym Adv Technol 5:393–399

    Article  Google Scholar 

  12. Stelecu MD, Manaila ANAILAE, Craciun G, Zuga N (2012) Crosslinking and grafting ethylene vinyl acetate copolymer with accelerated electrons in the presence of polyfunctional monomers. Polym Bull 68:263–285

    Article  Google Scholar 

  13. Brogly M, Nardin M, Schultz J (1997) Effect of vinylacetate content on crystallinity and second-order transitions in ethylene—vinylacetate copolymers. J Appl Polym Sci 64:1903–1912

    Article  CAS  Google Scholar 

  14. Sung YT, Kum CK, Lee HS, Kim JS, Yoon HG, Kim WN (2005) Effects of crystallinity and crosslinking on the thermal and rheological properties of ethylene vinyl acetate copolymer. Polymer 46:11844–11848

    Article  CAS  Google Scholar 

  15. Bistac S, Kunemann P, Schultz J (1998) Crystalline modifications of ethylene-vinyl acetate copolymers induced by a tensile drawing: effect of the molecular weight. Polymer 39:4875–4881

    Article  CAS  Google Scholar 

  16. Dias B, Coto NP, Batalha GF, Driemeier L (2018) Systematic study of ethylene-vinyl acetate (EVA) in the manufacturing of protector devices for the orofacial system. In: Dobrzański LA (ed) Biomaterials in regenerative medicine. IntechOpen. https://doi.org/10.5772/intechopen.69969

  17. Olibeira MCC, Viana MM, Lins VFC (2020) Óxido de grafeno (GO) funcionalizado adicionado ao encapsulante EVA para aplicação em módulos fotovoltaicos de silício cristalino. Matéria (Rio J) 25:e-12778

    Article  Google Scholar 

  18. Henderson AM (1993) Ethylene-vinyl acetate (EVA) copolymers: a general review. IEEE Electr Insul Mag 9:30–38

    Article  Google Scholar 

  19. Oliveira MCC, Cardoso ASAD, Viana MM, Lins VFC (2018) The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: a review. Renew Sustain Energy Rev 81:2299–2317

    Article  Google Scholar 

  20. Zhao X, Hu H, Wang X, Yu X, Zhou W, Peng S (2020) Super tough poly(lactic acid) blends: a comprehensive review. RSC Adv 10:13316–13368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhattacharyya AR, Ghosh AK, Misra A, Eichhorn KF (2005) Reactively compatibilised polyamide 6/ethylene-co-vinyl acetate blends: mechanical properties and morphology. Polymer 46:1661–1674

    Article  CAS  Google Scholar 

  22. Olongal M, Nainar MAM, Marakkttupurathe M, Asharaf SMV, Athiyanathil, (2019) S. Effect of poly(ethylene-co-vinyl acetate) additive on mechanical properties of maleic anhydride-grafted acrylonitrile butadiene styrene for coating applications. J Vinyl Addit Technol 25:287–295

    Article  CAS  Google Scholar 

  23. Morais DDS, Siqueira DD, Luna CBB, Araújo EM, Bezerra EB, Wellen RMR (2019) Grafting maleic anhydride onto polycaprolactone: influence of processing. Mater. Res. Express. 6:055315

    Article  CAS  Google Scholar 

  24. Cordella CD, Cardozo NSM, Neto RB, Maule RS (2003) Functionalization of styrene–butadiene–styrene (SBS) triblock copolymer with glycidyl methacrylate (GMA). J Appl Polym Sci 87:2074–2079

    Article  CAS  Google Scholar 

  25. Luna CBB, Siqueira DD, Araújo EM, Wellen RMR, Mélo TJA (2021) Approaches on the acrylonitrile-butadiene-styrene functionalization through maleic anhydride and dicumyl peroxide. J Vinyl Addit Technol 27:308–318

    Article  CAS  Google Scholar 

  26. Rzayvez ZMO (2011) Graft copolymers of maleic anhydride and its isostructural analogues: high performance engineering materials. Int J Chem Eng 3:153–215

    Google Scholar 

  27. Yang Z, Mai K (2010) Crystallization and melting behavior of β-nucleated isotactic polypropylene/polyamide 6 blends with maleic anhydride grafted polyethylene-vinyl acetate as a compatibilizer. Thermochim Acta 511:152–158

    Article  CAS  Google Scholar 

  28. Soares BG, Colombaretti RSC (1999) Melt functionalization of EVA copolymers with maleic anhydride. J Appl Polym Sci 72:1799–1806

    Article  CAS  Google Scholar 

  29. Yin J, Zhang J, Yao Y (2006) Melt grafting of poly(ethylene-vinyl acetate) copolymer with maleic anhydride. J Appl Polym Sci 102:841–846

    Article  CAS  Google Scholar 

  30. Li Y, Xie XM, Guo BH (2001) Study on styrene-assisted melt free-radical grafting of maleic anhydride onto polypropylene. Polymer 42:3419–3425

    Article  CAS  Google Scholar 

  31. Wang D, Li Y, Xie XM, Guo BH (2011) Compatibilization and morphology development of immiscible ternary polymer blends. Polymer 52:191–200

    Article  CAS  Google Scholar 

  32. Hu GH, Flat JJ, Lambla M (1993) Exchange and free radical grafting reactions in reactive extrusion. Makromol Chem Macromol Symp 75:137–157

    Article  CAS  Google Scholar 

  33. Brito GF, Xin J, Zhang P, Mélo TJA, Zhang J (2014) Enhanced melt free radical grafting efficiency of polyethylene using a novel redox initiation method. RSC Adv 4:26425–26433

    Article  CAS  Google Scholar 

  34. Siqueira DD, Morais DDS, Araújo EM, Luna CBB, Wellen RMR (2017) Otimização da funcionalização de um polímero biodegradável utilizando planejamento fatorial. Rev Eletrôn Mater Proc 12:192–198

    Google Scholar 

  35. Barros ABS, Farias RF, Siqueira DD, Luna CBB, Araújo EM, Rabello MS, Wellen RMR (2020) The effect of ZnO on the failure of PET by environmental stress cracking. Materials 13:2844

    Article  CAS  PubMed Central  Google Scholar 

  36. Azevedo JB, Viana JD, Carvalho LH, Canedo EL (2016) Caracterização de compósitos obtidos a partir de polímero biodegradável e casca de arroz utilizando duas técnicas de processamento. Matéria (Rio J) 21:391–406

    Article  CAS  Google Scholar 

  37. Manaf O, Sheeja JA, Sujith A (2017) Effect of unsaturation on physicochemical properties of maleic anhydride–grafted acrylonitrile butadiene styrene terpolymer. J Elastomers Plast 50:520–536

    Article  Google Scholar 

  38. Sammartino LEK, Lucas JC, Reboredo MM, Aranguren ML (2006) Maleic anhydride grafting of polypropylene: peroxide and solvent effects. Plast Rubber Compos 35:117–123

    Article  Google Scholar 

  39. Barbosa LA (2013) Estudo da geração de crosslinking durante a fabricação de EVA/PEBD. Master in Materials, University of Feevale, Professional Master in Materials Technology and Industrial Processes, Novo Hamburgo

  40. Munusamy Y, Ismail H, Ratnam CT (2012) Effect of organoclay loading on the crosslinking and degradation of irradiated ethylene(vinyl acetate) copolymer/natural rubber nanocomposites. J Reinf Plast Compos 34:946–958

    Article  Google Scholar 

  41. Medeiros MTS (2016) Investigação dos efeitos radiolíticos no poli(etileno-acetato-de vinila) (EVA). Master in Materials, Federal University of Pernambuco, Department of Nuclear Energy, Recife

  42. Chattopadhyav S, Chaki TK, Bhowmick AK (2001) Structural characterization of electron-beam crosslinked thermoplastic elastomeric film from blends of polyethylene and ethylene-vinyl acetate copolymer. J Appl Polym Sci 81:1936–1950

    Article  Google Scholar 

  43. Sclavons M, Franquinet P, Carlier V, Verfaillie G, Fallais I, Legras R, Laurent M, Thyrion FC (2000) Quantification of the maleic anhydride grafted onto polypropylene by chemical and viscosimetric titrations, and FTIR spectroscopy. Polymer 41:1989–1999

    Article  CAS  Google Scholar 

  44. Siqueira DD, Luna CBB, Morais DDS, Araújo EM, França DC, Wellen RMR (2018) Efeito das variáveis reacionais na síntese de um polímero biodegradável funcionalizado: PCL-g-MA. Matéria (Rio J) 23:e-12252

    Google Scholar 

  45. Cordella CD, Cardozo NSM, Neto RB, Mauler RS (2003) Functionalization of styrene–butadiene–styrene (SBS) triblock copolymer with glycidyl methacrylate (GMA). J Appl Polym Sci 87:2074–2079

    Article  CAS  Google Scholar 

  46. Bianchi O, Fiorio R, Martins JN, Zattera AJ, Scuracchio CH, Canto LB (2009) Crosslinking kinetics of blends of ethylene vinyl acetate and ground tire rubber. J Elastomers Plast 41:175–189

    Article  CAS  Google Scholar 

  47. Bianchi O, Oliveira RVB, Fiorio R, Martins JDN, Zattera AJ, Canto LB (2008) Assessment of Avrami, Ozawa and Avrami-Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements. Polym Test 27:722–729

    Article  CAS  Google Scholar 

  48. Brito GF (2014) Desenvolvimento de bioblendas de poli(ácido lático)/polietileno compatibilizadas com copolímeros contendo grupos metacrilato de glicidila. Doctoral thesis, Federal University of Campina Grande, Engenharia de Materiais, Campina Grande

  49. Sun YJ, Hu GH, Lambla M (1995) Melt free-radical grafting of glycidyl methacrylate onto polypropylene. Angew Makromol Chem 229:1–13

    Article  CAS  Google Scholar 

  50. Torres N, Robin JJ, Boutevin B (2001) Functionalization of high-density polyethylene in the molten state by glycidyl methacrylate grafting. J Appl Polym Sci 81:581–590

    Article  CAS  Google Scholar 

  51. Lima JCC, Araújo JP, Agrawal P, Mélo TJA (2016) Efeito do teor do copolímero SEBS no comportamento reológico da blenda PLA/SEBS. Rev Eletrôn Mater Proc 11:10–17

    Google Scholar 

  52. Azevedo JB, Chávez MA, Rabello MS (2010) The effect of a crosslinking agent on the morphology and physical and mechanical properties of polymer foams based on EVA and EPDM. Polímeros 20:407–414

    Article  CAS  Google Scholar 

  53. Bondan F (2014) Preparação e caracterização de eleastômeros reticulados dinamicamente de PA 6–12/EVA. Master in Materials, University of Caxias do Sul, Engenharia de Materiais, Caxias do Sul.

  54. Bezerra EB, França DC, Morais DDS, Ferreira ESB, Araújo EM, Wellen RMR (2017) Comportamento reológico do Bio-PE e do PCL na presença do PEgAA e PEgMA. Matéria (Rio J) 22:e11798

    Google Scholar 

  55. Maurano CH, Galland GB, Mauler RS (1998) Influência da estrutura de diferentes copolímeros de etileno e α-olefinas na funcionalização com anidrido maleico. Polímeros 83:79–88

    Article  Google Scholar 

  56. Sirqueia AS, Soares BG (2006) O Efeito de EPDM modificado com grupos mercapto ou tioacetato na cinética de vulcanização de misturas NR/EPDM. Polímeros 16:299–304

    Article  Google Scholar 

  57. Bianchi O, Martins JN, Fiorio R, Oliveira RVB, Canto LB (2011) Changes in activation energy and kinetic mechanism during EVA crosslinking. Polym Test 30:616–624

    Article  CAS  Google Scholar 

  58. Gaylord NG, Mehta M (1982) Role of homopolymerization in the peroxide-catalyzed reaction of maleic anhydride and polyethylene in the absence of solvente. J Polym Sci Polym Lett Ed 20:481–486

    Article  CAS  Google Scholar 

  59. Gaylord NG, Mishra MK (1983) Nondegradative reaction of maleic anhydride and molten polypropylene in the presence of peroxides. J Polym Sci Polym Lett Edi 21:23–30

    Article  CAS  Google Scholar 

  60. Gaylord NG, Mehta R, Kumar V, Tazi M (1989) High density polyethylene-g-maleic anhydride preparation in presence of electron donos. J Appl Polym Sci 38:359–371

    Article  CAS  Google Scholar 

  61. Gaylord NG, Mehta M, Mehta R (1987) Degradation and cross-linking of ethylene-propylene copolymer rubber on reaction with maleic anhydride and/or peroxides. J Appl Polym Sci 33:2549–2558

    Article  CAS  Google Scholar 

  62. Hirchal C, Rydlo MB, Biasio M, Muhleisen W, Neumaier L, Scherf W, Oreski G, Eder G, Chernev B, Schwab W, Kraft M (2013) Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—a comparative study. Sol Energy Mater Sol Cells 116:203–218

    Article  Google Scholar 

  63. Ma P, Jiang L, Ye T, Dong W, Chen M (2014) Melt free-radical grafting of maleic anhydride onto biodegradable poly (lactic acid) by using styrene as a comonomer. Polymers 6:1528–1543

    Article  Google Scholar 

  64. Tedesco A (2001) Polipropileno grafitizado com metacrilato de glicidila como agente comaptibilizante em blendas de PP e Nylon 6. Doctoral thesis, Federal University of Rio Grande do Sul, Engenharia de Materiais, Campina Grande

  65. Oliveira MCC, Viana MM, Lins VFC (2020) Óxido de grafeno (GO) funcionalizado adicionado ao encapsulante EVA para aplicação em módulos fotovoltaicos de silício cristalino. Matéria (Rio J) 25:e-12778

    Article  Google Scholar 

  66. Pessanha AB, Rocha MCG, Silva AHMFT (2011) Silane grafting and moisture crosslinking of LLDPE by a reactive extrusion process: effect of processing conditions and reaction system. Polímeros 21:53–58

    Article  CAS  Google Scholar 

  67. Krupa I, Luyt AS (2001) Mechanical properties of uncrosslinked and crosslinked linear low-density polyethylene/wax blends. J Appl Polym Sci 81:973–980

    Article  CAS  Google Scholar 

  68. Yao D, Qu B, Wu Q (2007) Photoinitiated crosslinking of ethylene-vinyl acetate copolymers and characterization of related properties. Polym Eng Sci 47:1761–1767

    Article  CAS  Google Scholar 

  69. Shieh YT, Tsai TH (1998) Silane grafting reactions of low-density polyethylene. J Appl Polym Sci 69:255–261

    Article  CAS  Google Scholar 

  70. Abarta JAR, Olaya MM, Marcillla A (2006) DSC study of transitions involved in thermal treatment of foamable mixtures of PE and EVA copolymer with azodicarbonamide. J Appl Polym Sci 102:2015–2025

    Article  Google Scholar 

  71. Riva A, Zanetti M, Braglia M, Camno G, Falqui L (2002) Thermal degradation and Rheological behavior of EVA/montmorillonite nanocomposites. Polym Degrad Stab 77:299–304

    Article  CAS  Google Scholar 

  72. Montanheiro TLA, Passador FR, Oliveira MP, Durán N, Lemes AP (2016) Preparation and characterization of maleic anhydride grafted poly(Hydroxybutirate-co-Hydroxyvalerate)—PHBV-g-MA. Mater Res 19:229–235

    Article  CAS  Google Scholar 

  73. Ribeiro VF, Júnior NSD, Riegel IC (2012) Recovering properties of recycled HIPS through incorporation of SBS triblock copolymer. Polímeros 22:186–192

    Article  CAS  Google Scholar 

  74. Colombo MA, Zimmermann MVG, Piazza D, Grisa AMC, Zattera AJ (2016) Influência do grau de reticulação no poli(etileno-co-acetato de vinila) (EVA) com diferentes teores de 1,1 di(terc-butilperox) 3,3,5 trimetilciclohexano (TMCG). 22° CBECiMat—Congresso Brasileiro de Engenharia e Ciência dos Materiais, Natal-RN, Brasil, pp 8203–8211

Download references

Acknowledgements

The authors are grateful to UFCG for infrastructure of the laboratories, the National Council for Scientific and Technological Development—CNPq (Grant No. 312014/2020-1), and the Coordination for the Improvement of Higher Education Personnel—CAPES (Grant No. 001) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bruno Barreto Luna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luna, C.B.B., da Silva Barbosa Ferreira, E., Siqueira, D.D. et al. Additivation of the ethylene–vinyl acetate copolymer (EVA) with maleic anhydride (MA) and dicumyl peroxide (DCP): the impact of styrene monomer on cross-linking and functionalization. Polym. Bull. 79, 7323–7346 (2022). https://doi.org/10.1007/s00289-021-03856-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03856-x

Keywords

Navigation