Skip to main content
Log in

Preparation and pH/temperature dual drug release behavior of polyamino acid nanomicelles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(lysine-phenylalanine-tyrosine) block copolymers were synthesized by ring-opening polymerization of amino anhydride, and the structure was characterized by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectrum. The amphiphilic copolymers could be self-assembled with model-drug Doxorubicin to form spherical nanomicelles in the mixed solution of DMSO and water. The particle size distribution and morphology were characterized investigated by dynamic light scattering and transmission electron microscope, respectively. Drug release experiments in vitro showed that the nanomicelles were pH/temperature dual responsiveness. The cumulative release rate of the drug under acidic conditions could get to more than 82% at 37 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Srijita B, Sumit M (2018) Controlled drug release behavior of 5-aminosalicylic acid using polyacrylamide grafted oatmeal (OAT-g-PAM): a pH-sensitive drug carrier. Polym Bull 76:813–824

    Google Scholar 

  2. Najafipour A, Mahdavian AR, Aliabadi HS, Fassihi A (2020) Dual thermo- and pH-responsive poly(N-isopropylacrylamide-co-(2-dimethylamino) ethyl methacrylate)-g-PEG nanoparticle system and its potential in controlled drug release. Polym Bull 77:3129–3142

    Article  CAS  Google Scholar 

  3. Liu J, Pang Y, Huang W, Zhu X, Zhou Y, Yan D (2010) Self-Assembly of phospholipid-analogous hyperbranched polymers nanomicelles for drug delivery. Biomaterials 31:1334–1341

    Article  CAS  Google Scholar 

  4. Thamizhlarasan A, Meenarathi B, Parthasarathy V, Jancirani A, Anbarasan R (2020) Structural, thermal, spectral and sustainable drug release studies of deoxyfluorouridine tagged poly(d, l-Lactide). Polym Bull 4:1–18

    Google Scholar 

  5. Lu D, Zhang Y, Li Y, Luo C, Wang X, Guan X, Lei Z (2016) Preparation and properties of reversible hydrogels based on triblock poly(amino acid)s with tunable pH-responsivity across a broad range. J Polym Sci Pol Chem 55:207–212

    Article  Google Scholar 

  6. Cagil EM (2020) Production and characterization of a new pH-responsive shellac system for controlled drug release. J Mol Struct 1217:128382

    Article  CAS  Google Scholar 

  7. Yan L, Jiang D (2015) Study of bone-like hydroxyapatite/polyamino acid composite materials for their biological properties and effects on the reconstruction of long bone defects. Drug Des Dev Ther 9:6497–6508

    Article  CAS  Google Scholar 

  8. Zhou Y, Huang W, Liu J, Zhu X, Yan D (2010) Self-assembly of hyperbranched polymers and its biomedical applications. Adv Mater 22:4567–4590

    Article  CAS  Google Scholar 

  9. Lee RS, Peng KY, Wang SW, Li YZ (2014) Synthesis and characterization of amphiphilic poly(pseudo-amino acid) polymers containing a nucleobase. Polym J 46:710–721

    Article  CAS  Google Scholar 

  10. Liu X, Xie Y, Hu Z, Chen Z, Hu J, Yang L (2018) pH responsive self-assembly and drug release behavior of aliphatic liquid crystal block polycarbonate with pendant cholesteryl groups. J Mol Liq 266:405–412

    Article  CAS  Google Scholar 

  11. KimH UT, Akagi T, Baba M, Akashi M (2010) Amphiphilic poly (amino acid) nanoparticles induce size-dependent dendritic cell maturation. Adv Funct Mater 20:3925–3931

    Article  Google Scholar 

  12. Jäger E, Jäger A, Etrych T, Giacomelli FC, Chytil P, Jigounov A, Štěpánek P (2012) Self-assembly of biodegradable copolyester and reactive HPMA-based polymers into nanoparticles as an alternative stealth drug delivery system. Soft Matter 8:9563–6575

    Article  Google Scholar 

  13. Guo Z, Liu X, Chen Z, Hu J, Yang L (2019) New liquid crystal polycarbonate micelles for intracellular delivery of anticancer drugs. Colloid Surf B 178:395–403

    Article  CAS  Google Scholar 

  14. Dong Y, Chen Y, Zhu D, Shi K, Ma C, Zhang W, Liu X (2020) Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy. J Control Release 322:416–425

    Article  CAS  Google Scholar 

  15. Lee RS, Li HR, Chiu FC (2010) Synthesis of amphiphilic pseudopolyamino acid-containing ABC-triblock copolymers and micellar characterizations. J Appl Polym Sci 115:2556–2564

    Article  CAS  Google Scholar 

  16. Bauri K, Roy SG, Pant S, De P (2013) Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers. Langmuir 29:2764–2774

    Article  CAS  Google Scholar 

  17. Schappacher M, Soum A, Guillaume SM (2006) Synthesis of polyester-polypeptide diblock and triblock copolymers using amino poly(ε-caprolactone) macroinitiators. Biomacromolecules 7:1373–1379

    Article  CAS  Google Scholar 

  18. Hernández JR, Lecommandoux S (2005) Reversible inside-out micellization of ph-responsive and water-soluble vesicles based on polypeptide diblock copolymers. J Am Chem Soc 127:2026–2027

    Article  Google Scholar 

  19. Guo XD, Zhang LJ, Chen Y, Qian Y (2009) Core/shell pH-sensitive micelles self-assembled from cholesterol conjugated oligopeptides for anticancer drug delivery. Aiche J 56:1922–1931

    Article  Google Scholar 

  20. Uchida S, Oohori T, Tanaka T, Suzuki M, Shirai H (2000) Synthesis of copolymers of poly(amino acid)-urethane in N, N-dimethylformamide. Polymer 41:473–480

    Article  CAS  Google Scholar 

  21. Zhang S, Fu W, Li Z (2014) Supramolecular hydrogels assembled from nonionic poly(ethylene glycol)-b-polypeptide diblocks containing OEG ylated poly-l-glutamate. Polym Chem 5:3346–3351

    Article  CAS  Google Scholar 

  22. Rønnestad I, Conceição LEC, Aragão C, Dinis MT (2000) Free amino acids are absorbed faster and assimilated more efficiently than protein in postlarval senegal sole (Solea senegalensis). J Nutr 130:2809–2812

    Article  Google Scholar 

  23. Ostolska I, Wiśniewska M (2015) Investigation of the colloidal Cr2O3 removal possibilities from aqueous solution using the ionic polyamino acid block copolymers. J Hazard Mater 290:69–77

    Article  CAS  Google Scholar 

  24. Wu L, Zou Y, Deng C, Cheng R, Meng F, Zhong Z (2013) Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials 34:5262–5272

    Article  CAS  Google Scholar 

  25. Liu H, Wang R, Wei J, Cheng C, Zheng Y, Pan Y, Fu Q (2018) Conformation-directed micelle-to-vesicle transition of cholesterol -decorated polypeptide triggered by oxidation. J Am Chem Soc 140:6604–6610

    Article  CAS  Google Scholar 

  26. Qu J, Peng S, Wang R, Yang S, Zhou Q, Lin J (2019) Stepwise pH-sensitive and biodegradable polypeptide hybrid micelles for enhanced cellular internalization and efficient nuclear drug delivery. Colloid Surf B 181:315–324

    Article  CAS  Google Scholar 

  27. Liu N, Han J, Zhang X, Yang Y, Liu Y, Wang Y, Wu G (2016) pH-responsive zwitterionic polypeptide as a platform for anti-tumor drug delivery. Colloid Surf B 145:401–409

    Article  CAS  Google Scholar 

  28. Chi C, Shi Y, Zheng H, Zhang Y, Chen W, Yang W, Tang Y (2009) Biomineralization process of calcium phosphate: modulation of the poly-amino acid with different hydroxyl/carboxyl ratios. Mater Chem Phys 115:808–814

    Article  CAS  Google Scholar 

  29. Fukuoka T, Uyama H, Kakuchi T, Kobayashi S (2002) Synthesis of a new class of high-molecular-weight soluble poly(amino acid)s by oxidative polymerization of polyfunctional macromolecules. Macromol Rapid Comm 23:698–702

    Article  CAS  Google Scholar 

  30. Takehara M, Saimura M, Inaba H, Hirohara H (2008) Poly(γ-L-diaminobutanoic acid), a novel poly(amino acid), coproduced with poly(ε-L-lysine) by two strains of Streptomyces celluloflavus. Fems Microbiol Lett 286:110–117

    Article  CAS  Google Scholar 

  31. Ohkawa K, Shoumura K, Shirakabe Y, Yamamoto H (2003) Photoresponsive peptide and polypeptide systems 15: synthesis of photo-crosslinkable poly(amino acid)s by watery process and its application as a reinforcement for polyion complex fibers. J Mater Sci 38:3191–3197

    Article  CAS  Google Scholar 

  32. Numata K (2015) Poly(amino acid)s/polypeptides as potential functional and structural materials. Polym J 47:537–545

    Article  CAS  Google Scholar 

  33. Sun H, Gao C (2010) Facile synthesis of multiamino vinyl poly(amino acid)s for promising bioapplications. Biomacromol 11:3609–3616

    Article  CAS  Google Scholar 

  34. Du J, He Y, Li P, Wu W, Chen Y, Ruan H (2018) IL-8 regulates the doxorubicin resistance of colorectal cancer cells via modulation of multidrug resistance 1 (MDR1). Cancer Chemoth Pharm 81:1111–1119

    Article  CAS  Google Scholar 

  35. Skouras A, Papadia K, Mourtas S, Klepetsanis P, Antimisiaris SG (2018) Multifunctional doxorubicin-loaded magnetoliposomes with active and magnetic targeting properties. Eur J Pharm Sci 123:162–172

    Article  CAS  Google Scholar 

  36. Shafiei-Irannejad V, Samadi N, Salehi R, Yousefi B, Rahimi M, Akbarzadeh A, Zarghami N (2018) Reversion of Multidrug Resistance by Co-Encapsulation of Doxorubicin and Metformin in Poly(lactide-co-glycolide)-d-α-tocopheryl Polyethylene Glycol 1000 Succinate Nanoparticles. Pharm Res-dordr 35

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (N2105005, N2005004), National Nature Science Foundation of China (31560268, 21861040), Fujian Natural Science Foundation (2019J0106), and Scientific Research Fund project of Ningde Normal University (2020Z02, 2020ZX502, 2019ZX405, 2018Y06, 2018T02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianshe Hu or Aikebaier Reheman.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Guo, Z., Han, S. et al. Preparation and pH/temperature dual drug release behavior of polyamino acid nanomicelles. Polym. Bull. 79, 4685–4699 (2022). https://doi.org/10.1007/s00289-021-03735-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03735-5

Keywords

Navigation