Skip to main content
Log in

Designing gelatin-based swellable hydrogels system for controlled delivery of salbutamol sulphate: characterization and toxicity evaluation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Purpose of the current research work was to synthesize gelatin based hydrogels for the controlled release of salbutamol sulphate. Free radical polymerization technique was used for the synthesis of hydrogels. Gelatin was cross-linked chemically with monomer methacrylic acid using methylene bisacrylamide as cross-linker while ammonium persulphate and sodium metabisulphite were used as initiators. All the formulations were evaluated through Fourier transform infrared spectroscopy, differential scanning calorimetry, thermo gravimetric analysis and scanning electron microscopy. Swelling properties of formulated hydrogels were also evaluated in both pH 7.4 and 1.2. For drug release study, USP peddle method was used and release study was carried out in both pH 7.4 and 1.2. Fourier transform infrared spectroscopy confirmed that drug salbutamol sulphate is compatible with the formulated system. Moreover, thermal stability was also confirmed by TG/DSC studies providing the fact that thermal stability of the formulated hydrogels is high as compared to individual content. Sol–gel fraction confirmed that gel content increased as the concentrations of the polymer, monomer and cross-inker were increased. All formulations showed profound gel fraction. Similarly, pH dependent swelling was observed, experiencing higher swelling at higher pH as compared to lower pH. Toxicity study was also conducted which endorsed the safety of the hydrogels as no toxic effect was observed on vital organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li Y et al (2013) Magnetic hydrogels and their potential biomedical applications. Adv Func Mater 23(6):660–672

    Article  CAS  Google Scholar 

  2. Shah SA et al (2019) pH-responsive CAP-co-poly(methacrylic acid)-based hydrogel as an efficient platform for controlled gastrointestinal delivery: fabrication, characterization, in vitro and in vivo toxicity evaluation. Drug Deliv Transl Res 9(2):555–577

    Article  CAS  PubMed  Google Scholar 

  3. Ghorpade VS, Yadav AV, Dias RJ (2017) Citric acid crosslinked β-cyclodextrin/carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohyd Polym 164:339–348

    Article  CAS  Google Scholar 

  4. Dragan ES, Cocarta AI, Gierszewska M (2016) Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery. Colloids Surf B 139:33–41

    Article  CAS  Google Scholar 

  5. Deepa G et al (2012) Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy. Int J Nanomed 7:4077–4088

    CAS  Google Scholar 

  6. Erol K et al (2019) Effect of immobilization on the activity of catalase carried by poly (HEMA-GMA) cryogels. Int J Biol Macromol 123:738–743

    Article  CAS  PubMed  Google Scholar 

  7. Köse K et al (2017) Affinity purification lipase from wheat germ: comparison of hydrophobic and metal chelation effect. Artif Cells Nanomed Biotechnol 45(3):574–583

    Article  PubMed  Google Scholar 

  8. Kim JK et al (2014) Natural and synthetic biomaterials for controlled drug delivery. Arch Pharmacal Res 37(1):60–68

    Article  CAS  Google Scholar 

  9. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579

    Article  CAS  PubMed  Google Scholar 

  10. Anirudhan TS, Mohan AM (2018) Novel pH sensitive dual drug loaded-gelatin methacrylate/methacrylic acid hydrogel for the controlled release of antibiotics. Int J Biol Macromol 110:167–178

    Article  CAS  PubMed  Google Scholar 

  11. Cheng N-C et al (2017) Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis. Acta Biomater 51:258–267

    Article  CAS  PubMed  Google Scholar 

  12. Casolaro M, Casolaro I, Lamponi S (2012) Stimuli-responsive hydrogels for controlled pilocarpine ocular delivery. Eur J Pharm Biopharm 80(3):553–561

    Article  CAS  PubMed  Google Scholar 

  13. Rey-Rico A, Madry H, Cucchiarini M (2016) Hydrogel-based controlled delivery systems for articular cartilage repair. Biomed Res Int 2016:1215263

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jing Z et al (2014) Preparation and adsorption properties of a novel superabsorbent based on multiwalled carbon nanotubes–xylan composite and poly (methacrylic acid) for methylene blue from aqueous solution. Polym Compos 35(8):1516–1528

    Article  CAS  Google Scholar 

  15. Bilgin E et al (2018) Use of nicotinamide decorated polymeric cryogels as heavy metal sweeper. Environ Sci Pollut Res 25(27):27614–27627

    Article  CAS  Google Scholar 

  16. Saidi, M., A. Dabbaghi, and S. Rahmani (2019) Swelling and drug delivery kinetics of click-synthesized hydrogels based on various combinations of PEG and star-shaped PCL: influence of network parameters on swelling and release behavior. Polymer Bulletin. 1–22.

  17. McCain ML et al (2014) Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 35(21):5462–5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang Y et al (2018) Preparation of cellulose nanofiber-reinforced gelatin hydrogel and optimization for 3D printing applications. BioResour 13(3):5909–5924

    Article  CAS  Google Scholar 

  19. Xing Q et al (2014) Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep 4(1):4706

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bukhari SMH (2015) Synthesis and characterization of chemically cross-linked acrylic acid/gelatin hydrogels: effect of pH and composition on swelling and drug release. Int J Polym Sci 2015:187961

    Article  Google Scholar 

  21. Dong Y et al (2017) Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing. Adv Func Mater 27(24):1606619

    Article  Google Scholar 

  22. Treesuppharat W et al (2017) Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnol Rep 15:84–91

    Article  CAS  Google Scholar 

  23. Kalshetti PP et al (2012) Hydrogels as a drug delivery system and applications: a review. Int J Pharm Pharm Sci 4(1):1–7

    CAS  Google Scholar 

  24. Prasanth VV et al (2014) Effect of permeation enhancers in the mucoadhesive buccal patches of salbutamol sulphate for unidirectional buccal drug delivery. Res Pharm Sci 9(4):259–268

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar P et al (2015) Design and comparative in-vitro and in-vivo evaluation of starch-acrylate graft copolymer based salbutamol sulphate sustained release tablets. Asian J Pharm Sci 10(3):239–246

    Article  CAS  Google Scholar 

  26. Mansur HS et al (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28(4):539–548

    Article  CAS  Google Scholar 

  27. Mundargi RC, Rangaswamy V, Aminabhavi TM (2011) Poly (N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery. J Microencapsul 28(5):384–394

    Article  CAS  PubMed  Google Scholar 

  28. Köse K, Köse DA (2017) Removal of DDE by exploiting the alcoho-phobic interactions. Environ Sci Pollut Res 24(10):9187–9193

    Article  Google Scholar 

  29. Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev 54(1):37–51

    Article  CAS  PubMed  Google Scholar 

  30. Khan S, Ranjha NM (2014) Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly (vinyl alcohol) hydrogels. Polym Bull 71(8):2133–2158

    Article  CAS  Google Scholar 

  31. Kashif B et al (2017) Oxaliplatin-loaded crosslinked polymeric network of chondroitin sulfate-co-poly(methacrylic acid) for colorectal cancer: Its toxicological evaluation. J Appl Polym Sci 134(38):45312

    Article  Google Scholar 

  32. Pachuau L, Sarkar S, Mazumder B (2008) Formulation and evaluation of matrix microspheres for simultaneous delivery of salbutamol sulphate and theophylline. Trop J Pharm Res 7(2):995–1002

    Article  Google Scholar 

  33. Akin H, Hasirci N (1995) Preparation and characterization of crosslinked gelatin microspheres. J Appl Polym Sci 58(1):95–100

    Article  CAS  Google Scholar 

  34. Ki CS et al (2005) Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer 46(14):5094–5102

    Article  CAS  Google Scholar 

  35. Rokhade AP et al (2006) Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohyd Polym 65(3):243–252

    Article  CAS  Google Scholar 

  36. Panic VV, Velickovic SJ (2014) Removal of model cationic dye by adsorption onto poly (methacrylic acid)/zeolite hydrogel composites: kinetics, equilibrium study and image analysis. Sep Purif Technol 122:384–394

    Article  CAS  Google Scholar 

  37. Panic VV et al (2013) Poly(methacrylic acid) based hydrogels as sorbents for removal of cationic dye basic yellow 28: kinetics, equilibrium study and image analysis. Chem Eng J 217:192–204

    Article  CAS  Google Scholar 

  38. Varghese JS, Chellappa N, Fathima NN (2014) Gelatin–carrageenan hydrogels: role of pore size distribution on drug delivery process. Colloids Surf B 113:346–351

    Article  CAS  Google Scholar 

  39. Parvez S et al (2012) Preparation and characterization of artificial skin using chitosan and gelatin composites for potential biomedical application. Polym Bull 69(6):715–731

    Article  CAS  Google Scholar 

  40. Dergunov SA et al (2005) Radiation synthesis and characterization of stimuli-sensitive chitosan–polyvinyl pyrrolidone hydrogels. Radiat Phys Chem 72(5):619–623

    Article  CAS  Google Scholar 

  41. Ranjha NM et al (2010) Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J Mater Sci Mater Med 21(10):2805–2816

    Article  CAS  PubMed  Google Scholar 

  42. Van Vlierberghe S et al (2007) Porous gelatin hydrogels: 1. Cryog Form Struct Anal Biomacromolecules 8(2):331–337

    Google Scholar 

  43. Bukhari SMH (2015) Synthesis and characterization of chemically cross-linked acrylic acid/gelatin hydrogels: effect of pH and composition on swelling and drug release. Int J Polym Sci 2015:1–15

    Article  Google Scholar 

  44. Gaballa HA et al (2013) Synthesis and characterization of physically crosslinked N-vinylcaprolactam, acrylic acid, methacrylic acid, and N, N-dimethylacrylamide hydrogels. J Polym Sci Part B Polym Phys 51(21):1555–1564

    Article  CAS  Google Scholar 

  45. Junior CRF (2020) On the preparation and physicochemical properties of pH-responsive hydrogel nanocomposite based on poly(acid methacrylic)/laponite RDS. Mater Today Commun 23:100936

    Article  CAS  Google Scholar 

  46. Lopes CM, Felisberti MI (2003) Mechanical behaviour and biocompatibility of poly (1-vinyl-2-pyrrolidinone)–gelatin IPN hydrogels. Biomaterials 24(7):1279–1284

    Article  CAS  PubMed  Google Scholar 

  47. Burugapalli K (2001) Interpenetrating polymer networks based on poly (acrylic acid) and gelatin. I: Swelling and thermal behavior. J Appl Polym Sci 82(1):217–227

    Article  CAS  Google Scholar 

  48. Ramaraj B, Radhakrishnan G (1994) Interpenetrating hydrogel networks based on gelatin and polyacrylamide: synthesis, swelling, and drug release analysis. J Appl Polym Sci 52(7):837–846

    Article  CAS  Google Scholar 

  49. Brazel CS, Peppas NA (1995) Synthesis and characterization of thermo-and chemomechanically responsive poly (n-isopropylacrylamide-co-methacrylic acid) hydrogels. Macromolecules 28(24):8016–8020

    Article  CAS  Google Scholar 

  50. Chen S et al (2007) Structure and properties of the polyelectrolyte complex of chitosan with poly (methacrylic acid). Polym Int 56(10):1305–1312

    Article  Google Scholar 

  51. Chen S et al (2005) Synthesis and swelling properties of pH-sensitive hydrogels based on chitosan and poly (methacrylic acid) semi-interpenetrating polymer network. J Appl Polym Sci 98(4):1720–1726

    Article  CAS  Google Scholar 

  52. Brannon-Peppas L, Peppas NA (1990) Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate. Biomaterials 11(9):635–644

    Article  CAS  PubMed  Google Scholar 

  53. Suhag GS, Bhatnagar A, Singh H (2008) Poly (hydroxyethyl methacrylate)-based co-polymeric hydrogels for transdermal delivery of salbutamol sulphate. J Biomater Sci Polym Ed 19(9):1189–1200

    Article  CAS  PubMed  Google Scholar 

  54. Tyagi P et al (2011) Synthesis and characterization of poly (HEMA-MAA) hydrogel carrier for oral delivery of insulin. J Appl Polym Sci 122(3):2004–2012

    Article  CAS  Google Scholar 

  55. Sadeghi M, Hosseinzadeh H (2010) Swelling behaviour of a novel protein-based super absorbent hydrogel composed of poly (methacrylic acid) and collagen. Asian J Chem 22(9):6734

    CAS  Google Scholar 

  56. Zhang S et al (2014) Organic/inorganic superabsorbent hydrogels based on xylan and montmorillonite. J Nanomater 2014:2

    Article  Google Scholar 

  57. Pourjavadi A, Harzandi AM, Hosseinzadeh H (2004) Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polym J 40(7):1363–1370

    Article  CAS  Google Scholar 

  58. Pourjavadi A, Barzegar S, Mahdavinia GR (2006) MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohyd Polym 66(3):386–395

    Article  CAS  Google Scholar 

  59. Sadeghi M, Hosseinzadeh H (2010) Synthesis and super-swelling behavior of a novel low salt-sensitive protein-based superabsorbent hydrogel: collagen-g-poly (AMPS). Turk J Chem 34(5):739–752

    CAS  Google Scholar 

  60. Zhang L-M et al (2005) A new class of starch-based hydrogels incorporating acrylamide and vinyl pyrrolidone: effects of reaction variables on water sorption behavior. J Bioact Compat Polym 20(5):491–501

    Article  CAS  Google Scholar 

  61. Pourjavadi A, Hosseinzadeh H, Sadeghi M (2007) Synthesis, characterization and swelling behavior of gelatin-g-poly (sodium acrylate)/kaolin superabsorbent hydrogel composites. J Compos Mater 41(17):2057–2069

    Article  CAS  Google Scholar 

  62. Sairam M et al (2006) Encapsulation efficiency and controlled release characteristics of crosslinked polyacrylamide particles. Int J Pharm 320(1):131–136

    Article  CAS  PubMed  Google Scholar 

  63. Lee PI (1985) Kinetics of drug release from hydrogel matrices. J Control Releas 2:277–288

    Article  CAS  Google Scholar 

  64. Changez M et al (2003) The effect of composition of poly (acrylic acid)–gelatin hydrogel on gentamicin sulphate release: in vitro. Biomaterials 24(4):527–536

    Article  CAS  PubMed  Google Scholar 

  65. Narayani R, Rao KP (1994) Controlled release of anticancer drug methotrexate from biodegradable gelatin microspheres. J Microencapsul 11(1):69–77

    Article  CAS  PubMed  Google Scholar 

  66. Varshosaz J, Hajian M (2004) Characterization of drug release and diffusion mechanism through hydroxyethylmethacrylate/methacrylic acid pH-sensitive hydrogel. Drug Deliv 11(1):53–58

    Article  CAS  PubMed  Google Scholar 

  67. Garcıa D et al (2004) Timolol maleate release from pH-sensible poly (2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogels. Eur Polymer J 40(8):1683–1690

    Article  Google Scholar 

  68. Pourjavadi A, Barzegar S (2009) Smart pectin-based superabsorbent hydrogel as a matrix for ibuprofen as an oral non-steroidal anti-inflammatory drug delivery. Starch-Stärke 61(3–4):173–187

    Article  CAS  Google Scholar 

  69. Khan KU, Akhtar N, Minhas MU (2020) Poloxamer-407-Co-Poly (2-Acrylamido-2-Methylpropane Sulfonic Acid) cross-linked nanogels for solubility enhancement of olanzapine: synthesis, characterization, and toxicity evaluation. AAPS PharmSciTech 21:1–15

    Article  Google Scholar 

  70. Badshah SF (2020) Porous and highly responsive cross-linked β-cyclodextrin based nanomatrices for improvement in drug dissolution and absorption. Life Sci 2676:118931

    Google Scholar 

Download references

Acknowledgements

The authors are thankful for the contribution of the Islamia University of Bahawalpur Pakistan for providing the finances and facilities for performing studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafique, N., Ahmad, M., Minhas, M.U. et al. Designing gelatin-based swellable hydrogels system for controlled delivery of salbutamol sulphate: characterization and toxicity evaluation. Polym. Bull. 79, 4535–4561 (2022). https://doi.org/10.1007/s00289-021-03629-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03629-6

Keywords

Navigation