Skip to main content
Log in

Antimicrobial new Schiff base polyesters: design, thermal, and structural characterizations

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, a series of isovanillin-or syringaldehyde-based new Schiff base monomers were synthesized and polymerized using terephthaloyl chloride by solution condensation polymerization technique. Both the monomers and polymers were characterized by FT-IR, 1H-NMR, and 13C-NMR. The thermal and molecular weight properties were determined by thermogravimetric analysis (TGA) and Gel permeation chromatography (GPC). The antimicrobial activities of the polyesters were evaluated based on minimum inhibition concentration against bacteria such as Escherichia coli, Vibrio parahaemolyticus, and staphylococcus aureus as well as fungi such as Candida albicans and Aspergillus niger. The results of inhibition zones showed that new Schiff base polyesters had good antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Spiliopoulos IK, Mikroyannidis JA (1996) Soluble, rigid-rod polyamide, polyimides, and polyazomethine with phenyl pendent groups derived from 4,4‘‘-Diamino-3,5,3‘‘,5‘‘-tetraphenyl-p-terphenyl. Macromolecules 29:5313–5319

    Article  CAS  Google Scholar 

  2. Cerrada P, Oriol L, Piñol M, Serrano JL, Alonso PJ, Puértolas JA, Iribarren I, Muñoz Guerra S (1999) Influence of hydroxy functionalization and metal cross-linking on fiber properties of liquid-crystalline polyazomethines. Macromolecules 32:3565–3573

    Article  CAS  Google Scholar 

  3. Shukla U, Rao KV, Rakshit AK (2003) Thermotropic liquid-crystalline polymers: synthesis, characterization and properties of polyazomethine esters. J Appl Polym Sci 88:153–160

    Article  CAS  Google Scholar 

  4. Aly KI, Khalaf A (2000) New polymer syntheses. IX. Synthesis and properties of new conducting polyazomethine polymers containing main chain cycloalkanone and pyridine moieties. J Appl Polym Sci 77:1218–1229

    Article  CAS  Google Scholar 

  5. Jung SH, Lee TW, Kim YC, Suh DH, Cho HN (2003) Synthesis and characterization of fluorene-based poly(azomethines). Opt Mater 21:169–173

    Article  CAS  Google Scholar 

  6. Rasool R, Hasnain S, Nishat N (2014) Metal-based Schiff base polymers: preparation, spectral, thermal and their in vitro biological investigation. Des Monomers Polym 17:217–226

    Article  CAS  Google Scholar 

  7. Jenekhe SA, Yang CJ, Vanherzeele H, Meth JS (1991) Cubic nonlinear optics of polymer thin films. Effects of structure and dispersion on the nonlinear optical properties of aromatic Schiff base polymers. Chem Mater 3:985–987

    Article  CAS  Google Scholar 

  8. Iwan A, Boharewicz B, Tazbir I, Malinowski M, Filapek M, Kłąb T, Luszczynska B, Glowacki I, Korona KP, Kaminska M, Wojtkiewicz J, Lewandowska M, Hreniak A (2015) New environmentally friendly polyazomethines with thiophene rings for polymer solar cells. Sol Energy 117:246–259

    Article  CAS  Google Scholar 

  9. Niu H, Huang Y, Bai X, Li X, Zhang G (2004) Study on crystallization, thermal stability and hole transport properties of conjugated polyazomethine materials containing 4,4′-bisamine-triphenylamine. Mater Chem Phys 86:33–37

    Article  CAS  Google Scholar 

  10. Jae-Wook K, Jang-Joo K, Jinkyu K, Xiangdan L, Myong-Hoon L (2002) Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluorinated polyimide. IEEE Photonic Tech Let 14:1297–1299

    Article  Google Scholar 

  11. Iwan A, Palewicz M, Chuchmala A, Sikora A, Gorecki L, Sek D (2013) Opto(electrical) properties of triphenylamine-based polyazomethine and its blend with [6,6]-phenyl C61 butyric acid methyl ester. High Perform Polym 25:832–842

    Article  Google Scholar 

  12. Kamacı M, Kaya I (2017) A highly selective, sensitive and stable fluorescent chemo sensorbased on Schiff base and poly(azomethine-urethane) for Fe3+ ions. J Ind Eng Chem 46:234–243

    Article  Google Scholar 

  13. Marin L, Cozan V, Bruma M, Grigoras VC (2006) Synthesis and thermal behaviour of new poly(azomethine-ether). Eur Polym J 42(5):1173–1182

    Article  CAS  Google Scholar 

  14. Sȩk D (1984) Liquid crystalline properties of new poly(azomethine esters). Eur Polym J20:923–926

    Article  Google Scholar 

  15. Yılmaz Baran N, Karakışla M, Demir HO, Saçak M (2016) Synthesis, characterization, conductivity and antimicrobial study of a novel thermally stable polyphenol containing azomethine group. J Mol Struct 1123:153–161

    Article  Google Scholar 

  16. Kaya I, Çöpür S, Karaer H (2017) Synthesis, characterization and electrochemical properties of poly(phenoxy-imine)s containing carbazole unit. Int J Ind Chem 8:1–15

    Article  CAS  Google Scholar 

  17. Yıldırım M, Kaya I (2014) Synthesis and characterizations of poly(ether)/poly(phenol)s including azomethine coupled benzothiazole side chains: the effect of reaction conditions on the structure, optical, electrochemical, electrical and thermal properties. Polym Bull 71:3067–3084

    Article  Google Scholar 

  18. Yılmaz Baran N, Demir HO, Kostekçi S, Sacak M (2015) Poly‐2‐[(4‐methylbenzylidene) amino] phenol: Investigation of thermal degradation and antimicrobial properties. J Appl Polym Sci 132

  19. Kaya I, Emdi D, Saçak M (2009) Synthesis, Characterization and Antimicrobial Properties of Oligomer and Monomer/Oligomer–Metal Complexes of 2-[(Pyridine-3-yl-methylene)amino]phenol. J Inorg Organomet Polym 19:286–297

    Article  CAS  Google Scholar 

  20. McConkey BJ, Sobolev V, Edelman M (2002) The performance of current methods in ligand–protein docking. Curr Sci 83:845–855

    CAS  Google Scholar 

  21. Francolini I, Donelli G, Crisante F, Taresco V, Piozzi A (2015) Antimicrobial polymers for anti-biofilm medical devices: state-of-art and perspectives. Adv Exp Med Biol 831:93–117

    Article  Google Scholar 

  22. Sedlarik V (2013) Antimicrobial modifications of polymers. In: Chamy R, Rosenkranz F (eds) Biodegradation-Life of Science. InTech, Rijeka, Croatia, pp 187–204

    Google Scholar 

  23. Martins AF, Facchi SP, Follmann HD, Pereira AG, Rubira AF, Muniz EC (2014) Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review. Int J Mol Sci 15:20800–20832

    Article  CAS  Google Scholar 

  24. Deka SR, Sharma AK, Kumar P (2015) Cationic polymers and their self-assembly for antibacterial applications. Curr Top Med Chem 15(13):1179–1195

    Article  CAS  Google Scholar 

  25. Chung D, Papadakis SE, Yam KL (2003) Evaluation of a polymer coating containing triclosan as the antimicrobial layer for packaging materials. Int J Food Sci Technol 38(2):165–169

    Article  CAS  Google Scholar 

  26. da Silva CM, da Silva DL, Modolo LV, Alves RB, de Resende MA, Martins CVB, de Fatima A (2011) Schiff bases: a short review of their antimicrobial activities. Journal of Advanced Research 2:1–8

    Article  Google Scholar 

  27. Al-Balakocy NG, Shalaby SE (2017) Imparting antimicrobial properties to polyester and polyamide fibers-state of the art. Journal of Textile Association 78(3):179–201

    Google Scholar 

  28. Subramani A, Mohammed Mustaque K, Shabeer TK (2017) Synthesis and characterization of new polyesters using Schiff base monomer. Asian J Chem 29(5):1168–1170

    Article  CAS  Google Scholar 

  29. Fred W, Billmeyer JR (1965) Characterization of molecular weight distributions in high polymers. J Polym Sci Polym Symp 8:161–178

    Google Scholar 

  30. Aly KI, Khalaf AA, Alkskas IA (2003) New polymer syntheses XII. Polyketones based on diarylidenecycloalkanones. Eur Polym J 39:1273–1279

    Article  CAS  Google Scholar 

  31. Deanin RD (1972) Polymer structure, properties and applications. Canners book, Boston 8:457

    Google Scholar 

  32. Yılmaz Baran N, Demir HO, Kostekçi S, Sacak M (2015) Poly-2-[(4-methylbenzylidene) amino] phenol: investigation of thermal degradation and antimicrobial properties. J Appl Polym Sci 132:41758

    Article  Google Scholar 

  33. Kaya I, Emdi D, Saçak M (2009) Oxidative polymerization of N2O2 type Schiff base monomer and its metal complexes: synthesis and thermal, optical and electrochemical properties. J Inorg Organomet Polym 19:286–297

    Article  CAS  Google Scholar 

  34. Selvi C, Nartop D (2012) Novel polymer anchored Cr(III) Schiff base complexes: synthesis, characterization and antimicrobial properties. Spectrochim Acta A Mol Biomol Spectrosc 95:165–171

    Article  CAS  Google Scholar 

  35. Bellamy LJ (1980) The Infrared Spectra of Complex Molecules, Chapman and Hall, 3rd Edition Vol. 2, London

  36. Narasimhan B (2001) Mathematical models describing polymer dissolution: consequences for drug delivery. Adv Drug Deliv Rev 48:195–210

    Article  CAS  Google Scholar 

  37. Brandrup J, Immergut EH, Grulke EA (1999) editors, 4th ed. Polymer handbook, Vol. 7. New York, NY: Wiley, 675–714

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Shabeer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2,037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.M., Shabeer, T.K. Antimicrobial new Schiff base polyesters: design, thermal, and structural characterizations. Polym. Bull. 79, 1119–1132 (2022). https://doi.org/10.1007/s00289-021-03548-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03548-6

Keywords

Navigation