Skip to main content
Log in

Mechanical and water kinetic parameters of water-absorbed hard wood dust/high-density polyethylene composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The mechanical (flexural, tensile and impact) properties and water kinetic parameters of water-absorbed hard wood (mangrove) reinforced high-density polyethylene composites were evaluated as untreated and treated mangrove dust (MD). Samples were prepared by mixing high-density polyethylene (HDPE) with MD at 10, 20 and 30% by weight in a twin-screw laboratory compounder and injection moulded into dumb-bell and rectangular-shaped test specimens for flexural, tensile and impact tests. Samples were soaked in distilled water for 1440 h at room temperature and a relative humidity of ~ 65%. The flexural strength and modulus indicated that treated composites exhibited lower decrease in values than their untreated counterparts at water equilibrium points. The dry composites maintained higher values of tensile properties, notwithstanding the treatment. Scanning electron microscopy of impact fractured surfaces showed evidence of improved MD-HDPE interfacial adhesion of treated composites in both dry and water-absorbed conditions. The water kinetics parameters such as the diffusion, sorption and permeability coefficients further show that dry composites are more water-resistant than the wet composites. Overall, the treated composites at dry and moisture-saturated conditions indicated better mechanical and moisture stability than the untreated MD/HDPE composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adebayo GO, Hassan A, Yahya R, Rahman NA, Lafia-Araga R (2019) Influence of wood surface chemistry on the tensile and flexural properties of heat-treated mangrove/high-density polyethylene composites. Polym Bull 12:1–20

    Google Scholar 

  2. Matuana L, Stark N (2015) The use of wood fibers as reinforcements in composites. Biofiber reinforcements in composite materials. Elsevier, Amsterdam, pp 648–688

    Chapter  Google Scholar 

  3. Yang H-S, Kim H-J, Park H-J, Lee B-J, Hwang T-S (2006) Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Compos Struct 72(4):429–437

    Article  Google Scholar 

  4. Lu X, Zhang MQ, Rong MZ, Yang GC (2004) Environmental degradability of self-reinforced composites made from sisal. Compos SciTechnol 64(9):1301–1310

    Article  CAS  Google Scholar 

  5. Cui YH, Wang XX, Xu Q, Xia ZZ (2010) Research on moisture absorption behavior of recycled polypropylene matrix wood plastic composites. J Thermoplast Compos Mater 24(1):65–82. https://doi.org/10.1177/0892705710376470

    Article  CAS  Google Scholar 

  6. Stark N (2001) Influence of moisture absorption on mechanical properties of wood flour-polypropylene composites. J Thermoplast Compos Mater 14(5):421–432. https://doi.org/10.1106/UDKY-0403-626E-1H4P

    Article  CAS  Google Scholar 

  7. Pech-Cohuo SC, Flores-Cerón I, Valadez-González A, Cupul-Manzano CV, Navarro-Arzate F, Cruz-Estrada RH (2016) Interfacial shear strength evaluation of pinewood residue/high-density polyethylene composites exposed to UV radiation and moisture absorption-desorption cycles. BioResources 11(2):3719–3735

    Article  CAS  Google Scholar 

  8. Arbelaiz A, Fernandez B, Ramos J, Retegi A, Llano-Ponte R, Mondragon I (2005) Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos SciTechnol 65(10):1582–1592

    Article  CAS  Google Scholar 

  9. Huang S-H, Cortes P, Cantwell W (2006) The influence of moisture on the mechanical properties of wood polymer composites. J Mater Sci 41(16):5386–5390

    Article  CAS  Google Scholar 

  10. Hosseinihashemi SK, Arwinfar F, Najafi A, Nemli G, Ayrilmis N (2016) Long-term water absorption behavior of thermoplastic composites produced with thermally treated wood. Measurement 86:202–208

    Article  Google Scholar 

  11. Lafia-Araga RA, Hassan A, Yahya R, Rahman NA, Salleh FM (2018) Water absorption behavior of heat-treated and untreated red balau saw dust/LDPE composites: its kinetics and effects on mechanical properties. J Thermoplast Compos Mater 32:1408–1426

    Article  Google Scholar 

  12. Adebayo GO, Hassan A, Yahya R, Sarih NM, Odesanya KO (2019) Impact of water saturation on the tensile and thermal properties of heat-treated mangrove/high-density polyethylene composites. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705719847238

    Article  Google Scholar 

  13. Standard ASTM (2008) Standard practice for conditioning plastics for testing. ASTM International, West Conshohocken, PA

    Google Scholar 

  14. Standard ASTM (2011) Standard guide for evaluating mechanical and physical properties of wood-plastic composite products. ASTM International, West Conshohocken, PA

    Google Scholar 

  15. Standard ASTM (2016) Standard test methods for notched bar impact testing of metallic materials. ASTM International, West Conshohocken, PA

    Google Scholar 

  16. Standard ASTM (2014) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA

    Google Scholar 

  17. Standard ASTM (2017) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, PA

    Google Scholar 

  18. Adebayo GO, Hassan A, Yahya R, Rahman NA, Lafia-Araga R (2019) Influence of wood surface chemistry on the tensile and flexural properties of heat-treated mangrove/high-density polyethylene composites. Polym Bull 76(12):1–20

    Article  Google Scholar 

  19. Soccalingame L, Bourmaud A, Perrin D, Bénézet JC, Bergeret A (2015) Reprocessing of wood flour reinforced polypropylene composites: impact of particle size and coupling agent on composite and particle properties. PolymDegrad Stab 113:72–85. https://doi.org/10.1016/j.polymdegradstab.2015.01.020

    Article  CAS  Google Scholar 

  20. Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos A ApplSciManuf 35(11):1267–1276

    Article  Google Scholar 

  21. Petchwattana N, Covavisaruch S, Pitidhammabhorn D (2013) Influences of water absorption on the properties of foamed poly (vinyl chloride)/rice hull composites. J Polym Res 20(6):172

    Article  Google Scholar 

  22. Petchwattana N, Sanetuntikul J, Sriromreun P, Narupai B (2017) Wood plastic composites prepared from biodegradable poly (butylene succinate) and Burma Padauk sawdust (Pterocarpusmacrocarpus): water absorption kinetics and sunlight exposure investigations. J Bionic Eng 14(4):781–790

    Article  Google Scholar 

  23. Mrad H, Alix S, Migneault S, Koubaa A, Perré P (2018) Numerical and experimental assessment of water absorption of wood-polymer composites. Measurement 115:197–203

    Article  Google Scholar 

  24. Chen RS, Ab Ghani MH, Salleh MN, Ahmad S, Tarawneh MAA (2015) Mechanical, water absorption, and morphology of recycled polymer blend rice husk flour biocomposites. J Appl Polym Sci 132(8):1–12

    CAS  Google Scholar 

  25. Najafi SK, Kiaefar A, Hamidina E, Tajvidi M (2007) Water absorption behavior of composites from sawdust and recycled plastics. J ReinfPlast Compos 26(3):341–348

    Article  CAS  Google Scholar 

  26. Fabiyi JS, McDonald AG, Morrell JJ, Freitag C (2011) Effects of wood species on durability and chemical changes of fungal decayed wood plastic composites. Compos A ApplSciManuf 42(5):501–510

    Article  Google Scholar 

  27. Steckel V, Clemons CM, Thoemen H (2007) Effects of material parameters on the diffusion and sorption properties of wood-flour/polypropylene composites. J ApplPolymSci 103(2):752–763

    CAS  Google Scholar 

  28. Muñoz E, García-Manrique JA (2015) Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites. Int J PolymSci 2015:1–10

    Article  Google Scholar 

  29. Jacob M, Varughese K, Thomas S (2005) Water sorption studies of hybrid biofiber-reinforced natural rubber biocomposites. Biomacromol 6(6):2969–2979

    Article  CAS  Google Scholar 

  30. Venkateshwaran N, Elayaperumal A (2012) Mechanical and water absorption properties of woven jute/banana hybrid composites. FibersPolym 13(7):907–914

    CAS  Google Scholar 

  31. Petchwattana N, Covavisaruch S, Chanakul S (2012) Mechanical properties, thermal degradation and natural weathering of high density polyethylene/rice hull composites compatibilized with maleic anhydride grafted polyethylene. J Polym Res 19(7):9921

    Article  Google Scholar 

  32. Lafia-Araga RA, Hassan A, Yahya R, Rahman NA, Salleh FM (2018b) Water absorption behavior of heat-treated and untreated red balau saw dust/LDPE composites: its kinetics and effects on mechanical properties. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705718799823

    Article  Google Scholar 

  33. Adebayo G, Hassan A, Yahya R, Sarih N, Odesanya K (2018) Effects of water absorption on the tensile and thermal properties of heat treated mangrove/high-density polyethylene composites. In: University of Malaya-Indonesian universities symposium (UMInd 2018)

  34. Adebayo GO (2019) Compounding, injection moulding and characterisation of mangrove particle/high density polyethylene Composites (Doctoral dissertation, University of Malaya)

  35. Ruth A, Lafia-Araga AH, Yahya R, Rahman NA, Salleh FM, Adebayo GO (2020) Effects of wood flour content and heat treatment on the dynamic mechanical and impact properties of LDPE/red balau (ShoreaDipterocarpaceae) composites. Polym Bull. https://doi.org/10.1007/s00289-020-03373-3

    Article  Google Scholar 

  36. Bledzki AK, Faruk O (2004) Creep and impact properties of wood fibre–polypropylene composites: influence of temperature and moisture content. Compos SciTechnol 64(5):693–700

    Article  CAS  Google Scholar 

  37. Tamrakar S, Lopez-Anido RA (2011) Water absorption of wood polypropylene composite sheet piles and its influence on mechanical properties. Constr Build Mater 25(10):3977–3988. https://doi.org/10.1016/j.conbuildmat.2011.04.031

    Article  Google Scholar 

  38. Zhu S, Guo Y, Tu D, Chen Y, Liu S, Li W, Wang L (2018) Water absorption, mechanical, and crystallization properties of high-density polyethylene filled with corncob powder. BioResources 13(2):3778–3792

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author of this paper will like to appreciate the support of the University of Malaya for providing and maintaining the necessary facilities for the successful completion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganiyat Olusola Adebayo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adebayo, G.O. Mechanical and water kinetic parameters of water-absorbed hard wood dust/high-density polyethylene composites. Polym. Bull. 79, 193–211 (2022). https://doi.org/10.1007/s00289-020-03496-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03496-7

Keywords

Navigation